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The synthetic cannabinoid 5-fluoro ABICA upregulates angiogenic

markers and stimulates tube formation in human brain microvascular

endothelial cells
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تاذتابكرملانمةئفيهو،ةيعانطصلااتاديونيباناكلاتطبترا:ثحبلافادهأ
نامدلإافواخمب،ةيعيبطلاتاديونيباناكلاتاريثأتيكاحتيتلايناسفنلاريثأتلا
يفةصاخ،ةلمتحمةيئاودتاقيبطتىلإةثيدحلاثاحبلأاريشت،كلذعمو.ناهذلاو
ومنللةيساسأةيجولويسفةيلمعيهو،غامدلايفةيومدلاةيعولأانيوكت
ةيعولأانمةديدجةيومدةيعوأنيوكتللاخنمةجسنلأاةنايصوحلاصلإاو
ديونيباناكللةيربتخملاةردقلاةساردلاهذهفشكتست.ةدوجوملاةيومدلا
ةيناطبلاايلاخلايفةديدجلامدلانيوكتةيلمعزيزعتل،اكيبأورولف-5يعانطصلاا
.يرشبلاغامدلايفةقيقدلاةيومدلاةيعولأل

ةيومدلاةيعولألةيناطبلاايلاخلاىلإاكيبأورولف-5ءاطعإمت:ثحبلاقرط
1،0.1،0.01،0.001،0.0001(ةفلتخمتازيكرتبيرشبلاغامدلايفةقيقدلا
،ةيلخلاءاقبليتيتماصحفكلذيفامب،لماشليلحتءارجإمت.)رلوموركيام
نيوكتةيناكمإمييقتلبوبنلأانيوكتصحفو،ةرجهلاةردقلحورجلامائتلاصحفو
ريبعتسايقليلحتلانمضت،كلذىلإةفاضلإاب.ةيناطبلاايلاخللةيومدلاةيعولأا
فاشتكاو،ةيعولأادلوتلةديؤمةنيعملماوعلنيتوربلاتايوتسمو،لاسرملاانرلا
ةيعولألةيناطبلاايلاخلايفاتيب3-زانيكنيجوكيلجلازيثنيسنمةرفسفلاتايوتسم
لعافتليلحتو،ازيللإاليلحتمادختسابةجلاعملايرشبلاغامدلايفةقيقدلاةيومدلا
.تولبنرتسيولاتاينقتو،يقيقحلاتقولايفلسلستملازاريميلوبلا

ايلاخلابوبنأنيوكتوةرجهوراشتنالاعفلكشبزفحياكيبأورولف-5:جئاتنلا
.ةعرجلاىلعدمتعتةقيرطبيرشبلاغامدلايفةقيقدلاةيومدلاةيعولألةيناطبلا
دلوتللةديؤملالماوعلانعريبعتلاتايوتسمنمظوحلملكشبدازهنأامك
.اتيب3-زانيكنيجوكيلجلازيثنيسنمةرفسفلاتايوتسمميظنتبناجىلإ،يئاعولا
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ةيقلاخلأاتارابتعلااكلذيفامب،ةيعولأانيوكتيفلماكلكشباكيبأورولف
.ةيبطلاثوحبلايفهمادختسلا

؛ةيعولأادلوت؛اكيبأورولف-5؛ةيعانطصلااتاديونيباناكلا:ةيحاتفملاتاملكلا
يرشبلاغامدللةيناطبلاايلاخلا

Abstract

Objective: Synthetic cannabinoids (SCs), a class of psy-

choactive compounds emulating the effects of natural

cannabis, have prompted addiction and psychosis con-

cerns. However, recent research has suggested potential

pharmacological applications, particularly in brain

angiogenesisdan essential physiological process for

growth, repair, and tissue maintenance, in which new

blood vasculature is formed from existing vasculature.

This study explored the in vitro ability of the SC 5-fluoro

ABICA to enhance new blood formation processes in

human brain microvascular endothelial cells (HBMECs).

Methods: HBMECs were treated with various concen-

trations of 5-fluoro ABICA (1 mM, 0.1 mM, 0.01 mM,

0.001 mM, and 0.0001 mM). A comprehensive analysis

was conducted, including MTT assays indicating cell

viability, wound healing assays indicating migration

ability, and tube formation assays indicating the angio-

genesis potential of endothelial cells. Additionally,

mRNA expression and protein levels of specific pro-

angiogenic factors were measured, and the phosphoryla-

tion levels of glycogen synthase kinase-3b were detected

in treated HBMECs through ELISA, real-time PCR, and

western blotting.
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Results: Treatment with 5-fluoro ABICA effectively

stimulated proliferation, migration, and tube formation

in HBMECs in a dose-dependent manner; markedly

increased the expression of pro-angiogenic factors; and

upregulated levels of phosphorylated-GSK-3b.

