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ABSTRACT
The red panda is an endangered forest species distributed on the edge of the Qinghai
Tibet Plateau. The species has been conserved in ex-situ in many countries and its
survival is threatened by many diseases. Its immune system is vulnerable to age-
associated alterations, which accumulate and result in a progressive deterioration
that leads to an increased incidence of diseases. We identified 2,219 differentially
expressed genes (DEGs) between geriatric (11–16 years) and adult individuals (4–8
years), and 1690 DEGs between adults and juveniles (1 year). The gene expression
and functional annotation results showed that the innate immunity of red pandas
increases significantly in geriatric individuals, whereas its change remains unclear when
comparing adults and juveniles. We found that the adaptive immunity of red pandas
first increased and then decreased with age. We identified CXCR3, BLNK, and CCR4
as the hub genes in the age-related protein–protein interaction network, which showed
their central role in age-related immune changes. Many DNA repair genes were down-
regulated in geriatric red pandas, suggesting that the DNA repair ability of the blood
tissue in geriatric red pandas is significantly reduced. The significantly up-regulated
TLR5 in geriatric individuals also suggests the possibility of enhancing the vaccination
immune response by incorporating flagellin, which could be used to address decreased
vaccine responses caused by age-related declines in immune system function. This work
provides an insight into gene expression changes associated with aging and paves the
way for effective disease prevention and treatment strategies for red pandas in the future.

Subjects Bioinformatics, Molecular Biology, Zoology
Keywords Red panda, Transcriptome, Aging, Immune alternations, Disease prevention

INTRODUCTION
In 2015, the IUCN Red List announced that the red panda (Ailurus fulgens) would be
upgraded from ‘‘vulnerable’’ to ‘‘endangered’’ (Sharma, Belant & Shaner, 2019). Red
pandas have attracted much attention within the scientific community because of their
decreasing wild population (Zhang et al., 2017). At present, many conservation institutions
have begun artificial feeding and breeding research of red pandas, to cultivate artificial
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populations for the future rejuvenation of the wild red panda population. Red pandas
are vulnerable to a variety of mammalian infectious and parasitic diseases that seriously
threaten their populations, particularly neonatal and geriatric red pandas (Delaski, Ramsay
& Gamble, 2015). Like other mammals, the immune system can resist the daily attacks of
foreign organisms and pathogens, and work with other systems to maintain the stability
of the internal environment and physiological balance (Pawelec, 1999). However, a basic
understanding of the red panda immune system is under-researched and rarely reported.

Aging is an inevitable natural process of every organism. Age-related decline in
immune function is known as immunosenescence (Franceschi, Bonafe & Valensin,
2000). Immunosenescence implies a decrease in cell-mediated immune function and
humoral immune response (Weiskopf, Weinberger & Grubeck-Loebenstein, 2009). With
age-associated alterations, the immune system degenerates naturally and immunity also
declines, which means a progressive loss of physiological integrity, impaired function,
and an increased incidence of infectious diseases (Aw, Silva & Palmer, 2007; Lopez-Otin
et al., 2013). Therefore, a better understanding of the basic mechanisms of immune
dysfunction occurring with aging will help delay or even reverse the adverse effects of
immunosenescence. Statistics show that the mortality rate of geriatric and adult red
pandas is significantly higher than juvenile red pandas, and the main cause of death is
cardiovascular disease, followed by kidney disease (Delaski, Ramsay & Gamble, 2015).
Most of these chronic diseases are age-related, but the underlying molecular mechanisms
that lead to disease susceptibility remain largely unknown (Niccoli & Partridge, 2012).
Blood is the main component of the animal immune system and plays a key role in the
animal immune system.Meanwhile, blood interacts with every organ and tissue of the body,
and the gene expression of blood cells that circulate through various tissues and organs
can experience unique changes in response to disease or injury in other tissues and cells
of the body (Brodin & Davis, 2017; Liew et al., 2006). In addition, many genes previously
thought to be expressed only in non-blood tissues are also expressed in peripheral blood
cells (Liew et al., 2006). Peripheral blood is an easily accessible experimental material and
provides a large biosensor library in the form of gene transcripts. Peripheral blood can
detect the responses to changes in macro and micro environments as gene transcript
levels change, thus blood transcriptome analysis can be used to indicate physical health,
evaluate drug efficacy, identify disease biomarkers, and reveal the pathogenesis of disease
(Mohr & Liew, 2007; Peters et al., 2015; Stephenson et al., 2021). The purpose of this study
was to determine which genes and pathways in the red panda blood transcriptome are
differentially expressed and the potential genes related to disease development with aging,
to pave the way for exploring the mechanism of age-related immune changes.

