
British Joumal of Cancer (1997) 75(3), 324-332
© 1997 Cancer Research Campaign

In vivo anti-tumour effect of 3'.sulphonoquinovosyl
I '-monoacylglyceride isolated from sea urchin
(Strongylocentrotus intermedius) intestine
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Summary Extracts from sea urchin intestine were screened for new anti-tumour drugs. Four glycolipids, 3'-sulphonoquinovosyl-1', 2'-
diacylglyceride (A-4), 3'-sulphonoquinovosyl-1 '-monoacylglyceride (2'-Iyso A-4, A-5), NeuGca2-6GIcP1-1 ceramide (A-6) and HSO3-
8NeuGca2-6Glcp1-1ceramide (A-7), were isolated from the intestine of sea urchin, Strongylocentrotus intermedius, and characterized by
means of proton nuclear magnetic resonance spectroscopy and fast atom bombardment mass spectrometry. When tested for cytotoxic
activity against tumour cells in vitro, A-5 showed significant activity, but A-4, -6 and -7 did not. In addition, the hydrophilic derivatives of A-4 or
-5 had no cytotoxicity. Furthermore, the anti-tumour effects on nude mice bearing solid tumours of a human lung adenocarcinoma cell line A-
549 were evaluated in vivo using A-4 and -5. As a result, A-5 was found to be significantly effective in suppressing the growth of solid tumours,
whereas A-4 had no effect. Pathologically, the solid tumours showed haemorrhagic necrosis areas after treatment with A-5. In this study, we
have demonstrated the anti-tumour effect of sulphonoquinovosyl-lysoglyceride (A-5), which provides important information that this
sulpholipid could be a useful drug for cancer chemotherapy.
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Since the growth and drug resistance characteristics of neoplastic
tissues are rich in diversity, it is important to search for many new
sources of cancer chemotherapy drugs (Riordom and Ling, 1985;
Tsuro, 1988; Bishop, 1994; Hartwell and Kastan, 1994; Rabbitts,
1994). Recently, marine invertebrates have shown particular
promise as a new source of anti-tumour drugs. Through evolution,
as their physical defences are poor, they have developed chemical
arsenals to defend themselves from various enemies. Therefore,
many researchers have been investigating toxic substances
produced by marine invertebrates that could be applicable for
destroying tumours. The successful extractions of many anti-tumour
substances, such as didemnin (Venditti, 1983), bryostatin (Pettit et
al, 1982) and dolasstatin (Pettit et al, 1987) derived from marine
invertebrates, have been reported and have reached clinical trial. In
our research, we have employed the sea urchin intestine as a drug
source and screened for glycolipids having anti-tumour activity.

Glycolipids play an important role in cell membranes. It is well
known that changes in the quality and density of gangliosides
are observed with tumorigenesis (Ravindranath et al, 1991;
Jennemann et al, 1990). In addition, tyrosine phosphorylation of
the epidermal growth factor receptor is modulated by the ganglio-
side, NeuAca2-3Gal131-4Glcol-ceramide(Cer) (GM3) (Bremer et
al, 1986; Weis and Davis, 1990). Thus, it is interesting to note that
glycolipids are not only a component of the cell membrane, but
can also modulate cell growth.

The extraction of several sulpholipids, a type of glycolipid from
marine invertebrates, has been reported (Benson et al, 1959;
Benson, 1963; Isono and Nagai, 1965, 1966; Isono et al, 1967;
Yoshizaki and Nagai, 1974; Langworthy et al, 1976; Anderson et
al, 1978; Kitagawa et al, 1979; Sato et al, 1979; Kikuchi et al,
1982). Gustafson et al (1989) reported that D-sulphonoquinovosyl
glycerol from blue-green algae possessed antiviral activity against
the human immunodeficiency virus (HIV-1) and cytotoxicity
against human lymphocytic cells. This was the first time that
sulpholipids were shown to possess antiviral properties. Thus,
sulpholipids from marine invertebrates merit further medical study.

