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Food allergy now affects 6%–8% of children in the Western world; despite this, we
understand little about why certain people become sensitized to food allergens. The
dominant form of food allergy is mediated by food-specific immunoglobulin E (IgE)
antibodies, which can cause a variety of symptoms, including life-threatening
anaphylaxis. A central step in this immune response to food antigens that differentiates
tolerance from allergy is the initial priming of T cells by antigen-presenting cells (APCs),
primarily different types of dendritic cells (DCs). DCs, along with monocyte and
macrophage populations, dictate oral tolerance versus allergy by shaping the T cell and
subsequent B cell antibody response. A growing body of literature has shed light on the
conditions under which antigen presentation occurs and how different types of T cell
responses are induced by different APCs. We will review APC subsets in the gut and
discuss mechanisms of APC-induced oral tolerance versus allergy to food identified using
mouse models and patient samples.

Keywords: food allergy, dendritic cells, oral tolerance, monocytes, gut, mesenteric lymph node, Peyer’s
patches, macrophages
INTRODUCTION

Food allergy is a growing epidemic in the developedworld, with 6%–8% of children and about 2%of the
generalpopulation affected in theUnitedStates (1–4).A small groupoffoods includingpeanut, treenuts,
egg,milk, soy,wheat,fish, shellfish, and sesame cause over 90%offood allergies in theUnited States. For
sufferers of food allergy, consuming the target allergen can lead to various body-wide symptoms
including hives, swelling, gastrointestinal distress, cardiovascular, and respiratory compromise, and in
rare instances, fatal anaphylaxis (5). The standard of care for food allergy treatment is to avoid
consuming the allergenic food and to carry emergency medications in case of accidental ingestion (6).
Despite advances made in food allergy treatment with oral immunotherapy, a cure is still elusive. Food
allergy greatly affects quality of life, so more treatment options are direly needed (7). To identify
therapeutic targets and advance research, it is crucial to understand the mechanisms underlying
food allergy.

Food allergy is a type 2 immune reaction to dietary antigens that can manifest in several ways
depending on the pathophysiological endotype (8); some forms of food allergy are dominated by the
type 2 cellular response, whereas others primarily present with symptoms of the humoral type 2
response. This review will cover what is known about the regulation of the cellular and humoral
org January 2021 | Volume 11 | Article 6160201
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immune reactions to food antigens by the dominant antigen-
presenting cells of the immune system, dendritic cells (DCs).

The cellular immune responseof type2 immunity is coordinated
by Th2 CD4+ T cells, which produce IL-4, -5, and -13 cytokines as
well as chemokines and other chemical mediators; a subset of these
T cells also make IL-9. The ensuing cellular response includes
recruitment and activation of eosinophils, group 2 innate lymphoid
cells, (ILC2s) and basophils, as well as changes to the epithelial
barrier (9). ILC2s amplify the Th2 response within the gut by
producing IL-5 and -13 and quickly react to the production of
alarmin cytokines such as IL-25 from the gut epithelium (10). Th2
cells also induce a populationofmucosalmast cells that produce IL-
4, IL-9, and IL-13 (11), which expands the intestinal mast cell
population while suppressing regulatory T (Treg) cell generation,
enhancing susceptibility of anaphylaxis to food allergens (12, 13).
Tregs are responsible for oral tolerance, the induction of non-
responsiveness to gut antigens including food.Many suchTregs are
inducedwithin the gut [peripheralTregs (pTreg)], andwewill cover
what is known about this important step in avoiding allergic
sensitization to food.

The humoral immune response of type 2 immunity is epitomized
by IgE, which is driven by two closely related populations of CD4+ T
follicular helper (Tfh) cells, IL-4-producing Tfh2 and Il-4 and -13
producing Tfh13 cells (14). In contrast to allergic airway
inflammation, mast cells are essential for the allergic IgE-mediated
form of food allergy (15, 16). Cross-linking of high-affinity IgE on
mature mast cell membranes induces release of the chemical
mediators of anaphylaxis, the “weep and sweep” response; this
eliminates the target of the IgE antibodies but can be life-
threatening. There is also ample data that a positive feedback loop
ensues from IgE-mediatedmast cell activation, resulting in enhanced
cellular type 2 immunity to food allergens (13).Other innate immune
cells have also been implicated in contributing to anaphylactic
responses in both human and mouse studies including basophils,
platelets, macrophages, and neutrophils (17).

Mounting both of these adaptive immune responses begins by
activating the correct type of antigen-presenting cell (APC). This
requires innate immune activation, since in the absence of
activating signals, APCs should induce antigen-specific T cell
tolerance. Tolerance is the primary response of the gut immune
system to foodantigens.Antigen canbeacquiredbyAPCs in the gut
lamina propria (LP) through multiple access points, including
goblet cell-associated passages (18, 19), microfold (M) cell
sampling in Peyer’s patches (PPs), and gut lumen sampling
CX3CR1+ macrophages that pass off antigen to migratory DCs
(20). These DCs migrate in a CCR7-dependent manner to provide
either activating or tolerizing signals to naïve lymphocytes within
gut-associated lymphoid tissues (GALT) (21). GALT are located
throughout the intestine and include PPs, mesenteric lymph nodes
(MLNs) and isolated lymphoid follicles (ILFs). These are unique
cellular niches for induction of tolerance but are also sites for T cell
priming and B cell activation. It is important to note that many
theories on sensitization to food allergens implicate the skin rather
than the gut as the relevant site based on clinical and experimental
data (22). Therefore, we will also cover what is known about the
APC response in the skin to food allergens.
Frontiers in Immunology | www.frontiersin.org 2
APC POPULATIONS IN THE GUT

APCs encompass DCs, monocytes/macrophages and B cells
(Table 1 and Figure 1). Little data exist on B cells functioning
as APCs in food tolerance or sensitivity; therefore, this review
will primarily focus on DCs and monocytes/macrophages in the
response to food antigens, starting with a brief introduction on
gut APCs.

Dendritic Cell Populations in the Gut
DCs are professional antigen-presenting cells that control both T
cell tolerance and priming. Based on ontogeny, phenotype and
function, DCs can be divided into conventional/classical DCs
(cDCs) and plasmacytoid DCs (pDCs) [for review see (23)]. cDCs
are further separated into two subsets, cDC1s and cDC2s (24).