Conclusion: Our findings demonstrate that 5-fluoro

ABICA stimulates angiogenesis in endothelial cells, thus

potentially offering therapeutic options for diseases

associated with angiogenesis. However, further research

is needed to fully understand the molecular mechanism of

5-fluoro ABICA in angiogenesis, including ethical con-

siderations regarding its use in medical research.

Keywords: 5-Fluoro ABICA; Angiogenesis; Human brain

endothelial cells; Synthetic cannabinoids

� 2024 The Authors. Published by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Figure 1: Structure of 5-fluoro ABICA.
Introduction

Blood vessel formation in embryos begins with heman-

gioblasts, which develop into endothelial cells through vas-
culogenesis and angiogenesis.1 Most embryonic blood
vessels, including those in the brain, are formed by

angiogenesis. Brain neovascularization is precisely
regulated by the interaction of neuroectodermal elements
with receptor-tyrosine kinases expressed by endothelial

cells.2 The regulatory mechanisms underlying physiological
and pathological brain angiogenesis, such as hypoxia,
ischemia, and brain tumor development,3 share similarities,

including key factors such as vascular endothelial growth
factor (VEGF), angiopoietins, transforming growth factor-
b and hypoxia-inducible factors (e.g., HIF-1), which play
crucial roles in these processes.4,5

Recent evidence has highlighted the roles of glycogen
synthase kinase-3b (GSK-3b), a serineethreonine kinase
with a and b isoforms, in angiogenesis and neurogenesis. The

activity of GSK-3b is finely regulated by phosphorylation at
the Tyr216 and Ser9 sites, and is integral to glycogen meta-
bolism.6e8 Notably, GSK-3b also controls the expression of

angiogenic factors including VEGF, and influences
angiogenic processes associated with cell proliferation,
differentiation, and apoptosis in endothelial cells.9,10

Synthetic cannabinoids (SCs) mimic the effects of
components of natural cannabis, such as delta-
9-tetrahydrocannabinol (THC), by acting as full agonists
toward two major receptors in the endocannabinoid sys-

tem,11,12 cannabinoid receptors CB1 and CB2. Thus, SCs
have stronger psychoactive effects and more severe adverse
effects than THC. Although they are predominantly used

recreationally, SCs have multifaceted effects on the human
body13 and are sought after for their effects including
relaxation, social enhancement, and an enhanced sense of

well-being. However, acute intoxication results in neurolog-
ical disturbances.12,14 The widespread use of SCs has
prompted concerns regarding neurodevelopment, and the
disruption of processes including neurogenesis and
neuroplasticity. In vitro studies have revealed diverse effects
of SCs on brain cells, including apoptosis activation and

neurogenesis inhibition. SCs are also involved in
modulating neuroplasticity, which is crucial for neural
cell survival.15e17 Despite the rapid development of SCs,

especially in relation to human brain cells, there is limited
toxicological and mechanistic research examining the brain
effects induced by SCs. Current data on SCs, particularly,

5-fluoro ABICA (Figure 1), also known as N-[(1S)-1-
(aminocarbonyl)-2-methylpropyl]-1-(5-fluoropentyl)-1H-
indole-3-carboxamide, have been derived primarily from
in vitro and in vivo studies.18,19 The compound 5-fluoro

ABICA, a member of the indole family,20 is a potent CB1
receptor agonist and a commonly used recreational drug.
Despite often being unregulated and illegal, this

compound’s health implications are of growing interest, and
are worthy of investigation in forensic and research work.21

Because the chemical characteristics of 5-fluoro ABICA are

unknown, in vitro human cell-based models expressing
cannabinoid receptors are required to understand its effects.

The study focused on assessing the effects of 5-fluoro
ABICA on cell survival and the angiogenic processes of

human brain microvascular endothelial cells (HBMECs)
in vitro. We also examined the effects of 5-fluoro ABICA on
GSK-3b and angiogenesis-promoting factors, including

VEGF, ANG-1, and ANG-2, to discover potential thera-
peutic approaches for angiogenesis-associated disorders.

Materials and Methods

Drugs, solvents, cell line, and culture medium

HBMECs (CRL-3245) were sourced from the American

Type Culture Collection (Manassas, VA, USA). The cells
were cultivated in a specialized growth medium comprising
Dulbecco’s modified Eagle’s medium: F-12 nutrient mixture

(DMEM/F12) provided by Euroclone S.P.A., Pero, Italy.
The culture medium was supplemented with various com-
ponents in the endothelial cell growth kit (PCS-110-040)
from the American Type Culture Collection. The supple-

ments included fetal bovine serum (10 %), antibiotics

http://creativecommons.org/licenses/by-nc-nd/4.0/
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(1 % penicillin and streptomycin), glutamine, ascorbic acid,
heparan sulfate, recombinant human epidermal growth

factor, hydrocortisone, and bovine brain extract. The cell
culture was maintained in a controlled environment under
5 % CO2 at 37 �C. Cells were passaged in a 1:4 ratio after