In this study, we successfully isolated four sulpholipids from sea
urchin intestine, 3'-sulphonoquinovosyl-1', 2'-diacylglyceride (A-4),
3'-sulphonoquinovosyl-1'-monoacylglyceride (2'-lyso A-4, A-5),
NeuGca2-6GlcP1-1Cer (A-6) and HSO3-8NeuGca2-6GlcP1-1Cer
(A-7). The identification of these four sulpholipids had already been
reported (Benson et al, 1959; Benson, 1963; Isono and Nagai, 1965,
1966; Isono et al, 1967; Yoshizaki and Nagai, 1974; Langworthy et
al, 1976; Anderson et al, 1978; Kitagawa et al, 1979; Sato et al, 1979;
Kikuchi et al, 1982; Gustafson et al, 1989; Kubo et al, 1990),
although no studies of anti-tumour effect were performed. In the
present study, the anti-tumour properties of A-4 and -5 were exam-
ined. Sulpholipid A-5 effectively suppresses the growth of solid
tumours derived from human lung cancer in vivo, adenocarcinoma
cell line A-549, in nude mice.

MATERIALS AND METHODS

MaterialsReceived 18 March 1996
Revised 6 August 1996
Accepted 13 August 1996
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Intestines from the sea urchin, Strongylocentrotus intermedius,
which inhabits the coast of Rishiri Island, Hokkaido, were
immersed into acetone overnight and dried (acetone powder).
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Figure Thin-layer chromatography of the whole acidic traction and purified

glycolipids. TLC was developed with CMW (65:25:4) and stained by orcinol-

sulphuric acid. Standard glycolipids, Std; lane 1, whole acidic fraction; lanes

2, 3, 4 and 5, purified A-4, A-5, A-6 and A-7 respectively

DEAE-Sephadex A-25 and Sephadex LH-20 were purchased

from Pharmacia-LKB (Uppsala, Sweden), latrobeads from latron

Laboratories (Tokyo, Japan), thin-layer chromatography (TLC)
plates (Silica-gel 60) and [2H6]dimethylsulphoxide (Me2SO-d6)

from Merck (Germany). Rhizopus delemer lipase, triacylglycerol

acylhydrolase, was obtained from Seikagaku Kogyo Corporation

(Tokyo, Japan). Standard glycosphingolipids (GalCer, galacto-

sylceramide; LacCer, lactosylceramide; globotriaosylceramide,

Gb3Cer; and GM3) were prepared in our laboratory.

Cell line

Cell line W14, which was prepared by transfection with the 6.6-kb

EJ-ras oncogene to cell line WFB, derived from WKA rat fibrob-

last cells, was used (Sato et al, 1987). Human adenocarcinoma A-

549 cells from lung cancer were provided by the Japanese Cancer

Research Resources Bank. These cells were cultured in Eagle's

minimum essential medium (MEM) (Nissui Co., Tokyo, Japan),

which was supplemented with 5% fetal calf serum (FCS) and 2mM

L-glutamine (Gibco, Grand Island, NY, USA).

Extraction and purification of glycolipids

The ratio of the solvent mixture is expressed by volume. The
glycolipids were extracted three times from 150 g of the acetone
powder of the sea urchin intestine with 10 volumes per g of the
powder with a chloroform-methanol-water (CMW) ratio of 4:8:3.
The crude extracts were combined and evaporated to dryness in
vacuo. The dried material was dissolved in CMW (30:60:8), and
the solution was passed through a DEAE-Sephadex A-25 column
(3.3 x 35 cm, acetate form), which was previously equilibrated
with CMW (30:60:8) (Suetake et al, 1993). After washing the
column with the equilibration CMW mixture to remove unbound
lipids, the bound acidic lipids were eluted with CMW containing
lM ammonium acetate (30:60:8). This acidic fraction was