Lamina Propria (LP)
Mouse LP is populated by CD103+CD11b-CLEC9A+XCR1+ cDC1s,
CD103+CD11b+SIRPa+ cDC2s and then a population of cells that
are CD103- CD11b+DCs (25–29). Human LP have analogous cDC
populations with CD103+CD141+CLEC9A+XCR1+ cDC1s and
CD103+CD1c+Sirpa+ cDC2s (21, 30, 31). Recently, new cDC2
subsets were identified in both human and mouse (32, 33). Since
these new DC subsets have not yet been studied in food allergy or
tolerance,wewill notdiscuss them. cDCsubsets in theLPcanmigrate
into mesenteric lymph nodes (MLNs) via CCR7-driven chemotaxis
(21, 34, 35).TheLPcontains a fourthpopulationofCD11b+CX3CR1
+ cells; whether these cellsmigrate toMLNs and primeT cells in vivo
has beendebated (28, 36–39). This is partly due to themixedorigin of
CX3CR1+ cells in the LP (40). One Ly6C- and cDC-derived subset
requires CCR2 for seeding the LP and subsequent CCR7-dependent
migration to the MLN (27, 37). In contrast, a Ly6C+ monocyte-
derived DC (mo-DC) subset, which is also CCR2-dependent, fails to
express CCR7 or migrate to MLNs and therefore is not involved in
naïve T cell priming in MLN (28, 38, 41, 42). A small population of
CD103-CD11b- DCs are also present in the LP but are likely cDC1s
andcDC2s as theyhavebeen shown to either expressXCR1or SIRPa
(25).Finally,PDCA1+pDCsresponsible for regulating intestinal cDC
mobilization towards theMLNsarealsopresent in theLP (21, 43, 44).

Mesenteric Lymph Node (MLN)
In theMLN, four populationsofCD11c+MHCII+ cells are observed
using CD11b and CD103 surface staining: 1, cDC1s, which
encompass both migratory CD103+ CD11b-cDC1s from the LP
and some CD11b-CD8a+ resident cDC1s (all are XCR1+ and
CLEC9A+); 2, cDC2, which encompass CD103+CD11b+

migratory cDC2s and CD11b+ resident cDC2s (all are SIRPa+); 3,
CD11b+CD103- cDC2s; and 4, depending on the inflammatory
state, a monocyte-derived CD11b+CX3CR1+ population (25, 27–
29). The expression of F4/80, Ly6C, CD64, Zbtb46, and CX3CR1
levels have been used to differentiate populations 3 and 4.

Peyer’s Patch (PP)
PP DC subsets have been classically defined in a manner distinct
from LP and MLN DCs as CD8a+, CD11b+, or CD8a-CD11b-

“double negative” (DN) (45). However, more recent work has
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united the subsets across a variety of tissues and secondary
lymphoid organs (SLOs) using the cDC1 and cDC2
nomenclature (24), including in the gut (25). Using the new
classification system, PP DCs fall into two subsets: 1, cDC1s,
which includes both CD8a+XCR1+ and DN XCR1+ DCs; and 2,
cDC2s,which includes bothCD11b+ SIRPa+ andDNSIRPa+DCs.
It is also helpful to maintain the classification of migratory and
resident DC subsets in all SLOs, including those without afferent
lymphatics like the spleen and PPs, as migration after antigen
acquisition occurs betweendifferent tissue regionswithin these sites
(23). Resident CD8a+XCR1+ cDC1s are primarily found in the T
cell-rich interfollicular zone (IFZ) of the PP. The heterogeneous
populations of DN DCs in PPs have been identified by
immunofluorescence staining in the subepithelial dome (SED)
and IFZ of the PP (46). With microbial or adjuvant stimulation,
SIRPa+ cDC2s, including DN DCs and CD11b+DCs, can migrate
from the SED into adjacent IFZs (47, 48). CLEC9A+ cDC1s were
noted in the SED of human PPs by immunofluorescence (31). In
addition, CD103+ cDCs were observed in the SED in rat PPs at
steady state but were concentrated in the IFZ after activation (43);
these could represent a migratory cDC1 population within the PP,
thoughmorework is needed to confirm this. Therefore, we propose
to classify PP DC subsets as IFZ-resident cDC1s and cDC2s and
SED migratory cDC2s and possibly migratory cDC1s (Figure 1).
This mirrors the nomenclature in the spleen and LNs. PP PDCA1+

pDCsare also found in the SEDand IFZ (49). It shouldbenoted that
there is little evidence for any of these DC subsets emigrating into
PPs from the gut. Therefore, they likely seed the PPs from the blood
and then migrate within the PP upon activation.
Frontiers in Immunology | www.frontiersin.org 3
Monocytes/Macrophage Populations in
the Gut
Monocytes include three main subsets, Ly6Chi (mouse)/
CD14+(human) classical monocytes and Ly6Clow (mouse)/CD14-

(human) non-classical monocytes and Ly6Cint(mouse)/CD14int

(human) intermediate monocytes (50). Classical monocytes
express higher CCR2 and require CCR2 for bone marrow egress
(51). Monocytes can differentiate into DC-like populations (mo-
DCs) or macrophages according to the context, which are difficult
to discriminate, and therefore, we will refer to both under the
umbrella term, monocyte-derived cells (MCs) (36, 40, 52). A
population of CD11c+ CD11b+ SIRPa+ MCs exists in the PP
dome that expresses lysozyme and CX3CR1 and can activate T cells
in vitro (53). A similar population of CD11b+CX3CR1+ MCs exists
in the LP (28, 38–40).

Macrophages in the LP are identified as MHCII+F4/
80+CD11b+ CX3CR1+ MerTK+ in mice (54, 55). MerTK, CD64,
CD163, and Sirpa are conserved features of human intestinal
macrophages, although at varying levels for macrophage subset
(56, 57). Gut macrophages are distinguished from DCs by CD64
expression (38). Although macrophages in most tissues have a
dual origin involving both embryonic liver and hematopoietic
bonemarrow ontogeny, intestinal LP macrophages need continual
replenishment from circulating Ly6Chi monocytes in adult mice
(38, 39, 58, 59). The function and phenotype of the macrophages
that differentiate from these monocyte precursors vary based on
the state of inflammation in the gut (40, 54). Although in vitro
gut macrophages are capable of antigen presentation to naïve
T cells, both macrophages and monocytes are rarely observed
TABLE 1 | Antigen presenting cells in the gut.

