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Abstract 

Background:  Inbreeding is caused by mating between related individuals and its most common consequence is 
inbreeding depression. Several studies have detected heterogeneity in inbreeding depression among founder indi‑
viduals, and recently a procedure for predicting hidden inbreeding depression loads associated with founders and the 
Mendelian sampling of non-founders has been developed. The objectives of our study were to expand this model to 
predict the inbreeding loads for all individuals in the pedigree and to estimate the covariance between the inbreed‑
ing loads and the additive genetic effects for the trait of interest. We tested the proposed approach with simulated 
data and with two datasets of records on weaning weight from the Spanish Pirenaica and Rubia Gallega beef cattle 
breeds.

Results:  The posterior estimates of the variance components with the simulated datasets did not differ significantly 
from the simulation parameters. In addition, the correlation between the predicted and simulated inbreeding loads 
were always positive and ranged from 0.27 to 0.82. The beef cattle datasets comprised 35,126 and 75,194 records on 
weights between 170 and 250 days of age, and pedigrees of 308,836 and 384,434 individual-sire-dam entries for the 
Pirenaica and Rubia Gallega breeds, respectively. The posterior mean estimates of the variance of inbreeding depres‑
sion loads were 29,967.8 and 28,222.4 for the Pirenaica and Rubia Gallega breeds, respectively. They were larger than 
those of the additive variance (695.0 and 439.8 for Pirenaica and Rubia Gallega, respectively), because they should be 
understood as the variance of the inbreeding depression achieved by a fully inbred (100%) descendant. Therefore, 
the inbreeding loads have to be rescaled for smaller inbreeding coefficients. In addition, a strong negative correlation 
(− 0.43 ± 0.10) between additive effects and inbreeding loads was detected in the Pirenaica, but not in the Rubia Gal‑
lega breed.

Conclusions:  The results of the simulation study confirmed the ability of the proposed procedure to predict inbreed‑
ing depression loads for all individuals in the populations. Furthermore, the results obtained from the two real data‑
sets confirmed the variability in the inbreeding depression loads in both breeds and suggested a negative correlation 
of the inbreeding loads with the additive genetic effects in the Pirenaica breed.

© The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Inbreeding is caused by mating between related indi-
viduals and is associated with changes in the mean and 
variance of quantitative traits [1]. Inbreeding depression, 

which results in a reduction in the phenotypic yield of fit-
ness-related traits [2, 3], has been widely observed in ani-
mals, plants, and humans [2, 4] and is the most common 
consequence of inbreeding. The genetic basis of inbreed-
ing depression stems from the high degree of homozygo-
sity in inbred individuals, which reveals the presence of 
recessive alleles or losses in the advantage of over-domi-
nance at heterozygous loci [2, 3].

Genetic variation within a population implies that 
inbreeding depression can vary depending on the 

Open Access

Ge n e t i c s
Se lec t ion
Evolut ion

*Correspondence:  lvarona@unizar.es
1 Departamento de Anatomía Embriología y Genética Animal, 
Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 
50013 Saragossa, Spain
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-6256-5478
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-019-0521-3&domain=pdf


Page 2 of 12Varona et al. Genet Sel Evol           (2019) 51:78 

genotype of the individuals whose alleles produce iden-
tity-by-descent (IBD) states in their progeny. Variability in 
inbreeding depression has been confirmed within ances-
tral lineages of Drosophila [5] and in sire families in dairy 
[6] and beef cattle [7]. Therefore, it is possible to define a 
specific hidden individual inbreeding depression load [8] 
(hereafter referred to as inbreeding load), which can be 
considered a hereditary trait [5, 9] with a phenotype that 
is only expressed when inbreeding occurs in its offspring.