collected, concentrated and passed through a Sephadex LH-20 (1.0
x 35 cm) column to remove ammonium acetate. The total acidic

glycolipids were chromatographed on an Iatrobeads column (2.5 x
40 cm) by stepwise elution of increasing polarity with CMW
(from 90:10:0.5, 80:20:2, 70:30:3 to 60:40:4, 300 ml each).
Aliquots of the fractionated sample were developed with CMW
(65:25:4) on a thin-layer chromatography (TLC) plate and visual-
ized with orcin-sulphuric acid. To obtain homogeneous glycolipid,
the latrobeads chromatography was repeated in the same manner
as above, except column size was sequentially decreased. Through
the above purification procedure, A-4, -5, -6 and -7 were obtained
in amounts of 44.0, 47.4, 49.9 and 44.6 mg respectively, from 150
g of the acetone powder.

Nuclear magnetic resonance

Proton nuclear magnetic resonance (NMR) spectra of the glycol-
ipids (approximately 1 mg) in 0.4 ml of Me2SO-d6 containing 2%
D20 were obtained in the Fourier-transform mode on a
Varian JNMAlpha-1 spectrometer at the High Resolution NMR
Laboratory, Hokkaido University, as described previously
(Suetake et al, 1993). The chemical shift was indicated by distance
(p.p.m.) from tetramethylsilane as an intemal standard. Two-
dimensional chemical shift-correlated spectroscopy (2D-COSY)
spectra were obtained as described previously (Suetake et al, 1993)
and shown in the absolute value representations as contour plots.

Fast atom bombardment-mass spectrometry

Negative fast atom bombardment-mass spectrometry (FAB-MS)
was done on a JEOL JMS-HX100 mass spectrometer equipped
with a JMA-DA500 datalizer as described previously (Suetake et
al, 1993). The lipid in a matrix of triethanolamine was bombarded
by xenon gas with 6 kV (20 mA), and the fragments were acceler-
ated at 5 kV.

Analysis of lipid moieties

The fatty acid components of A-4 and A-5 were separately
analysed as methyl esters from the methanolyzates of the purified
glycolipids by gas-layer chromatography (GLC) and gas chro-
matography-mass spectrometry (GS-MS) as reported previously
(Suetake et al, 1993).

Deacylation of glycolipid

A-4 (10 mg) with 50 U m-1 lipase in a solution of 50 mm acetate
buffer, pH 5.6, containing 0.1 M calcium chloride was incubated
for 72 h at 300C. After incubation, the reaction mixture was
lyophilized and passed through a Sephadex LH-20 column (1.0 x
30 cm) with CMW (60:30:4.5) to remove salts. The resultant prod-
ucts were isolated by using an latrobeads column (1.5 x 40 cm) as
described above, giving 0.9, 3.6 and 2.3 mg of unreacted A-4, a
lipid ('A-5') which was identical to natural A-5 by NMR, and
sulphonoquinovosylglycerol (SQG) respectively.

MTT assay

MTT, [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium
bromide], assay was performed using W14 and A-549 cell lines
according to the method described previously by Takahashi et
al (1993). Briefly, these cells (5 x 103 per well) were cultured in
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Figure 3 Negative fast atom bombardment-mass spectrum of A-4 (A) and A-5 (B)

Table 1 Fatty acid component (%) of A-4 and A-5

Fatty acida A-4 A-5

14:0 32.5 2.4
14:1 1> 1>
16:0 57.6 86.5
16:1 1> 1.0
18:0 2.2 5.4
18:1 1> 1>
20:0 1 > ND
20:1 ND ND
Unknown 4.7 4.1

aCarbon chain length (n) with saturation (0) or mono-unsaturation (1) are
abbreviated as n:O or n:1. ND, not detected. The component was determined
by gas-layer chromatography as the fatty acyl methyl ester.