MATERIAL AND METHODS
Sample collection
Peripheral blood samples of twelve red pandas were obtained during routine examinations
at the Chengdu Research Base of Giant Panda Breeding, China (age and gender shown in
Table S1). All red pandas were sampled in 2018. This study was approved by the Chengdu
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Institute of Biology Animal Use Ethics Committee (NO. 2018008). After collection, fresh
blood samples were immediately stored in the PAXgene Blood RNA Tubes, and then stored
at the −80 ◦C refrigerator until RNA extraction.

Library preparation and sequencing
Threefold red blood cell lysis buffer (TIANGEN, Beijing, China) was added to lyse
erythrocytes and Sorvall Legend X1 (Thermo Scientific, Waltham, MA, USA) was used to
centrifugate peripheral blood mononuclear cells (PBMCs). Total RNA was extracted by
the M5 Universal RNAMini Kit tissue/Cell RNA rapid Extraction Kit (Mei5 Biotechnology
Co. Ltd, Beijing, China). After assessment and purification of RNA quality, samples with
RIN (RNA integrity number) values higher than 7.5 were used for library construction
and sequencing. Sequencing libraries were constructed by using NEBNext R© UltraTM RNA
Library Prep Kit for Illumina R© (NEB, Ipswich, MA, USA). All libraries were sequenced
by using the Illumina NovaSeq 2000 platform with a paired-end sequencing length of
150 bp (PE150). Library construction and sequencing were performed by Novogene
Bioinformatics Institute (Beijing, China).

Quality control and sequence alignment
The red panda genome assembly and reference annotation were downloaded from
https://www.dnazoo.org/assemblies/Ailurus_fulgens. After sequencing, we obtained 12
sets of transcriptome data. For obtaining high-quality reads, raw data were refined
by Trimmomatic (Bolger, Marc & Bjoern, 2014) to remove index, adapter and low-
quality sequences. Parameter were set to SLIDINGWINDOW:5:20, LEADING:5,
TRAILING:5, MINLEN:50, and others used default parameters. We used FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to generate quality reports
for evaluating the quality of the raw and clean reads. High-quality paired-end reads
from 12 libraries were mapped on the red panda reference genome using HISAT2 (Kim,
Langmead & Salzberg, 2015), separately. We used default parameters for scoring and the
matching process. SAM files, generated by Hisat2, were sorted by SAMtools (Li et al., 2009)
to generate BAM files.

Differentially expressed genes analysis
Raw read counts were the input in DESeq2 (Love, Huber & Anders, 2014) for each gene
and were extracted by featureCounts (Liao, Smyth & Shi, 2014). P values adjusted (padj)
≤ 0.05 & |log2 Fold Change|≥ 1 was used to determine significant DEGs.

Functional annotation and gene enrich analysis
The gene sequences were searched against NCBI non-redundant (NR) database using
BLASTX (Altschul et al., 1997) with a typical cutoff E-value of 1E-5. KEGG pathway
annotation was performed on KAAS. Gene ontology (GO) was applied with the Blast2GO
(Conesa et al., 2005) to obtain annotations of unknown genes. To classify functions of the
DEGs, we performed GO enrichment analysis using GOstats (Falcon & Gentleman, 2007)
and KEGG pathway enrichment analysis using clusterProfiler (Yu et al., 2012).
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Cluster analysis of Mfuzz transcriptome expression pattern
The R package Mfuzz (Kumar & Futschik, 2007) clusters and visualize genes with similar
expression patterns, and explores the dynamic changes of different genes over time.
Mfuzz uses a new clustering algorithm of fuzzy C-means algorithm, called soft clustering.
Clustering methods are often based on hard clustering, in which a gene is assigned to a
cluster. In contrast, soft clustering methods can assign a gene to several clusters, and it is
more noise robust and can avoid a priori pre-filtering of genes (Futschik & Carlisle, 2005).
We divided all the genes into 15 clusters, the minimum score (membership) threshold was
set to 0.25. We then performed GO enrichment analysis for each cluster.

protein–protein interaction network analysis
protein–protein interaction analysis can check the relationship between proteins expressed
by DEGs, and search for hub genes. We first inputted immune-related DEGs into the
STRING protein interaction database (Szklarczyk et al., 2019) and then generated protein–
protein interaction networks. Next, we downloaded the TSV text file and imported it
into Cytoscape (Smoot et al., 2011) software to visualize the annotated protein–protein
interaction network.