Lacy et  al. [10] proposed a founder decomposition of 
inbreeding, which assigns a different inbreeding depres-
sion to each founder of the population; yet, the com-
mon ancestors of inbred individuals are not restricted 
to the founding generation. Caballero and Toro [11] and 
García-Cortés et  al. [12] proposed a Mendelian decom-
position of the inbreeding coefficient that assigns partial 
inbreeding coefficients to the founders and to the Men-
delian sampling of the non-founders. This decomposi-
tion was the basis for the development of a mixed-model 
approach that allows prediction of individual inbreeding 
loads [8]. However, this model assumes that the founding 
and non-founding effects on inbreeding depression are 
distributed independently, and cannot be used to predict 
the inbreeding load of individuals that do not have inbred 
progeny. In this study, we propose an alternative param-
eterization that can predict the inbreeding load for each 
individual in the pedigree, and can provide estimates 
of the covariance between the inbreeding loads and the 
additive genetic effects for the trait of interest. We tested 
the procedure with a simulation study and two large 
datasets of records on weaning weight in the Pirenaica 
and Rubia Gallega beef cattle breeds.

Methods
Theory
Inbreeding load
The recessive alleles that appear in homozygosity caused 
by IBD from a common ancestor in the paternal and 
maternal lineages can cause inbreeding depression. Each 
ancestor might have different sets of recessive alleles; 
thus, the genotype of each individual determines an 
inbreeding load that can be interpreted as the effects on 
the trait performance of its inbred descendants. Inbreed-
ing load can be considered a heritable trait [5, 9] and, 
from the perspective of the ancestors, it acts additively 
because the alternative alleles never interact in their 
inbred progeny.

Thus, the polygenic inbreeding load ( ii ) for the i th indi-
vidual can be decomposed [8] as follows:

where is and id are the inbreeding loads for its sire and 
dam, respectively, and εi is its Mendelian sampling. 

(1)ii = is + id + εi,

Therefore, it follows that the distribution of the inbreed-
ing loads is multivariate Gaussian as:

where A is the numerator relationship matrix [13], and σ2
i
 

is the additive genetic variance of the inbreeding loads.

Inbreeding decomposition
Traditionally, inbreeding is split into several units that 
are attributed to founding individuals [10] by tracing 
back the origin of the alleles that might be IBD in inbred 
individuals. Alternatively, inbreeding can be decom-
posed into the sources of the co-ancestry between the 
parents of each individual [11, 12], which might include 
the founders of the population and the Mendelian sam-
pling of the non-founders. The difference between the 
two approaches is illustrated by a simple pedigree of five 
individuals (Fig.  1). Individual 5 has an inbreeding of 
0.375. The founder decomposition splits it between two 
founders, and attributes 0.25 and 0.125 to individuals 1 
and 2, respectively. In contrast, the Mendelian decom-
position attributes 0.1875 and 0.0625 to founders 1 and 
2, respectively, and 0.125 to the Mendelian sampling of 
non-founder 3. Note that, under the founder decomposi-
tion, the genealogical inbreeding is the sum of the partial 
coefficients from the founders, while under the Mende-
lian decomposition it is the sum of the partial coefficients 
from the founders and from the Mendelian sampling of 
the non-founders.

Model
Based on the Mendelian decomposition of inbreeding, 
Casellas [8] proposed a linear model that explains the 
phenotypic data ( y ) with two vectors of random effects: 
the additive genetic ( a ), and one extra effect ( εi ) that is 
attributed to the inbreeding depression generated by the 
inbreeding loads of their ancestors (the founders and the 
Mendelian sampling of the non-founders). Thus,

where µ is the general mean, e is the vector of the residu-
als, 1 is a vector of ones with the same length of y, Z is the 
incidence matrix and T is the matrix that contains the 
partial inbreeding coefficients from the Mendelian 
decomposition and connects the phenotypic data of 
inbred individuals and the inbreeding loads of their com-
mon ancestors from the paternal and maternal lineages. 
Furthermore, a ∼ N

(

0,Aσ
2
a

)

 and e ∼ N
(

0, Iσ2e
)

 , where A 
is the numerator relationship matrix and σ2a and σ2e are 
their associated variance components. Casellas [8] pro-
posed that the distribution of εi is εi ∼ N

(

0, Iσ2i
)

 with σ2i  
being the variance component of the inbreeding loads. 