96-well plates for 24 h and then various amounts of samples
suspended in phosphate-buffered saline (PBS) were added to the
wells (in the control, PBS was added to wells at a volume of 10%
of the medium). Following cultivation for 48 h, 50 gg of MTT
was added to the culture medium and incubated for 3 h. Then, 4%
hydrochloric acid in isopropanol was added to each well and
mixed by pipette to destroy cells. The absorbance of each well was
measured using a multiwell scanning photometer (Micro ELISA
MR600, Dynatech Laboratories, Alexandria, VA, USA) at a wave-
length of 570 nm.

In vivo anti-tumour assay

A-549 cells (5 x 105 cells per mouse) were injected subcutaneously
into nude mice (BALB/cAJcl-nu). After implantation, the tumour

sizes in all of these mice were measured at 3-day intervals. The
mice bearing solid tumours that grew to 30-50 mm3 in tumour
volume [tumour volume = length x (width)2 x 0.51 were used for
the anti-tumour assay. They were divided randomly into two
groups. A control group was injected with PBS (n=5), and a group
was injected with A-5 (n=5) for the period of 32-53 days after
implantation. In a separate experiment, eight mice were divided at
random into two groups: a control group was injected with PBS
(n=4), and a group was injected with A-4 (n=4) for the period of
45-67 days after implantation. These mice were injected subcuta-
neously eight times at 3-day intervals with A-4 and -5 at a dose of
100 jg per mouse (4 mg kg-') in PBS. At the end of the assay,
some mice from the control, A-4 and -5 groups were separately
examined to determine the histological features of the tumours and
major organs, such as lung, heart, spleen, stomach, liver, pancreas,
kidney, intestine and brain.

RESULTS

Purification of glycolipid from sea urchin intestine

Whole acidic glycolipid from sea urchin intestine and purified
glycolipids are shown on a TLC plate in Figure 1.

NMR analysis of glycolopids

One-dimensional (ID)- and 2D-NMR was done on A-4, -5, -6
and -7. Spectra of A-4 are presented in Figure 2A and B. Typically,
the ID spectrum showed the presence of a diacylglyceride
skeleton based on a methylenic proton due to a 2' proton (G-2 in
the figure), methylenic protons due to 3' protons (G-3a and -3b)
and methylenic protons due to 1' protons (G-la and -Ib) bound on
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Figure 4 In vitro study of growth inhibition activity of the glycolipids. (A) The
growth-inhibitory activity of each glycolipid. A-4, -5, -6 and -7 were added to
wells of cultured W14 and A-549 cells at doses of 100 9g ml, and examined
three times by MTT assay to determine inhibitory activity (one of the three
trials is shown although all three gave almost identical results). (B)
Determination of the IC50 of A-5. Various doses of A-5 were added to cultured
wells of each cell type. After 48 h, the ability of growth inhibition was
examined by MTT assay. The IC 5 value appeared at doses of 33 9g ml-1 and
35 ,ug ml- for W14 cells and A-549 cells respectively

glyceride carbons. The existence of two fatty acyls was also esti-
mated from four protons resonating at 6 2.25 p.p.m. owing to ac-
methylenic protons on acyl groups, the chemical shifts and
coupling constants of which were mostly identical to those of
glycerophospholipids (Kriat et al, 1993). These protons, as well as

GalCer 11 _

LacCer

A-4 ..
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Figure 5 Thin-layer chromatography of purified glycolipids after deacylation
with lipase. Std, standard glycolipids and purified A-4 and -5 after lipase
treatment (lines 1 and 2 respectively) and purified SQG (line 3) isolated from
lipase treated A-4