80 % confluence was reached. The SC 5-fluoro ABICA,
sourced from Cayman Chemical in Ann Arbor, Michigan,
was initially dissolved in dimethyl sulfoxide (DMSO) to

create a stock solution with a concentration of 2 mg/ml. The
stock solution was serially diluted to working concentrations
of 0.0001 mM, 0.001 mM, 0.01 mM, 0.1 mM, and 1 mM, to
explore the effects of 5-fluoro ABICA on neovascular

endothelial cells. A control group was exposed to serum-free
medium and 0.1 % DMSO, to serve as a reference for eval-
uating the influence of 5-fluoro ABICA on the cells. This

experimental design allowed us to examine the effects of
5-fluoro ABICA.

MTT assays

The MTT assay, based on the transformation of the
yellow tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyl-2H tetrazolium into purple formazan crystals,
is a broadly used colorimetric technique to determine cellular
metabolic function. Cells were plated on 96-well microtiter
plates at a density of 5 � 103 cells/well and allowed to attach

for 24 h. The cells were then exposed to five concentrations of
5-fluoro ABICA (ranging from 0.0001 mM to 1 mM) in
triplicate for 24 h. The culture medium was then replaced

with serum-free medium containing MTT solution (5 mg/ml)
obtained from (HiMedia, Mumbai, India) and incubated for
4 h. Finally, DMSO was added to the cells, which were then

agitated for 10 min to dissolve the formazan crystals. Cell
viability per well was quantified with an ELISA reader, on
the basis of the absorbance at 570 nm. The absorbance of the

control wells (cells treated with DMEM/F-12 only) was used
as the baseline value against which all other treatments were
compared. Cell viability was quantified as percentage
absorbance relative to that in the control wells. All experi-

ments were performed in triplicate.

Cell migration assessment

Scratch wound assays was performed in vitro to examine
the migration capability of HBMECs. HBMECs were
cultured on a 12-well plate at a density of 5 � 103 cells/well

and allowed to proliferate for 24 h until adequate confluence
was reached. Uniform scratches were then created on the cell
monolayer with sterile 1 ml pipette tips. After thorough

washing with phosphate-buffered saline to ensure the
removal of detached cells, the remaining cells were treated
with 1 mM, 0.1 mM, 0.01 mM, 0.001 mM, or 0.0001 mM
5-fluoro ABICA for 24 h. The control cells were treated with

an equal volume of DMSO, and each concentration was
applied to triplicate wells. Four microscopic images were
captured for the scratch area at (baseline), time zero, and

24 h post-wounding. The injury size was measured at base-
line and 24 h after scratch wounding, with ImageJ software
from the National Institutes of Health (LOCI, University of

Wisconsin). The migration rate was calculated as percentage
wound recovery with the following equation: (total distance
of wounddmean uncovered distance)/(total wound
distance) � 100 %. The experimental protocol was inde-

pendently repeated three times.

In vitro tube formation assays

To assess the angiogenic potential of HBMECs, the for-
mation of tube-like structures was evaluated. Initially, 96-
well plates were thawed overnight at 4 �C and pre-cooled for

this purpose. Each well was covered with a 50 ml matrix of the
basement membrane extract, which was allowed to poly-
merize at 37 �C for 30 min. BME was purchased from Tre-
vigen (Gaithersburg, MD, USA). HBMECs were seeded at a

density of 2 � 104 per well in a BME-coated plate and
cultured with growth-supplement-complete medium con-
taining 5-fluoro ABICA at concentrations of 1 mM, 0.01 mM,

or 0.0001 mM, or control treatment, for 24 h. Formation of
tube-like structures was evaluated from photomicrographs
of the tubes originating from the cells, through direct as-

sessments, such as the quantification of the number of tube-
like structures, counting and determination of the loop
structures, total tube length, and branching points. In addi-

tion, ImageJ software was used to analyze the data. The tube
formation assays were iteratively performed three times in
triplicate.

Western blotting

Protein expression of VEGF, ANG-1, ANG-2, and the
phosphorylation of GSK-3b in HBMECs were assessed with

western blotting. Cultured cells were initially subjected to a
thorough cold phosphate buffered saline wash, then lysis
with radioimmunoprecipitation assay buffer plus protease

and phosphatase inhibitors. Protein quantification was per-
formed according to the instructions of a protein assay kit
from Bio-Rad, Hercules, CA, USA. Sodium dodecyl sulfate-

polyacrylamide gel electrophoresis was used to separate
approximately 20 mg of each protein sample. The proteins
were then transferred to polyvinylidene fluoride membranes,
which were blocked with 2 % bovine serum albumin. Sub-

sequently, primary antibodies, comprising anti-VEGF
(ab46154; 1:500, Abcam), anti-ANG-1 (ab94684; 1:500,
Abcam), anti-ANG-2 (153934; 1:500, Abcam), anti-phos-

pho-Ser9-GSK-3b (9336S; 1:500; Cell Signaling Technol-
ogy), anti-total-GSK-3b (PA5-95845; 1:1000, Thermo
Fisher), and anti-b-actin (4967S; 1:1000; Cell Signaling

Technology), were applied to the membrane and incubated
overnight at 4 �C. The membrane was then treated with
secondary antibodies for 2 h. Protein bands were detected

with a ChemiDoc XRSþ system (Bio-Rad Laboratories,
Hercules, CA, USA). The density of bands was measured
ImageJ software, and the data were normalized to b-actin as
the loading control. The western blot procedure was repli-

cated twice.