Location Human Mouse

cDC1 MLN Resident: HLA-DRint CD11chi CD11b− CD8a+ XCR1+

SIRPa−CD141+ DNGR1+

Migratory: HLA-DRhi CD11cint CD103+ CD11b− XCR1+

SIRPa−CD141+ DNGR1+

Resident: MHC-IIint CD11chiCD11b− CD8a+

XCR1+ SIRPa− DNGR1+

Migratory: MHC-IIhi CD11cint CD103+ CD11b− XCR1+

SIRPa− DNGR1+

LP CD103+ CD11b− XCR1+ SIRPa−CD141+ DNGR1+ CD103+ CD11b−

XCR1+ SIRPa− DNGR1+

PP CD103+ CD11b− CD8a+ XCR1+ SIRPa−CD141+ DNGR1+ CD103+ CD11b− CD8a+

XCR1+ SIRPa− DNGR1+

cDC2 MLN Resident: HLA-DRint CD11chi CD103+ CD11b+ XCR1−CD1c+

SIRPa+ CD141− DNGR1−

Migratory: HLA-DRhi CD11cint CD103+ CD11b+ XCR1−CD1c+

SIRPa+ CD141− DNGR1−

Resident: MHC-IIint CD11chi CD103+ CD11b+

XCR1− SIRPa+

Migratory: MHC-IIhi CD11cint CD103+ CD11b+

XCR1− SIRPa+

LP 1.CD103+ CD11b+ XCR1−CD1c+

SIRPa+ CD141− DNGR1−

2. CD103- CD11b+ XCR1−CD1c+

SIRPa+ CD141− DNGR1−

1.CD103+ CD11b+ XCR1− SIRPa+

2.CD103- CD11b+

XCR1− SIRPa+

PP HLA-DR+ CD11C+ CD1c+(?) XCR1- CD103- CD11b+

XCR1− SIRPa+

pDC MLN, LP, PP CD11c− CD123+

BDCA2+(?) BDCA4+(?)
CD11cmidB220+

PDCA1+ LY6C+CCR9+ Siglec-H+

Monocyte MLN, LP, PP Classical: CCR2hiM-CSFR+ CD14hiCD11b+

non-classical monocytes: CCR2low M-CSFR+ CD14low
Classical: CCR2hiM-CSFR+ Ly6Chi

non-classical monocytes: CCR2low M-CSFR+ Ly6Clow

monocyte-
derived cells

MLN, LP, PP CD14
+

CD11b+SIRPa+ /CD172+BDCA1/CD1c+CD226+ CD209a+ CD11b+ CD64+CCR2+ Ly6C+

CD88+ SIRPa+ /CD172+CX3CR1mid

Macrophage MLN, LP, PP HLA-DR+ CD68+ CD64+ CD209+ MerTK+ CD14+

CD206+CD163+
CX3CR1hi CD11b+CD64+

F4/80+MerTK+ SIRPa+ CD163+
Commonly used markers for defining APC subsets in the gut of humans or mice are summarized based on location and subset. “?” indicates that well-accepted markers have not yet
been established.
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transporting gut antigens from tissue to LNs to prime naïve T cells,
so their primary function is within the gut itself. Inflammatory
monocytes enter the LN primarily from the blood rather than
migrating from the tissue using CCR2 rather than CCR7 homing
signals (60, 61).
APCS AND ORAL TOLERANCE

In the steady state, ingestion of innocuous antigens generally
results in oral tolerance. Long-lasting oral tolerance is enforced
by Foxp3+ pTreg cells induced in MLNs that home to the gut by
expressing the integrin a4b7 and the chemokine receptor CCR9
along with T effector cell clonal deletion or anergy (62–65). By
raising mice with a diet devoid of dietary antigens, a recent study
demonstrated that the majority of small intestinal pTreg cells are
induced by dietary food antigens (66). These Tregs suppress
CD4+ and CD8+ T cells, alter mast cell function and re-direct IgE
B cell responses (65, 67, 68). Although Tregs can directly
promote IgA production through production or activation of
TGFb (69), little is known about the mechanisms or relevance of
humoral tolerance in the gut to food antigens. Type 2
inflammation, including IL-4 production from ILC2s, can
Frontiers in Immunology | www.frontiersin.org 4
inhibit the generation and function of these Tregs and can
even reprogram them into pathogenic Th2 cells (12, 70), which
has been shown in animal models to prevent tolerance and
confer a food allergy phenotype.

Conventional Dendritic Cells
Intestinal APCs, including cDCs, macrophages and pDCs, play
pivotal roles in oral tolerance induction (Figure 2). DCs have
been implicated in inducing pTreg cell differentiation through
multiple mechanisms. After ingestion of foreign dietary antigens,
DCs acquire antigen through several routes, including transfer
from M cells, macrophages or goblet cell-associated antigen
passages but also by sampling the gut lumen using trans-
epithelial dendrites (19, 20, 71). However, this latter function
may primarily be accomplished by LP CX3CR1+ macrophages.
MLNs are the primary site of oral tolerance induction (35, 72,
73), although PPs may contribute depending on the nature of the
antigen (74). Ablation of cDCs results in the reduction of gut
pTreg cells in response to dietary antigen ingestion (75). Gut
CD103+ cDCs, carrying antigens that are critical for the
development of oral tolerance, migrate from the LP to the
MLNs in a CCR7-dependent manner (20, 28, 35, 41). Unlike
other sites, both cDC1s and cDC2s express CD103 in the gut, and
FIGURE 1 | Organization of the gut antigen presenting cell network. Blood pre-cDCs populate the lamina propria (LP), Peyer’s Patches (PP), and mesenteric lymph
node (MLN) and differentiate into cDC1s and cDC2s. After being activated by antigen, LP cDC1s and cDC2s are able to migrate via afferent lymphatics to the gut-
draining MLN via CCR7; these DCs are called migratory DCs (Mig DC). Similarly, cDC2s and possibly cDC1s in the subepithelial dome (SED) of the PPs are able to
migrate to the intrafollicular zone (IFZ). Lysozyme+CX3CR1+ monocyte-derived DCs (mo-DC) also populate the SED. Pre-cDCs travel through the blood and seed the
MLN and PP, where they differentiate into resident (Res) cDC1 and Res cDC2. Plasmacytoid DCs (pDCs) also populate the LP, PP, and MLN. Blood-derived
monocytes differentiate into LP and PP macrophages (Mj) as well as mo-DCs. Germinal center (GC), Microfold (M) cell, High endothelial venule (HEV).
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therefore in many studies it is difficult to know which cDC subset
is responsible for tolerance. More recent work has distinguished
the two cDC populations and found that although murine
CD103+CD11b- cDC1s are more efficient pTreg cell inducers
compared with CD103+CD11b+ cDC2s, the two subsets may
play redundant roles in gut pTreg cell induction and oral
tolerance (75, 76).

