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ABSTRACT
The novel coronavirus infection (COVID-19 or Coronavirus disease 2019) that emerged from Wuhan,
Hubei province of China has spread to many countries worldwide. Efforts have been made to develop
vaccines against human coronavirus (CoV) infections such as MERS and SARS in the past decades.
However, to date, no licensed antiviral treatment or vaccine exists for MERS and SARS. Most of the
efforts for developing CoV vaccines and drugs target the spike glycoprotein or S protein, the major
inducer of neutralizing antibodies. Although a few candidates have shown efficacy in in vitro studies, not
many have progressed to randomized animal or human trials, hence may have limited use to counter
COVID-19 infection. This article highlights ongoing advances in designing vaccines and therapeutics to
counter COVID-19 while also focusing on such experiences and advances as made with earlier SARS- and
MERS-CoVs, which together could enable efforts to halt this emerging virus infection.
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Introduction

Coronaviruses (CoVs) are positive-sense, single-stranded RNA
viruses of the family Coronaviridae (subfamily Coronavirinae)
that infect a wide host range to produce diseases ranging from
common cold to severe/fatal illnesses. The novel virus was initially
named “2019-nCoV” which was changed to “SARS-CoV-2” by
the Coronavirus Study Group (CSG) of International Committee
on Taxonomy of Viruses (ICTV), since it was found to be the
sister virus of severe acute respiratory syndrome coronavirus
(SARS-CoV).1 The ongoing coronavirus threat that emerged in
China has rapidly spread to other countries and has been declared
as a global health emergency by the World Health Organization
(WHO). Many nations are diverting their best efforts for the
implementation of appropriate preventive and control strategies.
Neither vaccines nor direct-acting antiviral drugs are available for
the treatment of human and animal coronavirus infections.2-4

Many efforts have been directed to develop vaccines against
human CoV infections in recent decades, but a limiting factor is
the degree of cross-protection rendered by these vaccines due to
their extensive sequence diversity.5 Various vaccines, immu-
notherapeutics, and drug options have been explored during the
recent threats of Zika, Ebola, and Nipah viruses6-8 as well as
against previous CoVs including SARS- and MERS-CoVs.3,5,9-12

These valuable options can be exploited for their potency, efficacy,
and safety along with expediting other ongoing research2,4,13-15

so as to discover valuable modalities for tackling the
emerging COVID-19, but as yet there is no effective vaccine or
therapeutic, for which intense efforts are ongoing.

Most of the therapeutic options that are available for
managing COVID-19 are based on previous experiences in
treating SARS- and MERS-CoV. A major reason for the lack
of approved and commercially available vaccines or therapeu-
tic agents against these CoVs might be the relative lack of
interest among the pharmaceutical companies.13 These are
outbreak scenarios: the demand for drugs or vaccines lasts
only for a period while the outbreak lasts. The number of
affected people will also be a small proportion of the global
drug and vaccine market. So by the time a new drug or
vaccine is developed, there might not be any patients for
clinical trials and also no meaningful market for newly dis-
covered drugs. According to WHO guidelines, infected
patients will receive supportive care including oxygen therapy,
fluid therapy, and antibiotics for treating secondary bacterial
infections. The WHO also recommends the isolation of
patients suspected or confirmed for COVID-19.16 The major
therapeutic drugs that might be effective in managing
COVID-19 include remdesivir, lopinavir/ritonavir alone or
in combination with interferon-β, convalescent plasma, and
mAbs.17 Nevertheless, before utilizing these drugs for
COVID-19 pneumonia patients, clinical efficacy, and safety
studies should be conducted.
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This article describes advances in designing vaccines and
therapeutics to counter COVID-19 while also discussing
experiences with SARS- and MERS-CoVs, which together
could pave ways in the right direction to halt this emerging
virus.