Enzyme-linked immunosorbent assays

To measure the protein levels of angiogenic factors in the
HBMEC lysates, we used a commercially available ELISA
kit (Abcam, Cambridge, MA, USA), following the manu-

facturer’s instructions. After a 24-h incubation with 5-fluoro



Figure 2: Effects of 5-fluoro ABICA on cell metabolic activity in

HBMECs. For assessment of cell viability, HBMECs (5 � 103)

were initially seeded in a 96-well plate and incubated 24 h. Sub-

sequently, the cells were exposed to five concentrations of 5-fluoro

ABICA (ranging from 0.0001 mM to 1 mM) for 24 h. After

treatment, the culture medium containing 5-fluoro ABICA was

removed and replaced with MTT (5 mg/ml), and the cells were

incubated 4 h at 37 �C under 5 % CO2. The cells were then treated

with DMSO and agitated for 10 min, and the resulting absorbance

was quantified at 570 nm with an ELISA reader. The data are

presented as SD � mean (n ¼ 3). Significantly greater cell viability

was observed with concentrations ranging from 0.01 mM to 1 mM
than the control. (**) indicates p < 0.01 (*) indicates p < 0.05.
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ABICA, the conditioned medium was collected and centri-
fuged at 10,000 RPM for 10 min. The resulting supernatant

was stored at �80 �C until analysis. Each experimental
condition was replicated three times, and each concentration
was applied to triplicate wells. The concentrations of VEGF

(ab100662), ANG-1 (ab99972), and ANG-2 (ab99971) were
determined with commercially available kits from Abcam
(Cambridge, MA, USA). All methods were conducted ac-

cording to the manufacturer’s guidelines.

RT-qPCR analysis of gene expression

The differential expression of genes was validated with

real-time quantitative PCR. Total RNA was isolated from
cultured cells with a Total RNA Purification Kit (PP-219,
Jena Bioscience, Germany). Equal amounts of RNA were

treated with a DNA removal kit (PP-219, Jena Bioscience,
Germany) to remove any genomic DNA contamination. The
total RNA concentration was determined with an ND-1000

(Bio Drop-UK) spectrophotometer. After isolation, reverse-
transcription was performed on cDNA with a SOLIscript
1-Step SolisGreen kit (08-63-00250, Solis BioDyne, Tartu,

Estonia), according to the manufacturer’s instructions. Real-
time PCR was performed with QuantStudio 1 (Applied Bio-
systems, Foster City, CA) and SYBRGreen PCRmaster mix
(Applied Biosystems, Foster City, CA). The reaction condi-

tions were as follows: initial denaturation at 95 �C for 10 min;
40 cycles of denaturation at 95 �C for 30 s; and extension for
60 s at 60 �C. This entire process was repeated three times, and

each run was performed in triplicate. The primer sequences
used for three target genes (VEGF, ANG-1, and ANG-2), as
well as the reference control gene (b-actin), can be found in

Table 1. The primer selection process was based on previously
published research.22,23

Statistical analysis

We conducted an initial assessment to confirm the normal
distribution of our data. Subsequent data analysis was per-
formed with one-way ANOVA and the Tukey post-hoc test

in GraphPad Prism software (version 9.0, GraphPad Soft-
ware, La Jolla, CA). All data are expressed as standard
deviation (SD) � mean. We considered results statistically

significant when the p-value was below 0.05.

Results

Treatment with 5-fluoro ABICA enhances the metabolic
activity of human brain endothelial cells

After performing MTT assays on HBMECs exposed to

various concentrations of 5-fluoro ABICA ranging from
Table 1: RT-PCR primer sequences.

Primer Forward sequence

Beta-actin 50-GGAGATTACTGCCCTGGCTCCTA-

VEGF 50-GCACGTTGGCTCACTTCCAG-30

ANG-1 50-ACCGTGAGGATGGAAGCCTAGA-3

ANG-2 50-CTTCAAGTCAGGACTCACCACCA-3
0.0001 mM to 1 mM, we observed significant enhancement of
cell metabolism in cells treated with 0.01 mMe1 mM con-

centrations compared with the control (p ¼ 0.0036 for
0.01 mM, p ¼ 0.0046 for 0.1 mM, p ¼ 0.0180 for 1 mM). The
observed enhancement of cell metabolism was positively

correlated with increasing 5-fluoro ABICA concentration
(Figure 2).