other protons, were finally assigned based on the 2D-spectrum,
showing that A-4 possesses ax-glucose-like ring protons (Q-1 to
Q-6). The chemical shifts of the Q-6 methylenic protons (Q-6a at 8
2.91 p.p.m. and Q-6b at 2.65 p.p.m.) of the ac-glucose-like sugar,
however, were different from those of ax-glucose (H6a at 3.66 and
H6b at 3.44; Koerner et al, 1983), suggesting that some functional
group other than the hydroxyl residue of glucose was directly
bound at the carbon-6 position on the a-glucose-like sugar moiety
in A-4. The olefinic protons at 6 5.35 p.p.m. were assigned to the
double'bond(s) of fatty acid. On the other hand, the 1D-spectrum
of A-5 (Figure 2C) also showed the presence of ax-glucose-like
ring protons (Q-1I to Q-6) but also revealed significant upper-field
shifts of G-2 protons, slight shifts of G-3 and G-1 protons, and
reduced intensity of a-methylenic protons on acyl groups
compared with A-4. From the shifts and intensities of these
protons, the structure of A-5 was determined to be a deacylated
derivative of A-4 at C-2' on glyceride. Assignment of the A-5
protons was confirmed by 2D-NMR (Figure 2D). Data for A-6
and -7 are not shown.

FAB-MS analysis of glycolipids
To determine the molecular masses of A-4 and -5 together with the
functional group attached to the a-glucose-like sugar, negative
FAB-MS spectra were measured. A peak at m/z 765 was detected
as a molecular ion ([M-H]-) in the spectrum of A-4 (Figure 3A).
This indicates that the sugar moiety of A-4 contains a sulphur
dioxide component, since the mass is 64 greater than glucose. This
was assigned to a sulphono-6-deoxyhexose residue and the acyl
moieties were determined by GLC analysis (see below) to be C16
and C 1 fatty acids. The peak at m/z 737, as shown in Figure 3A,
was assigned to A-4 containing C14 acid and C1 acid moieties. The
peak at 555 m/z was assigned to A-4 containing only a C16
acid moiety. Also, for the 765 peak, A-4 was assigned as having
two C16 acid components. These fatty acid assignments are
not definite, as only C 1 toC20 fatty acid components were
analysed (see below), although they are most likely. The 555 peak
is the main peak in the spectrum of A-S as shown in Figure 3B.
Judging from these FAB-MS peaks as well as the NMR data
described above, the chemical structures of A-4 and -S were
identified as 3'-(6-sulphonoquinovosyl) 1', 2'-diacylglyceride and
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Figure 6 In vivo study of anti-tumour effects of A-5 and A-4. To elucidate
whether these glycolipids had anti-tumour effects, A-549 cells (5 x 105 cells
per mouse) were injected s.c. into nude mice. Mice bearing solid tumours
that grew to 30-50 mm3 in tumour volume were used for all experiments. (A)
Ten mice were used and divided into two groups; a control group injected
with PBS (rn=5) and a group injected with A-5 (n=5). (B)Eight mice bearing
tumours were divided at random into two groups; a control group (n=4) and
an A-4 group (n=4). All mice were injected s.c. eight times at 3-day intervals
with A-4 or -5 at a dose of 100 gg per mouse (4 mg kg-') in PBS. Drug
injection periods are indicated. The means (± s.e.) of tumour volumes from
each group are shown. (A) The mice injected with A-5 showed significant
growth suppression in tumour size at 62 days after tumour implantation
(Student's t-test, P<0.01). Tumour growth in the mice receiving A-4 was not
inhibited (B)

3'-(6-sulphonoquinovosyl) 1'-monoacylglyceride respectively.
Data for A-6 and -7 are not shown, but the determined chemical
structures are NeuGca2-6G1c4l-lCer for A-6 and HSO3-
8NeuGca2-6GlcPl-1 Cer for A-7, in comparison with the mobili-
ties on TLC with those from a previous report (Kubo et al, 1990).