Several mechanisms have been identified for pTreg cell
induction by cDCs. In the intestine, CD103+ cDCs express the
RALDH2 enzyme, which metabolizes vitamin A to retinoic acid
(RA) (41, 75, 77, 78). RA induces the expression of gut-homing
molecules CCR9 and a4b7 integrin on T cells (62, 79–82). Human
intestinal cDC2s express higher RALDH2 and aVb8 and induce
more Treg cells than cDC1s in vitro (30, 83). Murine cDC1s and
cDC2s also activate latentTGF-b through integrinaVb8 (20, 75, 82,
84–86). RA synergizes with TGF-b to induce pTreg cell
differentiation in vitro (78, 79, 87–90) and IgA class switching of
B cells in PPs (86). Mice lacking aVb8 on DCs have reduced Treg
cells in colonic tissue (91). Moreover, TGF-b along with RA can
increase b8 expression on cDC1s, thereby creating a positive
feedback loop and strengthening the regulatory function of
cDC1s (92). Human and mouse gut CD103+ cDCs also express
indoleamine 2,3-dioxygenase (IDO), an enzyme involved in
tryptophan catabolism, which can reduce local tryptophan
concentrations and produce immunomodulatory tryptophan
Frontiers in Immunology | www.frontiersin.org 5
metabolites. This can induce Foxp3+ Treg cell conversion and
oral tolerance (93, 94). An earlier study showed that programmed
death ligand 1 (PD-L1, B7-H1) and PD-L2 (B7-DC) expressed on
MLN DCs were required for the generation of antigen-specific
CD4+Foxp3+Tregcells (95).Amore recent study instead found that
CD11b-CD103+PD-L1high cDC1s induce Treg cells through RA
production and/or activation of TGF-b but that expression of PD-
L1 or PD-L2 were dispensable (80). It is unclear whether specific
culture conditions explain these inconsistencies, so more work
needs to be done to clarify the function of PD-L1 and PD-L2 on
DCs in Treg cell induction.

Many aspects of the gut microenvironment promote DC
induction of Tregs. MUC2, the building block of gut mucus,
imprints DCs to deliver tolerogenic signals promoting pTreg cells
and oral tolerance (96). Bothmouse andhuman intestinal epithelial
cells can alsodirectly promote thedifferentiationof tolerogenicDCs
and in vitro generation of Tregs (87, 88). Finally, we will discuss the
effect of the microbiome on gut DC function below.

Plasmacytoid Dendritic Cells
pDCs can also mediate oral tolerance. Infants who are tolerant to
peanut ingestion, but possess peanut IgE, a state called sensitized
tolerance, display an increased frequency of pDCs in the blood (97).
In cholera toxin (CT)-induced peanut sensitization in mice,
expansion of DC numbers by Flt3L, in particular pDCs, inhibits
FIGURE 2 | Mechanisms by which gut-associated dendritic cells contribute to oral tolerance. After food ingestion, goblet cells and intestinal resident macrophages
sample luminal food antigens and deliver them to LP CD103+ cDCs (including CD103+CD11b-cDC1s and CD103+CD11b+ cDC2s). Commensal bacterial
metabolites, dietary components such as vitamin A, and epithelial cell-derived TGF-b and retinoic acid (RA) imprint tolerogenic properties on cDCs. These cDCs
migrate to MLNs through afferent lymphatic vessels and induce naïve CD4+ T cells to differentiate into peripheral regulatory T (pTreg) cells through TGF-b and RA.
CD103+ cDCs induce gut homing molecules CCR9 and a4b7 on pTreg cells, which directs them to recirculate to intestinal tissue. Once in the lamina propria, pTreg
cells can be further expanded by macrophages (Mj), possibly via IL-10 production. MLN, mesenteric lymph node; RA, retinoic acid. Conventional dendritic cell
(cDC), Innate lymphoid cell type 3 (ILC3).
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allergicmanifestations in the intestine (98).Mucosal pDCspromote
the induction of antigen-specific pTreg cells through an autocrine
loop involving TGF-b; pDC-ablated mice partly reduce pTreg cell
generation in the MLNs after OVA feeding (99). After protein or
hapten antigen ingestion, pDCs in the liver and MLN delete
antigen-specific CD8+ T cells and efficiently induce oral tolerance
through an unknown mechanism (100, 101).

Macrophages
Although gut-resident CX3CR1+ macrophages do not migrate to
MLNs (28, 41), they contribute to pTreg cell generation and oral
tolerance by transferring gut lumen antigens to migratory CD103+

cDCs, via a mechanism that was shown to be Connexin 43-
dependent and required membrane transfer (20). LP macrophages
can also maintain Foxp3+ Treg cells by a mechanism dependent on
IL-10 (102). CX3CR1-deficient mice, which have reduced IL-10-
producing F4/80+CD11b+MHC-IIint macrophages, have impaired
accumulation of FoxP3+ Treg cells in the LP and oral tolerance (62).
However, in twocolitis studies,CX3CR1+macrophage-derived IL-10
was dispensable formaintenance of colonic Tregs; instead, loss of IL-
10 receptor expression on the macrophages themselves impaired
mucosal homeostasis (103, 104).
APCS AND THE MICROBIOME IN ORAL
TOLERANCE

The gastrointestinal tract is colonized by large numbers of
commensal microbes that contribute to the maintenance of
intestinal homeostasis including protection from food allergy
(105). Early life colonization is important for suppressing
inappropriate IgE induction (106). Both food-allergic infants and
mice demonstrate dysbiosis, and restoring particular bacterial
classes such as Clostridium species reduced susceptibility to food
allergy and was associated with enhanced Tregs (107–109). The
microbiome can promote barrier integrity, which can preclude
APCs from encountering food antigen in an inflammatory context.
Clostridium species have been shown to promote the production of
IL-22, which led to decreased systemic absorption of peanut
allergens by increasing intestinal barrier integrity via the
production of antimicrobial peptides and mucus (109). In
addition, bacterially produced SCFA can promote inflammasome
activation and IL-18 release in colonic epithelial cells, which then
help maintain gut homeostasis in a chemically-induced colitis
mouse model; a similar mechanism could be at play in food
tolerance as well.