Treatment with 5-fluoro ABICA increases the rate of cell
migration of human brain endothelial cells

We conducted in vitro scratch wound healing assays in

cultured HBMECs to evaluate the rate of cell migrationda
fundamental aspect of angiogenesis. We tested the effects of
five concentrations of 5-fluoro ABICA on cell migration.
HBMECs showed significantly higher migration rates after

treatment with 0.1 mMe1 mM 5-fluoro ABICA than control
treatment (Figure 3A; p < 0.0001 for 0.1 mM and 1 mM). The
most notable increase in cell migration was observed in the

group treated with 1 mM 5-fluoro ABICA (Figure 3B).
Reverse sequence

30 50-GACTCATCGTACTCCTGCTTGCTG-30

50-TGGTCGGAACCAGAATCTTTATCTC-30
0 50-AATGAACTCGTTCCCAAGCCAATA-30
0 50-CCACCCATGTCCATGTCACAG-30



Figure 3: Treatment with 5-fluoro ABICA enhances t HBMEC migration rate. The effects of 5-fluoro ABICA on cell migration in

HBMECs were evaluated with the following protocol. HBMECs were cultured in a 12-well plate for 24 h. After the desired confluence was

reached, a cell monolayer was gently scratched with a 1000 ml pipette tip to induce a wound. (A) Microscopic images were captured to

document migration levels at the starting point (time zero) and 24 h after treatment with various concentrations of 5-fluoro ABICA at

0.0001 mMe0.1 mM. (B) Quantitative analysis of the migration data shown in A, revealing that doses of 5-fluoro ABICA ranging from

1 mM, and 0.1 mM elicited greater rates of migration than the control. The data were measured and assessed in three separate experiments,

each conducted in duplicate, and are depicted as SD � mean (n ¼ 3). (****) indicates p < 0.0001.
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Treatment with 5-fluoro ABICA promotes tube-forming
activity in HBMECs

We next assessed angiogenesis with in vitro tube forma-
tion assays to assess the effects of 5-fluoro ABICA treatment
on HBMECs. Notably, HBMECs exposed to 5-fluoro
ABICA at concentrations 1 mM and 0.01 mM showed

significant elevation in several angiogenic parameters,
including the number of tubes, total tube length, number of
loops, and number of branch points (Figure 4AeE;
p < 0.0001 for 1 mM and 0.01 mM).
Treatment with 5-fluoro ABICA increases VEGF, ANG-1,
and ANG-2 mRNA expression in HBMECs

To investigate the effects of 5-fluoro ABICA on the
mRNA expression levels of VEGF, ANG-1, and ANG-2 in
HBMECs, we used quantitative real-time PCR. The absolute
quantification of VEGF copy numbers with RT-PCR

indicated a significant correlation between VEGF mRNA
expression and different concentrations of 5-fluoro ABICA.
VEGF expression increased after treatment with 1 mM,

0.1 mM, or 0.01 mM 5-fluoro ABICA (Figure 5A; p < 0.0001



Figure 4: Treatment with 5-fluoro ABICA enhances HBMEC functionality. Angiogenic potential was assessed with tube formation as-

says. BME-coated plates were initially seeded with 2 � 104 HBMECs maintained in serum-free medium and treated with varying con-

centrations of 5-fluoro ABICA (0.001 mM, 0.1 mM, and 1 mM) or control for 24 h. (A) After 24 h of treatment, microscopic visual images

of tubular structures produced by HBMECs were captured. (B) Quantity of tube-like structures, (C) number of loops, (D) number of

branch points, and (E) total tube length. The data are presented as SD � mean (n ¼ 3). (****) indicates a significance level of p < 0.0001.
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Figure 5: Treatment with 5-fluoro ABICA enhances angiogenesis-associated gene expression in HBMECs: RT-PCR analysis. (A) RT-

PCR quantification of VEGF mRNA expression in HBMECs treated with different concentrations of 5-fluoro ABICA. (B) Effects of

5-fluoro ABICA on the mRNA expression levels of ANG-1 and (C) ANG-2 in comparison to the control. Gene expression levels were

calculated for each sample and are presented in the graph as units. The data are presented as SD � mean (n ¼ 3). (****) indicates

p < 0.0001, (***) indicates p < 0.001.
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for 1 mM, 0.1 mM, and 0.01 mM). Additionally, ANG-1
exhibited significantly greater upregulation in the 0.01 mM
(p ¼ 0.0001) and 1 mM, 0.1 mM (p < 0.0001 for 0.1 mM and
1 mM) groups than the control group (Figure 5B). ANG-2
mRNA expression levels were also significantly higher in

the groups treated with the same concentrations of 5-fluoro
ABICA (p < 0.0001 for 1 mM, 0.1 mM, and 0.01 mM) than
the control group (Figure 5C).