Vaccines

Multiple strategies are adopted in the development of CoV vac-
cines; most of these target the surface-exposed spike (S) glycopro-
tein or S protein as the major inducer of neutralizing antibodies.
Several S-protein-based strategies have been attempted for devel-
oping CoV vaccines, e.g., use of full-length S protein or
S1-receptor-binding domain (RBD) and expression in virus-like
particles (VLP), DNA, or viral vectors5,9,18-21 The S protein mole-
cule contains two subunits, S1 and S2. The S1 subunit has an RBD
that interacts with its host cell receptor, angiotensin-converting
enzyme 2 (ACE2), whereas the S2 subunit mediates fusion
between the virus and host cell membranes for releasing viral
RNA into the cytoplasm for replication.19 Hence, S-protein-
based vaccines should induce antibodies that block not only viral
receptor binding but also virus genome uncoating. It has been
shown that the C-terminal domain of the S1 subunit of porcine
Deltacoronavirus constitutes the immunodominant region, and
the immune response to this region shows the most potent neu-
tralizing effect.22 The S protein has amajor role in the induction of
protective immunity during infection with SARS-CoV by eliciting
neutralizing-antibodies and T-cell responses.19 Thus, full-length
or appropriate parts of the S glycoprotein are believed to be the
most promising candidate CoV vaccine composition. It was also
reported that neither the absence nor presence of the other struc-
tural proteins affects S protein immunogenicity or its binding to
the ACE2 receptor that is a critical initial step for virus to access
into the host cell.23,24 Due to the superior ability of RBD to induce
neutralizing antibody, both recombinant proteins that contain
RBD and the recombinant vectors that encode RBD can be used
for developing the effective SARS-CoV vaccines.18

Recombinant adenovirus-based vaccine expressing MERS-
CoV S protein induces systemic IgG, secretory IgA, and lung-
resident memory T-cell responses when administered intranasally
into BALB/cmice and provide long-lasting neutralizing immunity
to MERS spike pseudotyped virus, thereby suggesting that the
vaccine may confer protection against MERS-CoV.24

Furthermore, rabies virus (RV) as a viral vector as well as Gram-
positive enhancer matrix (GEM) as a bacterial vector has been
used to express MERS-CoV S protein. The immune responses to
these vaccine candidates were evaluated in BALB/c mice for
cellular and humoral immune responses, which showed that RV-
based vaccine stimulates significantly higher levels of cellular
immunity and earlier antibody responses in comparison to the
GEM particle vector.12

The possibility of developing a universal CoV vaccine was
assessed based on the similarity in T-cell epitopes of SARS-
and MERS-CoV that confirmed the potential for cross-
reactivity among CoVs.25 SARS-CoV-2 shares high genetic
similarity with the SARS-CoV26 such that vaccines developed
for SARS-CoV may exhibit cross-reactivity to SARS-CoV-2.
The comparative evaluation performed on full-length
S protein sequences of SARS-CoV-2 and SARS-CoV identified

that the most variable residues were located in the S1 subunit
of S protein, the critical CoV vaccine target.27 These findings
suggest that the specific neutralizing antibodies that are effec-
tive against the SARS-CoV might not be effective against the
SARS-CoV-2. Even though the S protein of SARS-CoV-2 has
key mutations compared to the SARS-CoV, they will still act
as a viable target for vaccine development.28 Likewise, the
close similarity of SARS-CoV-2 to the SARS-CoV suggests
that the receptor of SARS-CoV-2 might be the same as that
of SARS-CoV receptor (ACE2).29

Immuno-informatics approach can be used for the identi-
fication of epitopes for inclusion in COVID-19 vaccine can-
didates. Recently, immuno-informatics was used to identify
significant cytotoxic T lymphocyte (CTL) and B-cell epitopes
in SARS-CoV-2 S protein. The interactions between these
epitopes and their corresponding MHC class I molecules
were studied further by using molecular dynamics simulations
and found that the CTL epitopes bind with MHC class
I peptide-binding grooves via multiple contacts, thus indicat-
ing their potential for generating immune responses.30 Such
epitopes may possess the ideal characteristics to become part
of COVID-19 vaccine candidates. The nucleocapsid (N) pro-
tein as well as the potential B cell epitopes of the E protein of
MERS-CoV has been suggested as probable immuno-
protective targets that induce both T-cell and neutralizing
antibody responses.31,32 Reverse genetic strategies have been
successfully used in live-attenuated vaccines to inactivate the
exonuclease effects of non-structural protein 14 (nsp14) or to
delete the envelope protein in SARS.5 Avian infectious bron-
chitis virus (IBV) is a chicken CoV. It was suggested that
avian live virus IBV vaccine (strain H) might be useful for
SARS33 given that protection provided by strain H is based on
neutralizing antibody production as well as other immune
responses. Hence, avian IBV vaccine may be considered
another option for COVID-19 after evaluating its safety in
monkeys.34