I -.-I

Figure 7 Haematoxylin and eosin staining of a solid tumour from an A-5-
treated mouse 30 days after the start of injections. The tumours of mice
administered A-5 showed larger haemorrhagic necrosis areas and had no

marked increase in tumour-infiltrating lymphocytes compared with the
control. Scale bar = 100 gm

Lipid moieties of glycolipids

The fatty acid components of A-4 and A-5 were analysed sepa-

rately by GLC and GC-MS, and the data are summarized in Table
1. The major fatty acid component of both A-4 and -5 was satu-

rated C16 acid. C14 acid was also detected from the solvolysate of
A-4 as a minor component (32.5%), thus confirming the assign-
ments of the A-4. The fatty acids of A-5 were mainly C16 moieties.

The cytotoxicity of the glycolipids in vitro

The purified glycolipids, A-4, -5, -6 and -7, were added to wells
with W14 or A-549 cells at a dose of 100 ,ug ml- and examined
three times to determine whether these glycolipids had cytotoxic
activity against these tumour cells. As shown in Figure 4A, neither
A-4, -6 or -7 influenced the cell growth. Nor did they cause

notable morphological changes when observed under a light
microscope. On the other hand, most of the cells treated with A-5
shrunk morphologically and were found to be irreversibly
destroyed when viewed under a light microscope. Thus, A-5
appears to possess cytotoxicity against cells rather than inhibitory
activity. To quantitate the cytotoxic activity of A-5, the concentra-

tions for 50% inhibition (IC50) against both cell types were deter-
mined. The IC50 values against W14 cells and A-549 cells were

found to be 33 jg ml-1 and 35 ,ug ml-l respectively (Figure 4B).

Preparation and MTT assay of SOG

To investigate whether the cytotoxicity of A-5 is caused by SQG
unit, we prepared SQG by deacylation of A-4 with lipase. A-5 was

not used to generate SQG, as A-5 possesses cytotoxicity and toxic
components of the A-5 could affect the results. As shown in Figure
5, after purification of the digested products by latrobeads chro-
matography, unreacted A-4, a lipid ('A-5') has an identical Rf to

A-5 and SQG. The structure of the product 'A-5' was confirmed to

l'-acyl derivative by NMR analysis. As expected, the mobility of
the SQG was slower than A-5. ID- and 2D-NMR confirned the
SQG structure, as did FAB-MS (data not shown).
We next performed MTT assays using W14 cells. SQG was

added to wells at doses of 50 and 100 jg ml-'. No cytotoxic
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activity was observed. These data demonstrate that the hydrophilic
derivative of A-4, thus A-5, has no cytotoxicity.

In vivo anti-tumour study of A-4 and -5

Tumour-bearing mice injected subcutaneously with A-5 showed
significant suppression (by Student's t-test) of tumour growth
about 30 days after injection (P<0.0 1) (Figure 6A) and had no loss
of body weight throughout the experimental period (data not
shown). Figure 6B presents the results for the A-4-treated group.
In the mice with A-4, solid tumour growth was not inhibited.
The results for the A-5 group agreed well with the data obtained
in vitro. By pathological analysis, the A-5 growth-suppressed
tumours were observed to have much larger haemorrhagic
necrosis areas compared with controls (Figure 7). The organs,
lung, heart, spleen, stomach, liver, pancreas, kidney, intestine and
brain, of A-5 treated mice showed a normal histological appear-
ance (data not shown).

DISCUSSION

The intestine absorbs nutrients in a symbiotic relationship with
numerous microbes. The intestine requires a mechanism regu-
lating the growth of these microbes through various physio-
logically active substances, because unilateral growth of these
microbes can cause the death of the host. This led us to the hypoth-
esis that sea urchin intestine might have some ability to regulate
mammalian cell growth, since sea urchins are far removed from
both microbes and mammals in terms of evolution. We have
isolated and characterized four glycolipids from sea urchin intes-
tine designated A-4, -5, -6 and -7, and confirmed in vivo an anti-
tumour effect of one of these lipids, A-5. Several researchers have
already reported the isolation and characterization of A-4 and -5
from a bacillus, a diatom, a blue-green algae, a marine sponge and
sea urchin gametes (Benson et al, 1959; Benson, 1963; Isono and
Nagai, 1965, 1966; Isono et al, 1967; Yoshizaki and Nagai, 1974;
Langworthy et al, 1976; Anderson et al, 1978; Kitagawa et al,
1979; Sato et al, 1979; Kikuchi et al, 1982; Gustafson et al, 1989),
and of A-6 and -7 from sea urchin gametes (Kubo et al, 1990). It
remains unknown whether A-4 and -5 originate from sea urchin
intestine or from ingested organisms, since these glycolipids are
also extracted from diatoms and algae, which sea urchins feed on.