There are several mechanisms by which bacteria may act on
APCs to protect against food allergy. First, when certain strains
of bacteria like Clostridia metabolize dietary fiber in the gut, they
produce short chain fatty acids (SCFA), such as butyrate and
acetate, which promote the development of Tregs. SCFA bind to
the receptors GPR43 and GPR109A to enhance MLN CD103+

DC activity by upregulation of RALDH2, which prevents food
allergy development in a murine model (110). A study in milk-
allergic children found that children fed with extensively
hydrolyzed formula and Lactobacillus rhamnosus GG
supplements were more likely to outgrow their milk allergy in
Frontiers in Immunology | www.frontiersin.org 6
part because of changes in their microbiome that led to more
butyrate in the stool (111), suggesting a possible role for SCFA on
human DCs. Recently, metabolism of bile acid by the microbiota
has also been shown to promote Treg generation. Bacterial bile
acid metabolism generates biologically active steroids. One such
product, 3b-hydroxydeoxycholic acid (isoDCA), acts on DCs
through the farnesoid X receptor to promote Treg formation
(112). It is feasible that these bile metabolism products may play a
role in food tolerance as well, but that remains to be tested. Finally,
microbiota canhelp regulate themyeloidcellpopulationswithin the
gut. Mortha and colleagues showed that microbiota promoted the
release of GM-CSF by ILC3s by driving macrophage IL-1b
production (113). GM-CSF locally enhanced DC and
macrophage numbers and their ability to produce regulatory
factors like RA, TGF-b, and IL-10; ablation of GM-CSF reduced
Treg cell numbers and impaired oral tolerance (113, 114).
APCS AND TOLERANCE INDUCTION VIA
IMMUNOTHERAPY

Various formsof immunotherapy are being studied for the treatment
of food allergy—these include oral, sublingual and epicutaneous
applications of low amounts of food allergens. Immunotherapy
alters the cellular and humoral arms of allergy, reducing IgE and
enhancing IgG4 (in humans) as well as suppressing T cell, mast cell
and basophil reactivity to the target allergen. Immunotherapy has
been shown to capitalize on many of the tolerogenic pathways of
APCs described above. In particular, cDCs and pDCs from the blood
have been shown to adopt, at least transiently, a less inflammatory
state after immunotherapyandpromoteTregproperties invitro (115,
116). Successful food allergen immunotherapy is also associatedwith
increased levels of circulating Tregs (116). In murine studies,
immunotherapy with allergens induces TGF-b-producing Tregs in
draining LNs capable of homing to the gut, suppressing the allergic
response to food challenge and redirecting CD4+ effector T cell
differentiation away fromaTh2phenotype (68, 117). Looking at sites
draining sublingual allergen exposure, migratory cDC2s were
proposed to be the dominant APC responsible for Treg induction
through a mechanism that, in vitro, required RA and TGF-b (118).
APCS IN FOOD ALLERGY PATHOGENESIS

The gut immune system must continuously distinguish
innocuous dietary antigens and commensal microbes from
pathogens. A breakdown of the default oral tolerance to food
leads to abnormal immune responses that manifest as diverse
pathologies, such as IgE-mediated food allergy, celiac disease,
and eosinophilic gastrointestinal disease, among many others
(119). In each of these conditions, adaptive immunity is targeted
at a food antigen, presumably all via presentation on an APC, but
through distinct mechanisms. For example, IgE induction is
implicated in IgE-mediated food allergy, but not in celiac
disease, which is instead a cell-mediated disease initiated by
the presentation of modified gluten on APCs (120). Elucidating
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the conditions under which APCs are activated in each type of
adverse food reactions may provide insight into the differing
responses. Here we describe what is known about APCs in the
pathogenesis of IgE-mediated food allergy.

Food as an Innate Immune Stimulus
for DCs
APCs are important in tolerance induction, but they also play a
pivotal role in the induction of food allergy (Figure 3). Of all the
APCs, DCs have the best-defined role in the initiation of food
allergy. DCs reside in tissues, where they serve as sentinels that
are activated by innate stimuli. The identity of the innate stimuli
that can activate DCs to initiate food allergy is unclear, but both
intrinsic food components and extrinsic adjuvants are potential
innate stimuli currently under investigation.

There is evidence that certain foods can act as auto-adjuvants.
Manyof these innately immunostimulatory foods are glycoproteins
that bind to dendritic cell C-type lectin receptors (CLR), a family of
proteins that traditionally bind carbohydrate residues in a calcium-
dependent manner (121). One group identified that the glycans on
the allergenic peanut proteinAra h 1 bind to theCLRdendritic cell-
specific intercellular adhesion molecule-3-grabbing non-integrin
(DC-SIGN) on human monocyte-derived DCs and subsequently
activate the DCs; these DCs then promote Th2 activation in vitro
(122).Another group tested the ability of various food allergens and
aeroallergens to bind DC-SIGN and the related DC-SIGNR on
human monocyte-derived DCs and found that among other
allergens, hazelnut, walnut, and egg white could also bind these
CLRs. Downstream of these CLRs, the kinases ERK and Raf-1 are
upregulated and TNF-a, which is important for DC activation
(123), is produced in a partially Raf-1 dependent manner (124).

It has been observed that high-temperature roasting of
peanuts increases the allergenicity of peanut proteins (125).
Roasting causes peanut protein to undergo the Maillard
reaction, which leads to more heat- and digestion-resistant
peanut antigens, perhaps allowing for more antigen to reach
the relevant sites of IgE induction (126). However, roasting can
also lead to the generation of glycoproteins that bind the
mannose receptor, a CLR that mediates antigen uptake and
appears to play an important role in DC activation. One group
has shown that human monocyte-derived DCs take up more
roasted peanut protein Ara h 3 than raw Ara h 3, through a
mechanism that is partially dependent on the mannose receptor
(127). The mannose receptor has also been shown to play a role
in peanut protein Ara h 2 uptake by human monocyte-derived
DCs in vitro (128). Additionally, treating mouse bone marrow-
derived DCs with mannose receptor RNAi reduced ovalbumin
uptake and DC activation (129). Whether these CLRs are
necessary for food allergen sensitization is still unknown.