i ∼ N

(

0,Aσ 2
i

)

,

(2)y = 1′µ+ Za + εi + e,
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However, this assumption is incorrect because the vari-
ance that is attributed to the inbreeding loads of the 
founders must be larger than the variance that is attrib-
uted to the Mendelian sampling of the non-founders. 
Thus, the appropriate distribution of εi is εi ∼ N

(

0,Qσ
2
i

)

 , 
where Q is a diagonal matrix with a value 1 for the ele-
ments corresponding to founder individuals, and a value 
of 12

(

1− FS+FD
2

)

 for the elements corresponding to the 
non-founder individuals [11]. FS and FD are the genealog-
ical inbreeding coefficient of the sire and dam of the indi-
vidual, respectively.

In this study, we reparametrize the model in terms of 
individual inbreeding loads ( i ) that, given their additive 
nature, can be represented as follows:

where P is a matrix with a diagonal of 0 s and 0.5 in the 
elements that link an individual with its sire and dam, 
such that it establishes a recurrent relationship between 
the inbreeding loads of each individual with their par-
ents, as in Eq. (1). As a result, εi = (I− P)i and Model (2) 
can be rewritten as follows:

where K = T(I− P) and i ∼ N
(

0,Aσ
2
i

)

. As a result, a 
multiple trait model that includes the genetic covariance 
between additive effects and inbreeding loads can then 
be defined as:

i = Pi + εi,

(3)y = 1′µ+ Za + Ki + e,

(4)
(

a
i

)

∼ N

(

0
0
,G⊗ A

)

,

where G =

(

σ
2
a σai

σai σ
2
i

)

, and σai is the covariance between 

additive effects and inbreeding loads.

Example
Given the pedigree of five individuals (Fig. 1), we assume 
that individuals 3, 4, and 5 have phenotypes 113, 87, and 
96, respectively. Applying the method proposed by García-
Cortés et  al. [12] a partial inbreeding coefficient of 0.250 
is obtained for the animal 4 generated by individual 1, and 
three partial inbreeding coefficients (0.1875, 0.0625, and 
0.125) for animal 5, generated by individuals 1, 2, and 3, 
respectively. Therefore, the mixed-model equations for the 
implementation of the model defined by Eq.  (3) requires 
the following vector and matrices:

y =





113
87
96



,

Z =





0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



,

K = T(I− P) =





0 0 0 0 0
0.25 0 0 0 0
0.125 0 0.125 0 0



,

where T =





0 0 0 0 0
0.25 0 0 0 0

0.1875 0.0625 0.125 0 0



,

Fig. 1  Founder and Mendelian decomposition of the inbreeding. Partial inbreeding coefficients for the fifth individual with the Founder and 
Mendelian decompositions of inbreeding
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In addition, the numerator relationship matrix ( A ) 
and its inverse ( A−1 ) are as follows:

and

which leads to the following mixed-model equations:

where g11 , g12 , g22 are the elements of the inverse ( G−1 ) 
of the covariance matrix between the additive and the 
inbreeding load effects. Assuming σ

2
e = 10 , σ

2
a = 2 , 

σ
2
i = 1 , and σai = −0.25 , then

and the equations become the following:

and I− P =











1 0 0 0 0
0 1 0 0 0

−0.5 −0.5 1 0 0
−0.5 0 −0.5 1 0
0 0 −0.5 −0.5 1











.

A =











1 0 0.500 0.750 0.625
0 1 0.500 0.250 0.375

0.500 0.500 1 0.750 0.875
0.750 0.250 0.750 1.250 1
0.625 0.375 0.875 1 1.375











,

A
−1 =











2 0.5 −0.5 −1 0

0.5 1.5 −1 0 0

−0.5 −1 3.071 −0.429 −1.143

−1 0 −0.429 2.571 −1.143

0 0 −1.143 −1.143 2.286











,





1′1 1′Z 1′K

Z′1 Z′Z+ A−1g11σ2e Z′K + A−1g12σ2e
K′1 K′Z+ A−1g21σ2e K′K + A−1g22σ2e









µ̂

â

î





=





1′y
Z′y
K′y



,

G−1 =

[

g11 g12

g21 g22

]