RESULTS
Transcriptome sequencing and sequence alignment
Twelve peripheral blood samples (PBMCs) of red pandas were sequenced by Illumina
HiSeqTM 2000 using pair-end sequencing. 311 million raw pair-end reads and 296 million
clean reads were obtained after quality control by removing adapter and low-quality reads.
HISAT2 results showed that high-quality reads had a good alignment with the reference
genome of the red panda, with an average alignment rate of 87.35% (Table S1). Our data
have been deposited into the CNGB Sequence Archive (CNSA) (Guo et al., 2020) of the
China National GeneBank DataBase (CNGBdb) (Chen et al., 2020a) with an accession
number CNP0002175.

Identification of age-related differentially expressed genes
The lifespan of wild red pandas is about 12 years and up to 18 years in captivity (Ali
Khan & Kamal Naidu, 1981). The samples were categorized into juvenile, adults and
geriatric by age according to a previous study (Delaski, Ramsay & Gamble, 2015). Principal
component analysis (PCA) results showed that juvenile, adult, and geriatric individuals
could be divided into three groups in different dimensions (Fig. 1C), indicating that
there were differences in gene expression patterns between the three age groups. In total,
2219 genes were significantly differentially expressed in red panda blood samples between
geriatric and adult individuals. Among the 2219 DEGs, 1422 genes were up-regulated
while 797 genes were down-regulated in geriatric compared to adult individuals (Fig. 1A).
We found that 1690 genes were significantly differentially expressed between adult and
juvenile individuals. Among the 1690 DEGs, 725 genes were up-regulated while 965 genes
were down-regulated in adults compared to juveniles (Fig. 1B). We found that 563 genes
were differentially expressed in the two comparisons (Fig. 1D). All DEGs are shown in
Supplementary 2.
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Figure 1 Differentially expressed genes. (A) Volcano plot between geriatric and adults showing the dis-
tribution of gene expression plotted against log2 fold change for each gene. Purple and blue dots indicate
differentially expressed genes (FDR ≤ 0.05), black dots indicate non-differentially expressed genes. (B)
Volcano plot between adults and juveniles. (C) Principal component analysis (PCA) of gene expression
between 12 samples. (D) The comparative distribution of 563 common DEGs.

Full-size DOI: 10.7717/peerj.13743/fig-1

Gene ontology enrichment analysis of differentially expressed genes
To comprehensively understand the biological role of DEGs, we conducted GO enrichment
analysis. Results showed that for the up-regulated genes between geriatric and adult
individuals, almost all the significantly enriched GO terms in the biological process category
were associated with the innate immune system (Supplementary 1 and Supplementary
2), such as neutrophil activation (GO:0042119), leukocyte activation involved in immune
response (GO:0002366), leukocyte degranulation (GO:0043299), and defense response
(GO:0006952). Obsolete cytoplasmic vesicle part (GO:0044433) and signaling receptor
binding (GO:0005102) were the most significantly enriched GO term in the cellular
component and molecular function categories, respectively. For down-regulated genes,
the most significantly enriched biological process GO term was chromosome segregation
(GO:0007059). Regulation of CD40 signaling pathway (GO:2000348) and B cell activation
(GO:0042113) were also enriched. Condensed chromosome (GO:0000793) and molecular
adaptor activity (GO:0060090) were the most significantly enriched GO term in the
cellular component and molecular function categories, respectively (Supplementary 1 and
Supplementary 2).
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For the up-regulated genes between adults and juveniles,DNA replication (GO:0006260),
chromosomal region (GO:0005654) and ATP-dependent microtubule motor activity
(GO:0008574) were the most significantly enriched GO term in the biological process,
cellular component and molecular function categories, respectively (Supplementary 1
and Supplementary 2). For down-regulated genes, the significantly enriched GO terms
in the biological process category were mainly associated with organ development, such
as animal organ development (GO:0048513), and multicellular organism development
(GO:0007275). Cell periphery (GO:0071944) and sequence-specific DNA binding
(GO:0043565) were the most significantly enriched GO term in the cellular component
and molecular function categories, respectively (Supplementary 1 and Supplementary 2).