Treatment with 5-fluoro ABICA increases levels of secreted
vascular endothelial growth factor, angiopoietin 1, and

angiopoietin 2

We next sought to investigate whether 5-fluoro ABICA
might affect angiogenic factor release. Using ELISA, we
determined the levels of VEGF, ANG-1, and ANG-2

angiogenic factors released by cells subjected to 5-fluoro
ABICA treatment. VEGF levels were higher after
treatment with 1 mM, 0.1 mM, 0.01 mM, 0.001 mM, and
0.0001 mM 5-fluoro ABICA than control treatment

(p < 0.0001 for 1 mM, 0.1 mM, 0.01 mM, p ¼ 0.0009 for
0.001 mM, and p ¼ 0.0460 for 0.0001 mM; Figure 6A).
Furthermore, ANG-1 levels were significantly higher after

treatment with 1 mM, 0.1 mM, 0.01 mM, and 0.001 mM
(p < 0.0001 for 1 mM, 0.1 mM, 0.01 mM, and p ¼ 0.0008 for
0.001 mM) than control treatment (Figure 6B). ANG-2 levels

were also significantly higher after treatment with 1 mM,
0.1 mM, 0.01 mM, and 0.001 mM5-fluoro ABICA (p< 0.0001
for 1 mM, 0.1 mM, 0.01 mM, and p ¼ 0.0270 for 0.001 mM)
than control treatment (Figure 6C).

Treatment with 5-fluoro ABICA increases angiogenic factor

protein levels and enhances levels of phosphorylated GSK-3b

We investigated the profiles of intracellular protein levels
of VEGF, ANG-1, ANG-2, and phosphorylated GSK-3b by



Figure 6: ELISA quantification of gene expression in HBMECs treated with different concentrations of 5-fluoro ABICA. ELISA was

conducted on HBMECs treated with 5-fluoro ABICA at different concentrations, to quantify the levels of secreted proangiogenic factors.

(AeC) Significant increase in the release of VEGF, ANG-1, and ANG-2 concentrations in a dose-dependent manner after treatment with

5-fluoro ABICA compared with the control. Gene expression was calculated for each sample and is presented in the graph as units. The

data are presented as SD � mean (n ¼ 3). (****) indicates p < 0.0001, (***) indicates p < 0.001, (*) indicates p < 0.05.
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western blotting in HBMECs exposed to 5-fluoro ABICA.

VEGF bands were observed at approximately 27 kDa in
both 5-fluoro ABICA and control treated HBMECs. The
expression of VEGF was significantly upregulated after

treatment with 1 mM and 0.01 mM 5-fluoro ABICA
(p¼ 0.0002 for 1 mM, and p¼ 0.0013 for 0.01 mM; Figure 7A
and B). Similarly, ANG-1 and ANG-2 protein bands,
observed at approximately 57 kDa, were significantly upre-

gulated in HBMECs treated with 5-fluoro ABICA at various
concentrations. ANG-1 demonstrated a notable increase
after 1 mM (p ¼ 0.0002) and 0.01 mM (p ¼ 0.0007) 5-fluoro

ABICA treatment, and ANG-2 also exhibited a significant
elevation after 1 mM (p ¼ 0.0001) and 0.01 mM (p ¼ 0.0006)
5-fluoro ABICA treatment (Figure 7C and D). Furthermore,

bands corresponding to phosphorylated GSK-3b, at
approximately 46 kDa, were significantly upregulated after
1 mM (p ¼ 0.0002) and 0.01 mM (p ¼ 0.0039) 5-fluoro
ABICA treatment, compared with the control treatment

(Figure 7E).
Discussion

SCs are a novel class of drugs with a broad spectrum of
effects, acting through CB1 and CB2 receptors. Several
previous in vitro and in vivo studies have presented

compelling evidence that SCs exert pharmacological effects 2
to 100 times more potent than those of THC.24e26 These
effects are relevant to conditions as diverse as cancer
growth, inflammatory responses, and neurodegenerative

diseases. Notably, SCs, like 5-fluoro ABICA, lack medical
approval and are illegal in many countries, because of their
potential for addiction. Although 5-fluoro ABICA is known

to have strong affinity toward CB1R, this study provides the
first report of the effects of 5-fluoro ABICA on brain endo-
thelial cells.