Food may also act as an intrinsic adjuvant for DC activation by
activating invariant natural killer T cells (iNKT). iNKT cells are a
population of innate-like cells that display a semi-invariant T-cell
receptor that binds lipid antigens presented on the MHC-I-like
molecule CD1d on DCs and can in turn promote DC activation
(130–132). One group found that sensitization to Brazil nuts is
dependent on CD1d lipid presentation to iNKT cells in mice, and
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human iNKT cells are stimulated by the lipid fraction of Brazil
nuts (133). Additionally, lipids from the respiratory allergen Olea
europea (olive) pollen increase CD1d expression on DCs to
activate iNKT cells and also upregulate DC activation marker
CD86 (134), a mechanism that could also apply food lipids.
Indeed, food lipids from cow’s milk (135, 136), soy (136), and
human milk (136) have also been shown to activate human iNKT
cells in vitro. However, it remains unknown whether iNKT cells
orchestrate food allergen sensitization and their exact in vivo role
in food allergy pathogenesis.

Gut Adjuvants for Food IgE Sensitization
While the innate immunostimulatory activity of food may bias
which foods can act as allergens, it is unlikely to be the only factor
affecting the development of food allergy. The innate properties of
food cannot explain differential responses to allergens between
people, i.e. why most people tolerate food while some develop
allergy. Genetic differences can influence some of this susceptibility
(137), but the rapidly growing rate offoodallergydoesnot support a
solely genetic cause either. Instead, it is likely that there are
increasingly prevalent extrinsic factors, such as external
adjuvants, that influence activation of DCs to initiate sensitization
to food. Accordingly, mouse models have demonstrated that
breaking oral tolerance to food antigens, including both cellular
and humoral immunity, requires the presence of an adjuvant (138–
140). Adjuvants such as cholera toxin (CT) or staphylococcal
enterotoxin B (SEB), are most often co-administered orally with
food antigens to induce IgE and Th2 cells while inhibiting Tregs.
Aluminum hydroxide is another commonly used adjuvant in
allergy models that has potent immunostimulatory properties on
DCs but is administered in the peritoneum and cannot directly
interact with the gut immune system. Therefore, this adjuvant will
not be further discussed.

CT is a potent oral adjuvant because it induces both human and
mouse DC activation and migration (47, 141–143). CT enters DCs
and other cells using the GM1-ganglioside receptor (144, 145).
Though themechanism of action of CT is not completely known, it
activates adenylate cyclase, which increases intracellular cyclic
adenosine monophosphate (cAMP) levels, which in turn leads to
DCactivation (146, 147).TheseCT-activatedDCshavebeen shown
to promote Th1, Th2, and Th17 responses (147–149), and they are
effective at generatingboth IgEandIgA in foodallergymodels.CTis
a member of the AB5 toxin family, which includes toxins with
similar structures and mechanisms of action such as shigatoxin
(Shigella dysenteriae), labile toxin (enterotoxigenic E. coli), and
pertussis toxin. Exposure to other members of the AB5 family may
also activate DCs and induce IgE in a similar manner as CT (143,
150). While exposure to CT is an unlikely mechanism of allergy
induction in humans, data gleaned using adjuvants can give clues to
the broader mechanisms by which innate stimuli initiate IgE
responses to food.

SEB is a superantigen made by Staphylococcus aureus, which
is a common microbial colonizer and determinant of disease
severity in people with atopic dermatitis (151). Mouse models of
food allergy have used SEB as an adjuvant, both epicutaneously,
intragastrically, and intraperitoneally (140, 152, 153). Human
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monocyte-derived DCs are activated by SEB, at least in part
through Toll-like receptor 2 (TLR2), but do not upregulate IL-12
production; accordingly, in vitro culture of these DCs with T cells
leads to Th2 polarization (154). Using mouse mucosal DCs, SEB
was also shown to promote DC activation through the cell
surface molecule T-cell immunoglobulin-domain and mucin-
domain-4 (TIM-4) and promote T cell activation in vitro (153).

Alarmins and damage-associated molecular patterns (DAMPs)
are self-molecules that the immune system recognizes as distress
signals; they are often released during cell death or damage and are
important triggers for DC activation. Uric acid is a DAMP that can
activate pattern recognition receptors and thereby initiate adaptive
immunity in multiple immunization models; it has also been
implicated as an adjuvant for food IgE production (155).
Similarly, eosinophil peroxidase released by activated eosinophils
activates DCs, which migrate to the MLNs and promote the
induction of peanut IgE after immunization with peanut and CT
(156).Manystudies have focusedoncytokine alarminsaspartof the
innate immune response that initiates food allergy. IL-25, IL-33,
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and thymic stromal lymphopoietin (TSLP) are cytokines released
by damaged epithelium and promote type 2 responses across most
tissues (157–159). The role of these cytokines in gut IgE induction
with peanut and CT was examined, and IL-33, in particular, was
found to be necessary for IgE production, whereas IL-25 and TSLP
were dispensable. Mechanistically, this was proposed to work
through upregulation of OX40L on activated DCs (160). In a
different model using egg-derived ovalbumin and medium-chain
triglycerides, dietary lipids that stimulate the release of alarmins
from the intestinal epithelium (161), IL-25, IL-33, and TSLP were
each necessary for the development of allergy (162). In another
model of ovalbumin-directed food allergy, IL-25 activated ILC2s in
the gut to produce IL-5 and -13 and, in concert with activated Th2
cells, promoted anaphylaxis (10). As will be discussed later in this
section, IL-33 and TSLP have also been implicated in food
sensitization through the skin. Therefore, alarmins can trigger
type 2 immunity, but whether one alarmin has a dominant role in
the initiation of food allergy likely depends on the nature of the
antigen, adjuvant and route of exposure.
FIGURE 3 | The role of dendritic cells in the pathogenesis of food allergy. Food antigens are taken up from the gut lumen by goblet cells, which shuttle the antigens
across the epithelial layer to the LP, where local dendritic cells (DCs) sample the food antigens. If DCs sense innate immune signals, adjuvants that are either extrinsic
or intrinsic to the food antigen, they become activated. Some adjuvants damage the epithelial barrier and trigger the release of alarmins, like TSLP and IL-33, that
can activate DCs via their receptors TSLPR and ST2, respectively. Additionally, food glycoproteins, such as from peanut, can bind to C-type lectin receptors (CLRs)
and activate DCs. Lipids from foods can be presented on CD1d to iNKT cells that then reciprocally activate DCs via cytokine release. Activation of DCs leads to
increased CCR7 for migration to mesenteric lymph nodes (MLN) along with presentation of food antigens on MHCII and increased expression of costimulatory
molecules CD80, CD86, OX40L, and TIM-4. Altogether this promotes naïve CD4+ T cell priming and differentiation into Th2 cells and T follicular helper (Tfh) cells,
which drive cellular and IgE responses in food allergy, respectively. Eos, eosinophils (Eos), Mast cell (Mast), Innate lymphoid cells type 2 (ILC2).
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Gut DC Populations Involved in Food Allergy
Activated DCs are sufficient to induce food IgE, as evidenced by a
study showing that adoptive transfer of splenic and Peyer’s patch
DCs from mice sensitized with milk and CT led to milk IgE
production in naïve mice (163). Because different DC populations
have different functions, it is plausible that food allergens or
adjuvants activate a common DC subset that is efficient at
priming the requisite T cell populations for IgE responses. Several
groups have used mouse models to examine particular sub-
populations of DCs activated in food allergy. One group reported
that mice sensitized orally with peanut and CT experienced global
changes to DC populations in the gut. CD11b+ cDCs were
increased, and CD103+ cDCs were decreased in Peyer’s patches
and among intraepithelial lymphocytes and lamina propria
lymphocytes; both populations of cDCs were increased in the
MLNs, which may represent a net migration of CD103+ DC to
the MLN (98). Another group also demonstrated that mice orally
sensitizedwith ovalbumin andCThad increased total DCnumbers
in the MLN. Among these MLN DCs, the CD103+CD11b-CD8-