Pathway enrichment analysis of differentially expressed genes
Hypergeometric test with a P-value cutoff of 0.05 was used as the criteria for pathway
detection.Down-regulated genes between adults and juveniles were significantly enriched in
four pathways, including Parathyroid hormone synthesis, secretion and action (ko04928),
Axon guidance (ko04360) and Cholinergic synapse (ko04725). Down-regulated genes
between geriatric and adult individuals were significantly enriched in six pathways,
including Intestinal immune network for IgA production (ko04672) and B cell receptor
signaling pathway (ko04662); more details can be found in Supplementary 1.

Immune related genes
Combined with the ImmPort database, we detected 163 immunity related DEGs between
geriatrics and adults, and 116 immune related DEGs between adults and juveniles. Genes
(PRKCB, BLNK, IGLV2-33, BTK, CD72, IGKV5-2, IGHE, RASGRP3) related to the BCR
signaling pathway were down-regulated when comparing geriatrics to adults, and almost
all genes belonging to natural killer cell were up-regulated (Fig. 2). Similarly, almost all
genes belonging to natural killer cell were up-regulated when comparing adults to juveniles
and genes (HSPA1A, THBS1) involved in antigen processing and presentation were
down-regulated (Fig. 3). The expression level of CXCR3, BMP3, and KLRC1 continued to
increase with increasing age, and the expression level of BLNK, CD72, PLXNA2 continued
to decrease with increasing age.

Cluster analysis of Mfuzz transcriptome expression pattern
Cluster1, Cluster3, and Cluster10 were related to leukocyte activation, and all genes
experienced a small decline and then a significant rise. Cluster6 was related to humoral
immunity, where genes (MEF2C, PRKCB, ATM, TFRC, BANK1, MSH2, PELI1, EXO1,
STAP1) experienced a slight rise followed by a significant decline. Cluster8 was related
to cellular immunity, where genes (CD8A, CD3G, IL12RB1, XCL1, CBLB, CD6, KLRK1,
ZNF683, EOMES, TBX21, CCL5, PRLR, IL7R, PTPN22) experienced a significant rise
followed by a slight decline. Cluster5, Cluster11, and Cluster13 were mainly involved in
animal organ development, where there was a significant decline from juveniles to adults
and little difference between adults and geriatrics. Cluster14 was related to response to
external stimulus where there was little difference from juveniles to adults, but a sharp
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Figure 2 Chord diagram of categories of immune DEGs between geriatric and adults.
Full-size DOI: 10.7717/peerj.13743/fig-2

increase between adult and geriatric individuals (Fig. 4). More details of each cluster are
shown in Supplementary 2.

Protein–protein interaction network of differentially expressed genes
We performed a protein–protein interaction analysis of 33 immune-related DEGs that
were common in the two comparisons (Table 1). CXCR3, BLNK, and CCR4 were at the
key position of the interaction network (Supplementary 1).

DISCUSSION
Previous research has indicated that age has a wide-ranging effect on gene expression
(Charruau et al., 2016). In this study, the up-regulation of some genes related to organ
development and cell proliferation in juvenile individuals, such as FGF14, FOS, HBEGF,
and JUN, indicating that the juvenile phase of the red panda is dominated by physical
and organ development. Varying stimuli experienced by the organism will cause different
types of DNA damage (Chatterjee & Walker, 2017). Accurate and timely DNA repair can
offset this damage and restore the stability of the genome. With aging, DNA damage
becomes more serious, but the changes in DNA repair capacity appear to be species- and
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Figure 3 Chord diagram of categories of immune DEGs between adults and juveniles.
Full-size DOI: 10.7717/peerj.13743/fig-3

tissue-specific (Chen et al., 2020b). We found many DNA repair genes (INO80, PRIMPOL,
RAD51AP1, KLHL15, ERCC6, RNF138, ANKRD32, FANCD2, SMC4, FANCB, PRKDC,
SPIDR, SETX, RIF1, SMG1, USP45, DTL) experienced a rise and then a marked decline
from the juvenile phase to the geriatric phase (Cluster7). Therefore, our results indicate
that the DNA repair ability of blood tissue in geriatric red pandas is significantly reduced.
We also observed significant age-related down-regulation in telomere maintenance genes
DKC1, and ATM. This may highlight the importance of telomeres in the health and aging
of red pandas.