Recent studies have explored how SCs affect various
human cell types and may potentially influence cell metabolic
activity by modulating intracellular processes. However,
these effects vary, depending on factors such as CB receptor



Figure 7: Effects of 5-fluoro ABICA treatment on the protein expression of VEGF, ANG-1, ANG-2, GSK-3b, and p-GSK-3b in HBMECs,

assessed with western blotting. (A) Protein extracts were obtained from HBMECs treated with 5-fluoro ABICA at varying concentrations

(0.1 mM, 0.01 mM, or 0.0001 mM). These extracts were then used to quantify the protein levels of VEGF, ANG-1, ANG-2, GSK-3b, and
p-GSK-3b within the cells; b-actin served as the reference protein. Proteins were isolated with radioimmunoprecipitation assay lysis buffer

containing phosphatase-protease inhibitors, and 20 mg of each protein sample was separated with sodium dodecyl sulfate-polyacrylamide gel

electrophoresis. The separated proteins were transferred to a polyvinylidene fluoride membrane, which was blocked with 2 % bovine serum

albumin and probed with primary antibodies during an overnight incubation. HRP-conjugated secondary antibodies were used to detect

chemiluminescence signals. (B) The VEGF expression levels, normalized to those of b-actin, were significantly higher in cells treated with

5-fluoro ABICA than the control. (C) Significantly elevated ANG-1 in treated HBMECs. (D) Increase in ANG-2 expression after treatment

with 5-fluoroABICAcomparedwith the control. (E) Substantial increase in the expression of p-GSK-3bwith respect toGSK-3b. Thedata are
presented as SD � mean (n ¼ 3). (****) indicates p < 0.0001, (***) indicates p < 0.001, (**) indicates p < 0.01.
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distribution, cell-specific responses, culture conditions, and
the complex interactions among these compounds. Although

several studies have suggested that SCs promote cell survival,
contrasting findings have suggested pro-apoptotic properties
of SCs. For instance, the SC MAM-2201 has been shown to

induce cytotoxicity and inhibit cell growth in astrocytes.27

CP55940 and WIN552122 have been reported to inhibit
proliferation in C6.9 glioma cells.28,29 In contrast, other

studies have reported that SCs such as HU-210, THJ-2201,
and 5F-PB22 increase the proliferation of Neuro-2A cells
and NG108-15 cells.15,30 Our investigation of cell metabolic
activity in vitro indicated that 5-fluoro ABICA significantly

altered cell metabolic activity (MTT reduction) and
increased the viable number of brain endothelial cells. These
findings suggested that 5-fluoro ABICA has a specific con-

centration range at which it effectively promotes the meta-
bolic activity of cells. This compound appears to have a
narrow therapeutic window, given the narrow range of test

dose effects. These observations align with findings from a
prior study indicating stimulatory effects of XLR-11 on the
cell metabolism rate in HBMECs.31

Angiogenesis is a requisite developmental process

involving extracellular matrix degradation, chemotactic
migration, proliferation of endothelial cells, and differenti-
ation into a capillary-like structure. SCs have been shown to

decrease proliferation and migration, and to induce proap-
optotic effects. Most studies to date have demonstrated the
ability of various SCs to exert anti-proliferative effects and

induce apoptosis in various cell lines through targeting re-
ceptors beyond the classical CB1 and CB2.32e35 In our study,
a CB1 or CB2 ligand did not induce cell death, but markedly

enhanced the cell migration and tube formation rates of the
cells in the presence of 5-fluoro ABICA. These findings align
with those from our previous studies on SCs, specifically
XLR-11, 5F-MDMB-PICA, and AB-CHMINACA,31,36,37

and their effects on HBMEC angiogenic ability. Although
the effects of 5-fluoro ABICA on migration and the tube
formation rates were concentration dependent and showed

threshold effects, HBMECS showed significantly greater
potential to enhance wound healing and tissue regenerative
processes 24 h after initiation of the wound healing assay.

These findings suggested that the drug might have potential
therapeutic benefits at higher doses but might lack effects at
lower doses. Therefore, further studies and clinical trials are

required to determine the optimal drug concentration.
VEGF and angiopoietins are critical angiogenesis regu-

lators. VEGF, the most potent angiogenic mediator of
neovascularization, and normal and abnormal angiogenesis,

acts through binding two specific membrane receptors, the
tyrosine kinase receptors VEGFR-1 and VEGFR-2.38

Activation of these receptors leads to endothelial cell

survival, proliferation, vessel sprouting, and increased
vessel permeability. Maintaining a basal level of VEGF
expression is essential for vessel stability in mature

conditions. However, elevated VEGF levels in hypoxic
stromal or tumor cells contribute to the stimulation of
branching angiogenesis. Angiopoietin belongs to a family
of angiogenic factors affecting blood vessel formation and

maintenance. Angiopoietins bind endothelial cells
expressing the tyrosine kinase receptor Tie-2 and have
multifaceted roles in modulating the equilibrium between

promoting angiogenesis and triggering angiostasis. In the
angiopoietin family, ANG-1 and ANG-2 have been exten-
sively investigated and found to have contrasting effects:

ANG-1 promotes angiogenesis via Ties2 activation, whereas
ANG-2 has varying effects depending on the context, either
facilitating or hindering angiogenesis.39 Several in vitro

experiments have revealed that Ang-1 and ANG-2,
together with VEGF, constitute a platform that controls
endothelial plasticity and angiogenesis.40,41 The SCs XLR-