population was selectively increased (164). These findings were
corroborated by a study showing that CD103+ MLN DCs activate
and migrate in an eosinophil-dependent manner after oral peanut
and CT immunization (156). These data suggest that a migratory
cDC population in the MLN is important for gut IgE induction
whenusingCTas an adjuvant. However, the exact nature of theDC
subsets essential for sensitization remains unclear; specifically,
whether DC subsets are redundant for sensitization or operate
differently depending on the nature of the allergen and adjuvant
is unknown.

Mechanisms of DC Induction of Food
Allergy in the Gut
DCs have been shown to use multiple pathways to induce IgE
sensitization to food antigens. First, OX40 ligand (OX40L) on
DCs has an important role in Th2 sensitization to food. OX40L is
a costimulatory molecule present on activated DCs and
important in Th2 development (165). In a mouse model of
oral ovalbumin and CT sensitization, activated DCs expressed
increased levels of OX40L mRNA, while blocking OX40L with an
anti-OX40L antibody in an in vitro DC-T cell co-culture reduced
type 2 cytokine production (164). Another group showed that
OX40L is upregulated after intragastric immunization with
peanut and CT in an IL-33 dependent manner and that
blocking OX40L in vivo in mice reduced peanut IgE and IgG1
levels post-immunization (160).

Another important DC pathway for priming allergic responses
involves TIM-4, which is expressed on DCs and binds TIM-1 on T
cells to influence Th2 cell development (153, 166). When treated
with SEB, primary human DCs upregulate TIM-4 and can drive
Th2 differentiation in vitro (167). Immunization with peanut and
CT similarly led to increased TIM-4 expression that was necessary
for peanut IgE production in mice (168). Another group
investigated the stimuli for TIM-4 production and found that
mast cell tryptase stimulates human intestinal epithelial cells to
make galectin-9, a carbohydrate-binding lectin protein. Galectin-9
binds to TIM-3 on DCs and is associated with the production of
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TIM-4, which is needed for sustaining ovalbumin IgE levels after
immunization (169, 170). Increased expression of TIM-4 on DCs
may also be mediated by STAT6 and p300 (171).

There has also been interest in the Notch pathway in food
allergy. Signaling through Notch receptors on CD4+ T cells is
important for T cell differentiation; different ligands promote
different T cell fates (172). In particular, the Notch ligands Jagged
1 and Jagged 2 are expressed on DCs and promote Th2
differentiation (172, 173). Of note, treatment with CT increases
Jagged2 expression on DCs (173), which is consistent with the
increased Jagged 2 mRNA seen after ovalbumin and CT
immunization in mice (164). Even though Jagged2 expression
on DCs is needed for Th2 differentiation in vitro, it appears to be
dispensable in vivo (174).

DCs in Food Allergy Induction Through
the Skin
Systemic IgE can be induced through antigen exposure at sites
where the body interfaces with the environment, including the
gut, respiratory tract, and skin (175). In particular, defects in the
skin barrier are associated with the development of food allergy
(22). While there is evidence pointing to the skin as an important
site of food IgE induction, the APC subsets and mechanism of
action underlying cutaneous sensitization remain only
partially understood.

As with gut models of food allergy, adjuvants are used in
cutaneous models of food sensitization in mice. CT and SEB have
been used topically to induce food IgE (175, 176). Additionally,
skin damage leading to alarmin (IL-33, TSLP, and IL-25) release
can act as an innate stimulus for DC activation in mouse models
of cutaneous allergy; this may mirror the skin barrier break down
in people with eczema, who are more susceptible to food allergy
(177). There are various methods of incurring or mimicking
damage to mouse skin, including by mechanical tape stripping,
application of large doses of vitamin D analogs, treatment with
proteases, or by directly administering TSLP. These methods
have all been used as adjuvants with cutaneous application of
food to induce food IgE (139, 178, 179).