In this study, genes related to neutrophil activation, inflammatory chemokine CCL3
and chemokine receptors CXCR3, and CXCR1 were up-regulated in geriatrics, indicating
that geriatric red pandas are in a state of inflammation. A pervasive feature of aging is
a constitutive pro-inflammatory environment with persistent low-grade innate immune
activation that may augment tissue damage caused by infections in elderly individuals
(Franceschi et al., 2018; Sanada et al., 2018; Shaw et al., 2010). Cytokines and chemokines
are major culprits in the development of chronic inflammation and the immunosenescence
process (Chung et al., 2019). Chemokines and their receptors are important mediators of
leukocyte trafficking and leukocyte recruitment during inflammation (Belay et al., 2002).
Furthermore, hyperactivity of neutrophils contributes to an inflammatory condition in
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Figure 4 Cluster analysis of Mfuzz transcriptome expression pattern. Trend analysis clusters genes with similar expression patterns according to
their temporal profiles (juvenile, adult, geriatric). GO enrichment analysis for each cluster is shown in Table S7.

Full-size DOI: 10.7717/peerj.13743/fig-4

the tissues (Mortaz et al., 2018). In addition, we found that interleukins (IL10, IL27, IL4R,
IL6R, IL1RN, IL1R2) were up-regulated in geriatric individuals. IL10 has potent anti-
inflammatory and regulatory activities in most immune processes of infection and disease,
limiting the immune response to pathogens and thereby preventing damage to the host (Ip
et al., 2017; Saraiva & O’Garra, 2010). Another geriatric up-regulated interleukin, IL-27 is
an anti-inflammatory cytokine that suppresses pro-inflammatory Th17 cells and induces
anti-inflammatory IL-10 producing T regulatory 1 cells (Frangieh et al., 2020; Rahiman
et al., 2013). Furthermore, IL4R, IL6R, IL1RN, and IL1R2 all have anti-inflammatory
effects (Ocsko et al., 2018; Opal & De Palo, 2000; Rabe et al., 2008). The up-regulation of
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Table 1 Thirty-three immune-related DEGs that were common in the two comparisons.

Gene symbol Gene description Log2FC Type

Adult-juvenile Geriatric-adult

HSPA1A heat shock protein family A (Hsp70) member 1A −4.65605793 2.267117457 Antigen Processing
and Presentation

C8G complement C8 gamma chain −1.323993749 1.208984757 Antimicrobials
CLDN4 claudin 4 −2.239129897 3.148813288 Antimicrobials
JUND JunD proto-oncogene, AP-1 transcription factor subunit −1.439104566 1.564296492 Antimicrobials
LCN2 lipocalin 2 −1.076628541 2.11372877 Antimicrobials
NLRX1 NLR family member X1 −1.035408556 1.164222236 Antimicrobials
S100a7a S100 calcium binding protein A7A −1.958883689 2.373999596 Antimicrobials
SLC11A1 solute carrier family 11 member 1 −1.115382804 1.968902512 Antimicrobials
BLNK B cell linker −1.406416584 −1.1307455 BCR Signaling Pathway
CD72 CD72 molecule −1.088614858 −1.733981295 BCR Signaling Pathway
IGHE immunoglobulin heavy constant epsilon 2.954148316 −2.377432397 BCR Signaling Pathway
LILRB3 leukocyte immunoglobulin like receptor B3 −2.243575969 3.25109424 BCR Signaling Pathway
APLNR apelin receptor −4.326781357 4.650156681 Cytokine Receptors
CCR4 C-C motif chemokine receptor 4 1.644823712 −1.052058544 Cytokine Receptors
CX3CR1 C-X3-C motif chemokine receptor 1 1.713708318 −1.672821717 Cytokine Receptors
CXCR3 C−X−C motif chemokine receptor 3 1.303070848 1.105685341 Cytokine Receptors
FGFR3 fibroblast growth factor receptor 3 −1.728045213 2.931152467 Cytokine Receptors
IL4R interleukin 4 receptor −1.242601623 1.226363294 Cytokine Receptors
IL6R interleukin 6 receptor −1.172252092 1.423821312 Cytokine Receptors
PLXNA2 plexin A2 −1.903555435 −3.668139961 Cytokine Receptors
RXRA retinoid X receptor alpha −1.330663396 1.262262761 Cytokine Receptors
TNFRSF11A TNF receptor superfamily member 11a −1.335786001 2.560094347 Cytokine Receptors
BMP3 bone morphogenetic protein 3 3.739604433 3.60074447 cytokines
CAMP cathelicidin antimicrobial peptide −2.321472105 2.036598684 cytokines
GRN granulin precursor −1.004731552 1.655891229 cytokines
HDGF heparin binding growth factor −1.302057881 1.944179971 cytokines
OSGIN1 oxidative stress induced growth inhibitor 1 −1.367947542 2.399301935 cytokines
OSM oncostatin M −1.292596566 1.396710988 cytokines
PROK2 prokineticin 2 −1.174311847 2.229834977 cytokines
SEMA4B semaphorin 4B −1.066977692 1.364958783 cytokines
KLRC1 killer cell lectin like receptor C1 3.806902216 3.528593103 Natural Killer Cell
PAK4 p21 (RAC1) activated kinase 4 −1.430913333 1.28321432 TCR Signaling Pathway
VAV3 vav guanine nucleotide exchange factor 3 −1.035902369 1.208782905 TCR Signaling Pathway