11, AB-CHMINACA, and (R)-5-Fluoro-ADB31,37,42 have
all been found to elevate VEGF, ANG-1, and ANG-2
mRNA expression, secretion into the medium, and intra-
cellular presence. In the present study, we identified signifi-

cant upregulation of the expression of VEGF, ANG-1, and
ANG-2 in HBMECs treated with 5-fluoro ABICA. There-
fore, 5-fluoro ABICA has the potential to induce brain

angiogenesis. Moreover, the drug has concentration-
dependent effects on proangiogenic protein/mRNA
expression levels, such that higher concentrations have more

pronounced effects. However, these effects reached a plateau
beyond a dose threshold, thereby indicating that the effec-
tiveness of this drug may be limited to higher doses. Conse-
quently, we concluded that 5-fluoro ABICA is likely to have

an optimal therapeutic concentration for inducing brain
angiogenesis between 1 and 0.01 mM. These concentration-
dependent effects may be correlated with the complex

nature of the HBMEC biological systems involved. For
example, this drug may target specific pathways and proteins
at low concentrations, whereas at higher concentrations,

broader effects may occur and exert different effects.
GSK-3 serves as a nodal point of convergence of signaling

mechanisms in endothelial cells. Non-phosphorylated active

GSK-3b inhibits the migration of endothelial cells to the
VEGF angiogenic factor and promotes apoptosis of endo-
thelial cells. In contrast, phosphorylation of GSK-3b
increases angiogenesis and enhances capillary formation.7

Moreover, the activation of phosphorylated GSK-3b has
been suggested to have anti-apoptotic properties and to
promote cell survival through increasing the expression of

anti-apoptotic proteins and inhibiting the transcription of
pro-apoptotic genes, such as caspase9 and p53. GSK-3b also
regulates angiogenesis by upregulating hypoxia inducible

factor 1a (HIF-1a) expression, thereby inducing VEGF
transcriptional activation.43 Under hypoxia or low-oxygen
conditions, HIF-1a, a master transcription factor regu-

lating VEGF expression and oxygen homeostasis, promotes
the expression of angiogenic factors such as VEGF and
TGF-a44dkey players in angiogenesis under oxygen
scarcity. Interestingly, GSK-3b has an indirect role in

suppressing angiogenesis in hypoxic conditions, by
inducing the phosphorylation and subsequent degradation
of HIF-1a. Consequently, VEGFR-2 downregulation in-

activates hypoxia-associated angiogenesis factors, particu-
larly those in the VEGF signaling pathway.45

Cannabinoids have been found to activate the PI3K/Akt

pathway by interacting with the CB1 and CB2 receptors.
Activation of Akt by cannabinoids leads to inactivation of
GSK-3 by phosphorylation at specific sites. THC and
HU-210 have neuroprotective effects on primary cortical

neurons through stimulation of the PI3K/Akt pathway,
thereby increasing phosphorylation of GSK-3b.46 Another
study has noted a decrease in the phosphorylated active

form of GSK-3b in PC12 cells treated with arachidonyl-2-
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chloroethylamide, cannabidiol, and WIN55,212-2.47

Furthermore, HBMECs treated with XLR-11, AB-CHMI-

NACA, and (R)-5-fluoro-ADB have shown elevated phos-
phorylated GSK-3b levels.31,37,42,48 Our study revealed
significant up-regulation of the levels of phosphorylated

GSK-3b compared with GSK-3b, thus suggesting that
5-fluoro ABICA activates p-GSK-3b in a dose-dependent
manner, and promotes cell proliferation and survival.

Despite the lack of response at lower concentrations, which
may indicate limited activity of the drug in upregulating the
expression of p-GSK-3b at low doses or a need for high doses
to be effective, the drug may activate various signaling

pathways involved in GSK-3b phosphorylation.

Conclusion

Overall, 5-fluoro ABICA exposure in vitro alters hall-
marks of angiogenesis, such as proliferation, migration, and

tube formation in HBMECs, and drives activation of
proangiogenic factors and GSK-3b expression. Our findings
suggested that 5-fluoro ABICA has a therapeutic concen-

tration range between 1 mM and 0.01 mM. Notably, this
study reports the first examination of the physiological
effects of 5-fluoro ABICA, to our knowledge. However,
these effects were observed in vitro, and the effects of the

drug may be more complex in vivo, depending on variables
such as the disease stage, the target cell or tissue, and the type
of drug used. The incorporation of CB1R and CBR2 and

additional proliferation assays will be critical in elucidating
the precise signaling pathway triggered by 5-fluoro ABICA,
thereby advancing understanding of its role in angiogenesis.

Therefore, additional investigations are required to deter-
mine the optimal therapeutic concentration of 5-fluoro
ABICA, and to fully understand the mechanism underlying

its effects. Moreover, the potential and safety of 5-fluoro
ABICA in treating human brain disorders should be
investigated.
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