In murine models of food allergy, IgE can be induced
epicutaneously without extrinsic adjuvants (180–182),
differing from most gut sensitization models. In an external
adjuvant-free model of peanut allergy, application of peanut
extract to depilated mouse skin was able to induce peanut IgE.
Peanut extract and Ara h 2 extract had intrinsic adjuvant
activity and were capable of initiating IgE to a co-
administered milk antigen, alpha-lactalbumin. In response to
peanut extract, mouse skin cells made IL-33, which presumably
binds to the IL-33 receptor, ST2, on DCs; indeed, the
subsequent production of type 2 cytokines in this model was
dependent on ST2 signaling (180). The mechanism of innate
sensing of peanut leading to IL-33 production by keratinocytes
is unclear, but perhaps the ability of glycoproteins on peanut to
bind CLRs plays a role, as described in the gut. It is possible that
peanut auto-adjuvanticity observed in the skin is stronger than in
the gut because the immunostimulatory portion of peanut is
sensitive to digestion.
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IL-33 also plays an important role in adjuvanted models of
cutaneous food sensitization because it can act on DCs and
promote food sensitization. In an intradermal ovalbumin and
TSLP model of atopic dermatitis and food sensitization,
keratinocyte derived IL-33 was necessary for ovalbumin IgE
production (183). Similarly, in a model of skin sensitization
with peanut and tape stripping to disrupt the skin barrier, IL-33
is increased and contributes to the allergic phenotype (184). The
allergic responses from IL-33 in these models likely depend on
DC expression of ST2, as in the adjuvant-free epicutaneous
model and in other models of IL-33 activated DCs (185, 186).

TSLP, a keratinocyte cytokine that is important in atopic
dermatitis pathogenesis, also plays a key role in sensitization
through the skin (187). In a mouse model of intradermal
ovalbumin sensitization using TSLP as an adjuvant, TSLP
signaling in DCs was required for ovalbumin IgE production and
subsequent anaphylaxis (188). This response may be mediated by
TSLP-induced upregulation of OX40L, which promotes type 2
responses both in vitro using human DCs and in mice in vivo (189,
190). However, in a mouse tape stripping model of skin injury,
while TSLP signaling on DCs was needed for Th2 differentiation,
OX40L was not upregulated in skin DCs; however, the Th2
inhibitory cytokine IL-12 was suppressed in skin DCs (191). The
different data for the role of OX40L in Th2 differentiation may be
due to use of different species and models of investigation between
studies. In another mouse model of epicutaneous sensitization
using ovalbumin with the vitamin D analog MC903 to induce a
skin barrier defect, TSLP-induced basophils were necessary for the
development of gut allergy (192). In vitro, these TSLP-induced
basophils interacted with DCs to increase OX40L expression,
which in turn, increased IL-4 production by basophils (178).

The cell types and mechanisms of DC initiation of
epicutaneous skin allergy have also been examined. In a tape
stripping mouse model of allergic inflammation, skin injury led
to DC activation and migration, as evidenced by a population of
CCR7+MHCII+ DCs was found in the skin draining LNs 24 h
after tape stripping. These DCs were able to prime T cells to
produce type 2 cytokines in vitro (191). Similarly, in another
model of epicutaneous sensitization, after the application of milk
protein alpha-lactalbumin (ALA) and CT, Langerin-negative
skin DCs increased expression of MHCII and migrated to skin
draining LNs, where they promoted type 2 cytokine production
and systemic ALA IgE production (175). In a model of
subcutaneous ovalbumin and papain skin sensitization, this
migratory skin DC population was also required for ovalbumin
IgE production and was found to be PDL2+ and dependent on
the transcription factor IRF4 (193). It is clear that sensitization
through the skin induces a systemic T cell response, that can
home to the gut to orchestrate a food-specific response. But skin-
derived cues can have gut-specific effects as well. Recent work
showed that keratinocyte-derived IL-33 induced by skin damage
communicates with cells in the gut to promote IL-25 production
and ILC2 activation; this enhanced mast cell numbers and
anaphylaxis following oral antigen challenge (194). Therefore,
it is clear that a unique skin-gut axis exists that can promote food
allergy through numerous mechanisms.
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The Role of Monocytes in Food Allergy
Monocytes have also been implicated in food allergy. Infants who
develop food allergy were found to have a higher number of cord
blood monocytes at birth; when treated with the TLR4 agonist
lipopolysaccharide (LPS) in vitro, the CD14+ monocytes from
allergic children produced more inflammatory cytokines IL-1b,
IL-6, and TNF-a that promoted the development of a Th2-like
population at the expense of a tolerogenic Treg population (195).
Another study similarly revealed that the peripheral blood
mononuclear cells (PBMCs) of 1-year-old infants that ended
up with persistent egg allergy had more monocytes and DCs that
made more inflammatory cytokines upon in vitro stimulation
than those from children who outgrew their egg allergy (196). It
is possible that these blood monocytes are precursors for
macrophages or monocyte-derived DCs that participate in
antigen presentation of food antigens (197). Altogether, these
studies suggest that monocytes are biased to respond differently
to inflammatory stimuli in those with food allergy; whether this
is a cause of or caused by the food allergic state is unclear. There
is also little mechanistic data from animal studies implicating
monocytes in IgE sensitization. Future studies would be
beneficial for a deeper understanding of the topic.

The Role of Macrophages in Food Allergy
Contrary to their well-established role in food tolerance, the role
of macrophages in food IgE priming is not well understood, and
there is scant literature on the topic. Macrophages express DC-
SIGN (198) and TIM-4 (199), both of which may participate in
the priming of food-specific IgE. Additionally, macrophages are
found in tissues throughout the body, including the skin and gut
(200, 201), so they are poised to potentially play a role in food
antigen presentation. Macrophages that are found in Th2
conditions appear to play an IL-33 dependent role in allergic
asthma (202–205). However, given the importance of
macrophages within tissues both for tissue homeostasis and
presenting antigen to primed effector T cells, rather than as
APCs for naïve T cells, it is likely that macrophages will be
required for different phases of food allergy pathogenesis than
DCs. Therefore, more information is needed to elucidate the
exact function of macrophages in food sensitization.
CONCLUSION

While much work has been done to examine the role of APCs in
priming food IgE, there are still many unanswered questions. In
particular, the specific population of APCs that lead to food IgE
production in the skin and gut should be identified, ideally using
several adjuvants to home in on common mechanisms of food
IgE production. It would also be useful to study the APC
requirements for other nonpathogenic antibody isotypes to
food such as IgA and IgG4 to better understand what APC
conditions separate tolerance from allergy. Another fundamental
question is the identity of innate immune stimuli that lead to DC
activation in human food allergy; an understanding of what
natural skin or gut adjuvants lead to food IgE induction would be
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a significant advance in understanding pathophysiology and
potential treatments for food allergy. Additionally, the
relevance of monocytes and macrophages to food allergy
induction needs clarification. Research on these and many
other questions in food allergy are revealing new, unexpected
pathways unique to the gut immune system and suggesting
exciting new approaches for the diagnosis, prevention and
treatment of food allergy.
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