the above-mentioned genes may enhance anti-inflammatory cytokine responses and limit
injurious sustained, or excessive inflammatory, reactions.

Innate immune changes
Innate immunity includes neutrophils, macrophages, dendritic cells, natural killer cells,
antimicrobial agents, opsonins, and cytokines (Rosenzweig & Holland, 2011). Neutrophils
are the most abundant leukocytes, defending against pathogens by degranulation and the
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release of neutrophil extracellular traps (Pruchniak, Arazna & Demkow, 2013). Neutrophil
degranulation pathway genes, such as ITGB2, CD14, ITGAD, CXCR1, LCN2, S100A9,
and SLC11A1, were at first down-regulated in juveniles and then up-regulated in
geriatrics. TNFR superfamily members (TNFRSF1B, TNFRSF4, TNFRSF9, TNFRSF14)
play important roles in both innate and adaptive immunity (Collette et al., 2003; He et al.,
2017) and were at first down-regulated in juveniles and then up-regulated as individuals
aged. TNFRSF4 contributes to the activation and survival of neutrophils (Jin et al., 2019)
and TNFRSF9 is indispensable for innate immunity against Candida albicans infection
(Tran, Nguyen & Kwon, 2021). TNFRSF14 is involved in innate mucosal defense as its
activation leads to activation of neutrophil effector functions, including respiratory bursts,
degranulation, and interleukin-8 release (Haselmayer et al., 2006; Shui & Kronenberg,
2013).

Several important genes involved in antiviral response (OASL, ISG20, STAT4) were
significantly up-regulated in adults. OASL is an interferon-inducible antiviral protein that
can boost innate host defense by enhancing the sensitivity of RIG-I activation (Zhu, Ghosh
& Sarkar, 2015). ISG20, as an interferon-inducible 3′–5′exonuclease, inhibits replication of
several human and animal RNA viruses and plays an important role in the host’s defenses
against pathogens (Degols, Eldin & Mechti, 2007; Zhou et al., 2011). STAT4 promotes
activation of RIG-I signaling to initiate more type I IFN production in antiviral innate
immunity (Zhao et al., 2016). Natural killer cells have been known to be an essential part
of the innate immune system (Averdam et al., 2009). Our results indicated that killer cell
lectin-like receptors (KLRC1, KLRD1, KLRK1, KLRG1, KLRF1) were all up-regulated
in adults. However, IRF5, MX1, and TLR5, playing crucial roles in innate immune were
down-regulated in adults. Interferon regulatory factor 5 (IRF5), a member of the interferon
regulatory factor (IRF) gene family, is a key transcription factor for the activation of innate
immune responses in the Toll-like receptor signaling pathway (Takaoka et al., 2005).
Myxovirus resistance 1 (MX1), an interferon-induced gene that encodes a GTPase, is
considered to be an important part of innate immune responses for antiviral host defense
(Spitaels et al., 2019). Toll-like receptors (TLRs) are a key component of the innate immune
system that recognize microbial infection and trigger antimicrobial host defense responses
(Akira & Takeda, 2004). TLR5 binding to bacterial flagellin activates signaling through the
transcription factor NF-kappa B and triggers an innate immune response to the invading
pathogen (Yoon et al., 2012). Taken together, we consider that the innate immunity of
red pandas increases significantly in geriatric individuals, whereas its changes from the
juvenile phase to adulthood remain obscure, which are probably influenced by many
factors during the rapid physiological development period. Likewise, the immune changes
are also complex.