Scientists of Rocky Mountain Laboratories are collaborat-
ing with Oxford University to develop a chimpanzee adeno-
virus-vectored COVID-19 vaccine candidate.35 The Coalition
for Epidemic Preparedness Innovations (CEPI) recently
announced the initiation of three programs aimed to develop
COVID-19 vaccines by utilizing established vaccine
platforms.36 Among the three programs, two are continua-
tions of previously initiated partnerships. CEPI collaborated
with Inovio in 2018 to developing DNA vaccine candidates
for MERS ($56 M funding). The vaccine in development
utilizes DNA Medicines’ platform for delivering synthetic
genes into cells for translation into antigenic proteins, which
elicit T-cell and antibody responses. CEPI has collaborated
with The University of Queensland in 2019 to develop the
molecular clamp vaccine platform against multiple viral
pathogens including MERS-CoV ($10 M funding). The vac-
cine platform functions by synthesizing viral surface proteins
that get attached to the host cells and clamp them into shape.
This facilitates easier recognition of antigens by the immune
system.36 Other than these ongoing programs, CEPI has
announced funding to Moderna for comparing mRNA ther-
apeutics and vaccines. They will design and manufacture an
mRNA vaccine in collaboration with the Vaccine Research
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Center (VRC) of the National Institute of Allergy and
Infectious Diseases (NIAID), a part of the National
Institutes of Health (NIH).37 NIAID-VRC scientists are devel-
oping a vaccine candidate expressing SARS-CoV-2 S protein
in the mRNA vaccine platform technology. This vaccine is
expected to undergo clinical testing in the coming months.35

Passive immunization

Direct administration of monoclonal antibodies (mAbs) may play
an effective role in CoV control as an intervention in exposed
individuals. It has been observed that patients recovering from
SARS display potent neutralizing antibody responses.9 A clinical
trial proposed the use of a set of mAbs that functionally target
specific domains inMERS-CoV S protein. ThesemAbs bind to six
specific epitope groups interacting with the receptor binding,
membrane fusion, and sialic acid-binding sites, which represent
the three important entry functions of MERS-CoV S protein.21,38

Moreover, passive immunization with poorly and potently neu-
tralizing antibodies induces substantial protection in mice sub-
jected to lethal MERS-CoV challenge. Thus, use of these
antibodies may represent a novel approach to increase humoral
protection against emerging CoVs by targeting various S protein
epitopes and functions. The cross-neutralization capacity of
SARS-CoV RBD-specific neutralizing mAbs greatly depends on
the similarity between their RBDs. This is why SARS-CoV RBD-
specific antibodies can cross-neutralize SARS-like (SL) CoVs, i.e.,
bat-SL-CoV strain WIV1 RBD that had 8 amino acid differences
to SARS-CoV, but not bat-SL-CoV strain SHC014 (24 amino acid
differences).39 Such cross-neutralizing SARS-CoV RBD-specific
mAbs can be evaluated for efficacy with SARS-CoV-2. This
requires a comparative analysis of SARS-CoV-2 RBD with SARS-
CoV so that suitable RBD-specific mAbs can be identified and
evaluated in clinical trials. Regeneron is trying to identify mAbs
specific and effective for COVID-19. Combination therapy with
mAbs and the drug remdesivir could be an ideal therapeutic
option for COVID-19.40 Further evaluation is required before
confirming the efficacy of such combination therapy.

Technology is available for making fully human antibodies
(such as human single-chain antibodies; Hu-scFvs) or huma-
nized-nanobodies (single-domain antibodies, sdAb, VH/VHH)
that can traverse across the membrane of the virus-infected cells
(trans bodies) and bind to or interfere with biological activities of
replicating virus proteins which consequently leads to inhibition
of virus replication. Examples include trans bodies to influenza
virus, hepatitis C virus, Ebola virus, and Dengue virus.41 Thus, it
is possible to generate trans bodies to CoV intracellular proteins
such as the papain-like proteases (PLpro), cysteine-like protease
(3CLpro) or other non-structural proteins (nsps) that are pivotal
for CoV replication and transcription for safe, non-
immunogenic, broadly effective passive immunization of CoV-
exposed subjects and treatment of infected patients.