There have been several reports concerning the physiological
effects of lysosphingolipids. For example, lysosphingolipids regu-
late protein kinase C activity (Hannun and Bell, 1986; Oishi et al,
1988; Merrill and Stevens, 1989), inhibit growth of neuroblastoma
cells and influence neurite outgrowth of these cells (Sugiyama et
al, 1990; Uehara et al, 1991). Gustafson et al (1989) reported that
sulpholipids extracted from blue-green algae, one of which is
thought to be almost identical to A-4 in this study, possess antiviral
activity against HIV- 1 and cytotoxicity against a human lympho-
cytic cell line. The fact that the 'A-4' from blue-green algae
showed activity against human lymphocytes, while sea urchin A-4
showed no activity against the tumour cells used in this study can
be attributed to two possibilities: (1) cell type; or (2) acyl groups of
'A-4' and A-4 are slightly different in regard to chain length
and/or saturation. The common SQG, sulphonoquinovosylglyc-
erol, backbone of A-4, A-5 and 'A-4' was generated from A-4
following lipase treatment and found to have no cytotoxic proper-
ties. Therefore, the difference(s) in fatty acid composition between
A-4 and 'A-4' is (are) responsible for the cytotoxic effect.

The cytotoxicity in vitro of lysolecithin is via haemolytic effect,
like a surfactant, that accelerates the permeability of the lipid
bilayer responsible for easy incorporation of this molecule into
the membrane (Matumoto, 1961; Robinson, 1961; Gottfried and
Rapport, 1963). Taketomi et al (1976) reported that lysosphin-
golipid had strong haemolytic activity compared with the corre-
sponding sphingolipid. When the structural properties of A-4 and
-5 are compared, A-5, which is a mono-acylated structure of A-4,
may be more easily incorporated than A-4 into cell membranes,
similar to the observations by Taketomi et al (1976). Thus, the
common structural characteristic of A-5 and lysoshingolipid is the
presence of a single long chain hydrocarbon - the lyso form is
cytotoxic in this study and Taketomi's study.

In vivo, A-5 significantly suppressed the growth of solid
tumours of human adenocarcinoma derived from lung cancer, but
A-4 did not. These results are similar to those obtained in vitro.
The tumours of mice administered A-5 were observed to have
much larger haemorrhagic necrosis areas, but tumour-infiltrating
lymphocytes were not markedly increased compared with the
control. The subcutaneous administration sites did not show any
tissue disorder. Therefore, the striking suppression seemed to be
caused by directly inducing haemorrhagic necrosis. It has been
reported that DT-5461, a lipid A analogue, has an indirect anti-
tumour effect by inducing endogenous tumour necrosis factor
(Sato et al, 1995). In addition to the suppressive effect on the cyto-
toxic activity in vitro, however, A-5 may have a direct in vivo
effect via haemorrhagic necrosis by which tumour growth is inhib-
ited. Further study is required to determine whether A-5 induces
tumour necrosis factor.

This is the first time a lysoglycoglycerolipid has been shown to
possess anti-tumour activity in vivo. Therefore, this class of
compounds should be more thoroughly investigated for drug use,
specifically cancer chemotherapy. We are currently studying the
pharmacological effects of A-5 in vivo as its direct effect on
tumours could prove to be extremely useful in a variety of contexts.
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