Adaptive immune changes
The adaptive immune system consists of T cells, B cells and their antigen-specific receptors
(TCR and BCR) (Martin, 2014). T cell receptor signaling pathway genes (IL12RB1,
XCL1, TBX21, CD8A, IL7R, JAG1, CD3G) experienced an up-regulation and then a
down-regulation from the juvenile phase to geriatric phase. The T cell-specific T-box
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transcription factor (TBX21) is vital to the regulation of the immune system because
this factor induces the development and differentiation of T (H)1 as well as contributing
to cell-mediated immunity against intracellular pathogens (Chung et al., 2003; Suttner et
al., 2009). CD8A that encodes a critical coreceptor of cytotoxic T cells—the CD8 alpha
chain of the dimeric CD8 protein—is critical for cell-mediated immune defense and T-cell
development (Xu et al., 2014). Signaling mediated by interleukin 7 receptor (IL7R) is
essential for normal T-cell development and homeostasis. IL7R inactivation causes severe
combined immunodeficiency in humans (Jiang et al., 2005; Puel et al., 1998). Furthermore,
genes (THEMIS, PTPRC, BMP4, PRDM1, CD6, CD28, EOMES, PRLR, IFNG) related
to T cell activation were up-regulated in adults. Protein tyrosine phosphatase receptor
type C (PTPRC), also known as CD45, is an essential regulator of T and B cell antigen
receptor-mediated activation (Al Barashdi et al., 2021). CD6 facilitates adhesion between
T cells and antigen-presenting cells and modulates thymocyte selection and T lymphocyte
activation (Santos, Oliveira & Carmo, 2016). We further found Interferon-regulatory factor
4 (IRF4) was down-regulated in geriatric individuals. IRF4 is induced after T cell receptor
(TCR) stimulation, and the level of its expression correlates with the strength of TCR signal
(Harberts et al., 2021). The transcription factor IRF4 controls activation and differentiation
of CD8+ T cells and is essential for the function of CD8+ memory T cells (Yao et al.,
2013). Consequently, our results showed that the cellular immunity of red pandas at first
increased in juveniles and then decreased with increasing age

B cell receptor signaling pathway genes (STAP1, PRKCB, MEF2C, BANK1) experienced
an up-regulation then down-regulation from juvenile to geriatric individuals. PRKCB plays
a central role in propagating NF-Kappa B signaling and cell proliferation downstream of
the BCR and is vital to the formation of germinal centers and plasma cells (Tsui et al.,
2018). MEF2C has a critical function in mature B cell survival and proliferation after
BCR stimulation (Wilker et al., 2008). B cells can differentiate into plasma cells and secrete
immunoglobulins against the pathogen (Geng et al., 2020). We found genes (ATAD5,
IGJ, IGHE) related to immunoglobulin were up-regulated in adults. ATAD5 deficiency
has been shown to reduce B cell division and Igh recombination (Zanotti et al., 2015).
Immunoglobulin J chain (IgJ) is a small polypeptide that serves to regulate polymer
formation and secretory activity of Immunoglobulin A (IgA) and Immunoglobulin M
(IgM) (Brandtzaeg, 1983). IgE is produced primarily in response to parasitic infections
and can also be involved in allergic reactions (Larsson et al., 2020). IGHE encodes a
constant region of the IgE heavy chain (Wagner, 2009). Genes (BLNK, MYB, BTK, FCRL1,
FCRL5, MSH2, PAX5, BCL11A) related to B cell activation were down-regulated in
geriatric individuals. PAX5 is essential for many aspects of B cell development including
immunoglobulin rearrangement, pre-B cell receptor signaling andmaintaining cell identity
in mature B cells (Holmes, Pridans & Nutt, 2008). We found that BLNK was a hub gene in
our protein–protein interaction analysis. BLNK is a central linker protein connecting B cell
receptor-associated kinases with multiple signaling pathways, which regulates the pre-BI
to pre-BII transition and Ig light chain gene rearrangement, playing a non-redundant key
function in B cell development (Lagresle-Peyrou et al., 2014). This suggests that BLNK may
play a critical role in the progression of age-related immune changes in the red panda.
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These results show that the humoral immunity of red pandas increases then decreases with
age. Taken together, we conclude that the adaptive immunity of red pandas increases then
decreases with age.