Animal models for vaccine evaluation

Suitable animal models for evaluating vaccines for SARS- and
MERS-CoV are lacking or highly limited, making the process of
vaccine development highly challenging.42,43 Development of an
efficient animal model that mimics the clinical disease can inform

on pathogenesis as well as to develop vaccines and therapeutics
against these CoVs. Several animal models have been evaluated
for SARS- and MERS CoVs including mouse, guinea pigs, ham-
sters, ferrets, rabbits, rhesus macaques, marmosets, and
cats.42,44-50

Early effort was directed in developing animal models for
SARS-CoV, but the specificity of the virus to ACE2 (recep-
tor of SARS-CoV) was a major hindrance to such efforts.
Later, a SARS-CoV transgenic mouse model was developed
by introducing hACE2 gene into the mouse genome.51 The
first animal model used for developing a MERS-CoV vac-
cine was rhesus macaques. Infected animals showed clinical
symptoms such as increased body temperature, piloerection,
cough, hunched posture, and reduced food intake.52

Another frequently used animal model for MERS-CoV is
the common marmoset, wherein the virus caused lethal
pneumonia.53 Humoral and cell-mediated immunity could
be detected in both rhesus macaques and common marmo-
set following MERS-CoV immunization.43,52,53 Roberts et al.
established golden Syrian hamsters (strain LVG) as a model
to assess vaccine protection to different SARS-CoV strains.47

These hamsters are a potential model for studying CoV
pathology and pathogenesis and vaccine efficacy. The atte-
nuated NSP16 CoV vaccine was studied in mice.54

Attempts to develop animal models for MERS-CoV such as
mice, hamsters, and ferrets face limitations due to the inability
of MERS-CoV to replicate in the respiratory tracts of these
species. Small animals (mice or hamsters) resisting natural
infection with MERS-CoVs (which are susceptible to SARS-
CoV) have been genetically modified to a more humanized
structure, e.g., hDPP4 human, hDPP4-transduced, and hDPP4-
Tg mice (transgenic for expressing hDPP4), and ascertained for
susceptibility to MERS-CoV infection.55 Alteration in the mouse
genome using the CRISPR-Cas9 gene-editing tool could make
the animals susceptible to CoV infection and virus replication.56

Genetic engineering was used in the generation of 288–330+/+

MERS-CoV mouse model, which is being used for the evalua-
tion of novel MERS-CoV vaccines and drugs.57

Compared to the large animal models, small animals such
as mice and rabbits are preferred due to lower cost, ease of
manipulation, and readily available efficacy methods.43

Further studies are needed to recognize suitable models for
emerging SARS-CoV-2 by identifying receptor affinity of
SARS-CoV-2 and studying disease manifestations, patholo-
gies/viral pathogenesis associated with experimental inocula-
tion of the virus in mice, rats, and other models, as well as
examining virus-specific immune responses and protection.
This would facilitate preclinical evaluations of candidate
COVID-19 vaccines and drugs.

Cell culture systems

Several permissive cell lines to hCoVs including monkey
epithelial cell lines (LLC-MK2 and Vero-B4) have been used
in neutralization assays for assessing neutralization titers of
antibody preparations. Goat lung cells, alpaca kidney cells,
and dromedary umbilical cord cells have been found to be
permissive for MERS-CoV.58 SARS-CoV S protein has been
found to mediate entry into hepatoma cell lines, targeted by
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neutralizing antibodies in virus-infected patients.59 Advanced
ex–vivo 3D tracheobronchial tissue (mimicking epithelium of
conductive airway) has been used for human CoVs.60

Moreover, VLPs displaying SARS-CoV S protein were found
competent for entry to permissive cells or transfected cells
that overexpress virus receptors.59,61,62 SARS-CoV-2 isolation
has been attempted in Vero and the Huh-7 cells (human liver
cancer cells).63

Pseudotyped virions/VLPs encoding reporter systems such as
GFP or luciferase can be used for quantification and evaluation
of the effectiveness of mAbs and drugs in inhibiting the cellular
entry of CoVs.64 Assays using pseudotyped virions/VLPs can be
performed in BSL-2 facility since these do not use infectious
virus. A safety concern for passive immunization with antibodies
is a possible antibody-dependent enhancement (ADE) of virus
replication. Antibodies with modified Fc fragments or without
Fc fragment, e.g., human single-chain antibodies (scFv), Fab, or
F(ab′)2 are safe alternatives.