Gene expression changes associated with disease
The main cause of death in adult and geriatric red pandas was cardiovascular disease, and
the proportion of death from cardiovascular disease in juveniles (31–365 days), adults
(1–10 years) and geriatrics (>10 years) was 2.94%, 20.65% and 24.62%, respectively
(Delaski, Ramsay & Gamble, 2015). Age is the biggest risk factor for cardiovascular disease,
and the prevalence increases sharply with age. In geriatric individuals, we observed an
up-regulation of PTX3, a prototypic long pentraxin, which is produced by somatic cells
and innate immune cells after pro-inflammatory stimulation. In peripheral blood tissue,
PTX3 was found to be significantly elevated in human patients with heart failure and
acute myocardial infarction, contributing to the occurrence of cardiovascular events
and cardiovascular risk factors (Inforzato et al., 2015; Liu et al., 2011; Peri et al., 2000).
Therefore, PTX3 may be an effective target point for the prevention and treatment of
cardiovascular disease in red pandas. The aging process and its related diseases often
cause energy metabolism disorder and oxidative damage (Mattson, Maudsley & Martin,
2004). The most significant up-regulated gene, CP, between geriatric and adult red pandas,
encodes a serum ferroxidase ceruloplasmin that is related to iron metabolism (Hellman
& Gitlin, 2002). Clinical and epidemiological studies have shown that iron metabolism
plays an important role in multiple aging-associated disorders, especially in cardiovascular
disease (Roijers et al., 2011). Higher levels of serum ceruloplasmin, as an independent risk
factor for cardiovascular disease, can be a marker for metabolic stresses associated with
metabolic syndrome (Kim et al., 2002).

Vaccines appear as the most efficient and economical medical interventions against
infectious diseases and have also been used to defend against pathogen infections in red
pandas (Dumpa et al., 2019; Qin et al., 2007). However, some vaccines for red pandas
have not produce consistent antibody titers, thus the protective effect did not meet
expectations (Loeffler et al., 2007; Zhang et al., 2017) especially in geriatric individuals. One
reason for this may be a decline in immune system function associated with aging and
leads to a low vaccine response and vaccine longevity as well as reducing the preventive
effectiveness of vaccination (Giefing-Kroll et al., 2015; van den Berg et al., 2018). Reduced
adaptive immunity leads to reduced vaccine responses and vaccine longevity (Lord, 2013).
Flagellin can trigger an innate immune response by interacting with a cell surface receptor
TLR5 (Uematsu et al., 2006), subsequently stimulating T cell responses and initiating
adaptive immunity (Applequist et al., 2005). In both murine models and clinical trials,
incorporating flagellin into vaccines has been shown to enhance vaccination efficiency
in the old (Leng et al., 2011; Taylor et al., 2011). Our study has indicated that TLR5 was
significantly up-regulated in geriatric red pandas, suggesting the possibility of enhancing the
immune response to vaccination by incorporating flagellin, via the TLR5 innate immune
pathway to address the problem of decreased vaccine response. This research provides an
orientation for us to develop effective vaccines for endangered animals such as red pandas
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in the future. This work provides an insight into gene expression changes associated with
aging, and paves the way to develop effective disease prevention and treatment strategies
for red pandas in the future.

CONCLUSSION
We have undertaken the first blood transcriptome analysis of aging red pandas. We found
2,219 DEGs between geriatric and adult individuals, and 1,690 DEGs between adults
and juveniles. The gene expression and functional annotation results showed the innate
immunity of red pandas significantly increased in geriatric individuals, but its change
remains unclear in from juveniles to adults. We found the adaptive immunity of red
pandas first increased and then decreased with aging. Our study is a first step to clarify
the gene expression profiles in aging red pandas and provides an insight into aging gene
expression changes. However, any innate immunity changes from juvenile to adulthood
need further exploration. The treatment strategy of decreased vaccine response caused by
age-related decline in immune system function, also need further research.

As an ideal surrogate tissue for diagnostics, the functional relevance of blood
transcriptome studies as a method of measuring aging and immunity cannot be
underestimated. However, considering the possible tissue and species specificity in gene
function, and the small sample size in this study, the limitations of this study still exist.
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