Several mAbs (fully human or humanized) that target both
the S1-RBD and non-RBD as well as S2 domain of CoVs have
been generated and tested in cell cultures for virus-
neutralizing capability as well as in animal models for pro-
phylactic and post-exposure efficacies.65 These antibodies
could be useful tools also in the development of vaccines,
therapeutic drugs, and antiviral inhibitors.

Data from animal CoV vaccination suggest that systemic
humoral or cell-mediated immune responses induced by par-
enteral administration may not be adequate to prevent respira-
tory tract infection.66 Because respiratory mucosa is the initial
site in CoV infection and transmission, mucosal immunization,
such as using intranasal vaccine,67 could be an effective strategy
for prophylaxis by induction of mucosal and systemic immune
responses. The molecular mechanisms of mucosal and systemic
immunological factors are different, such that it is difficult to
predict the surrogate marker for CoV efficacy. The best surro-
gate assays for protection as well as herd immunity toward
different CoV infections warrant detailed investigations.

Therapeutics

The main measure in clinical management is focused on
alleviating clinical symptoms and supportive care.68-70

Therapeutic options that could be evaluated and used for
COVID-19 include molecules binding to the virus, molecules,
or inhibitors that target specific enzymes involved in viral
replication and transcription, small-molecule inhibitors tar-
geting helicase, essential proteases, or other proteins of the
virus, host cell protease inhibitors, host cell endocytosis inhi-
bitors, siRNA, anti-sense RNA and ribozyme, neutralizing
antibodies, mAbs targeting host receptor or interfere with S1
RBD, antiviral peptide targeting S2, and natural products.2,11

There is a long list of anti-CoV agents, mostly preclinical
compounds yet to be evaluated as anti-COVID-19 agents.
Some of these agents are in phase III trials for COVID-19,
including remdesivir, oseltamivir, ASC09F (HIV protease
inhibitor), lopinavir, ritonavir, darunavir, and cobicistat.71

Many existing MERS- and/or SARS-CoVs inhibitors can be
screened for efficacy. The RNA-dependent RNA polymerase
(RdRp) sequence of SARS-CoV-2 has shown 96% identity to

that of SARS-CoV, a critical finding since drugs developed for
SARS-CoV RdRp might show similar efficacy for SARS-CoV
-2 RdRp.28

S protein is considered the major target for designing CoV
antiviral therapies such as S protein inhibitors, S cleavage
inhibitors, neutralizing antibodies, RBD–ACE2 blockers,
siRNAs, fusion core blockers, and protease inhibitors.19 All
such therapeutic strategies have shown potential in vitro and/
or in vivo anti-CoV activities. Comparatively, even though
in vitro studies performed with these agents have shown
efficacy, most of them lack sufficient support due to the lack
of randomized animal or human trials, hence of limited use
for COVID-19. Hence, the necessary support of extensive
animal and human trials is required for such therapeutics to
become useful. The binding of COVID-19 and ACE2 affects
the balance of renin–angiotensin system (RAS), potentially
leading to exacerbation of severe pneumonia. Thus, it is
speculated that ACEI and angiotensin type-1 receptor
(AT1R) inhibitors might be able to reduce pulmonary inflam-
matory responses, thereby reducing the mortality.72

The guidance to COVID-19 controlmight be based on existing
measures forMERS and SARS, with some further precautions due
to the unknown nature of this new CoV.14,73 Themain treatments
such as mechanical ventilation, ICU admission, and symptomatic
and supportive care are recommended for severe cases.
Furthermore, RNA synthesis inhibitors (like 3TC, TDF), remde-
sivir, neuraminidase inhibitors, peptide (EK1), anti-inflammatory
drugs, abidol, Chinese traditional medicine, such as
Lianhuaqingwen and ShuFengJieDu Capsules, could be the pro-
mising COVID-19 treatments.2 However, further clinical trials are
required for confirming safety and efficacy for COVID-19.
A major limiting factor in the quest for identifying an ideal
vaccine or therapeutic agent is time. It may take months to even
several years for researchers to develop, produce, standardize,
evaluate, approve, and commercialize therapeutic agents for
COVID-19. Hence, current efforts should be directed toward
identifying and evaluating drugs and immunotherapeutics that
have proven efficacy against viruses similar to COVID-19.

The time required for drug discovery programs to develop,
evaluate, and obtain approval for a new potent anti-COVID-19
agent could takemore than 10 years.4 In the present scenario, the
development of a new therapeutic agent for COVID-19 is not
a feasible option with regard to available time. Another option is
to repurpose broadly acting antiviral drugs used for other viral
infections. Such drugs have the advantage of easy availability,
known pharmacokinetic and pharmacodynamic properties,
solubility, stability, side effects, and also well-established dosing
regimens.4 Repurposed drugs are potential therapeutic options
managing CoV infections. Repurposed drugs such as lopinavir/
ritonavir and interferon-1β possess in vitro anti-MERS-CoV
activity. The in vivo study conducted in common marmosets
(non-human primate model) showed that animals treated with
lopinavir/ritonavir and interferon-1β had better outcomes than
untreated animals.74 The combination of lopinavir-ritonavir and
interferon-1β is being evaluated for MERS in the MIRACLE
trial.75 The same two protease inhibitors lopinavir and ritonavir,
when combined with ribavirin, were found to be associated with
favorable clinical responses in SARS patients indicating thera-
peutic efficacy.10 As an early attempt to evaluate these
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repurposed drugs in COVID-19, a controlled trial of ritonavir-
boosted lopinavir and interferon-α 2b therapy has been regis-
tered for hospitalized patients in China (ChiCTR2000029308).76

Oral administration of neuraminidase inhibitors such as osel-
tamivir has been used as an empirical drug for COVID-19 sus-
pected cases inChina hospitals even though there is no evidence of
its efficacy.2 Recently, the in vitro antiviral efficacy of approved
drugs such as ribavirin, penciclovir, nitazoxanide, nafamostat, and
chloroquine was compared with that of the two broad-spectrum
antiviral drugs remdesivir and favipiravir for COVID-19. Among
the evaluated drugs, both remdesivir and chloroquine were found
to be highly effective in controlling COVID-19 in vitro.63 The
study also pointed out that the three nucleoside analogs such as
ribavirin, penciclovir, and favipiravir may not have significant
in vivo antiviral effects against COVID-19 since higher concentra-
tions were required to reduce the viral infection in vitro. Both
remdesivir and chloroquine are being used for the treatment of
other diseases and have a well-defined safety profile. Hence, such
drugs can be used for evaluating their efficacy in patients of novel
CoV infections.

Achievements in the development of vaccines and thera-
peutic agents for SARS- and MERS-CoV as well as recent
ongoing progress for COVID-19 will facilitate the develop-
ment of effective vaccines and therapeutics against this emer-
ging virus. However, the present scenario of COVID-19
warrants the need for implementing robust preventive and
control measures due to the potential for nosocomial
infections.77 We need to rely exclusively on preventive mea-
sures since considerable time is required before efforts to
develop a new vaccine or antiviral agent becomes fruitful.

Conclusion and future prospects

Researchers are searching for effective and suitable vaccine candi-
dates and therapeutics for controlling the deadly COVID-19.
There are no effective vaccines or specific antiviral drugs for
COVID-19. Hence, we have to rely exclusively on enforcing strict
preventive and controlmeasures thatminimize the risk of possible
disease transmission. Results obtained from the recently con-
ducted in vitro study against COVID-19 are promising since the
drugs remdesivir and chloroquine were found to be highly effec-
tive in controlling the infection. Direct clinical trials can be con-
ducted among the patients infected with COVID-19 since these
drugs are being used for treating other diseases and have well-
established safety profiles, making the further evaluation of these
drugs much easier. S protein is considered a key viral antigen for
developing CoV vaccines, as shown in several preclinical studies.
Although research is in progress to improve prevention, treat-
ment, and control of COVID-19, the documented clinical data
on different therapeutic approaches for CoVs are scarce. Further
research should be directed toward the study of SARS-CoV-2 in
suitable animal models for analyzing replication, transmission,
and pathogenesis.
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