=

[

2 −0.25
−0.25 1

]−1

=

[

0.516 0.129
0.129 1.032

]

,











































3 0 0 1 1 1 0.375 0 0.125 0 0

0 1.032 0.258 −0.258 −0.516 0 0.258 0.0645 −0.0645 −0.129 0

0 0.258 0.774 −0.516 0 0 0.0645 0.1935 −0.129 0 0

1 −0.258 −0.516 2.5849 −0.2211 −0.5897 −0.0645 −0.129 0.3962 −0.0553 −0.1474

1 −0.516 0 −0.2211 2.327 −0.5897 0.121 0 −0.0553 0.332 −0.1474

1 0 0 −0.5897 −0.5897 2.1794 0.125 0 −0.022 −0.1474 0.2949

0.375 0.258 0.0645 −0.0645 0.121 0.125 2.142 0.516 −0.500 −1.032 0

0 0.0645 0.1935 −0.129 0 0 −0.500 1.548 −1.032 0 0

0.125 −0.0645 −0.129 0.3962 −0.0552 −0.022 1.0465 −1.032 3.185 −0.4423 −1.1794

0 −0.129 0 −0.0553 0.3317 −0.1474 −1.032 0 −0.4423 2.6537 −1.1794

0 0 0 −0.1474 −0.1474 0.2948 0 0 −1.1794 −1.1794 2.3589































































































µ̂

â1

â2

â3

â4

â5

î1

î2

î3

î4

î5





















































=











































296

0

0

113

87

96

33.75

0

12

0

0











































,

with solutions:

Simulation
A pedigree of 30,000 individuals arranged in six discrete 
generations of 5000 individuals (2500 sires and 2500 
dams) was simulated. Each generation was obtained from 
the random mating of 20 sires and 500 dams that were 
chosen randomly from the previous generation. Thus, nei-
ther selection nor purging were simulated. Once the pedi-
gree was obtained, the direct additive genetic effects ( a ) 
and the inbreeding loads ( i ) were simulated based on the 
multivariate distribution from Eq.  (4). The vector of the 
phenotypic records ( y ) was generated by Eq. (3). The par-
tial inbreeding coefficients required for the T matrix were 
derived from the procedure of García-Cortés et al. [12].

Two cases (i) and (ii) were simulated based on the fol-
lowing parameters:

	 i.	 µ = 100, σ
2
a = 100, σ

2
i  = 10,000, σai = − 500, r(a, 

i) = − 0.5 and σ2e = 100,
	 ii.	 µ = 100, σ2a = 100, σ2i  = 1000, σai = 0, r(a, i) = 0.0 and 

σ
2
e = 100,





































µ̂

â1
â2
â3
â4
â5

î1

î2

î3

î4

î5





































=

































104.88
−2.64
4.37
1.96
−9.81
−6.24
−4.50
−13.49
−9.37
−5.41
−7.07

































.

where r(a, i) =
σai

σaσi
.
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The simulated variances of inbreeding loads 
(

σ
2
i

)

 were 
greater than the additive variances 

(

σ
2
a

)

 as they reflect 
the inbreeding depression achieved by a completely 
inbred (100%) descendent. The percentage of phenotypic 
variance explained by the inbreeding depression loads 
depends on the magnitude of the partial inbreeding coef-
ficients. Therefore, in the first simulation case (i), the 
variance of inbreeding load for a partial inbreeding coef-
ficient of 0.10 will be equal to the additive variance (100), 
whereas in the second (ii), it will be a tenth part (10).

The simulated datasets were analyzed under Model (3). 
We used a Bayesian approach which included uniform 
priors for the mean ( µ ) and for the variance components 
( G ) and σ2e , and a multivariate Gaussian distribution for 
a and i . The analysis was implemented through a Gibbs 
Sampler [14] with two chains of 550,000 iterations, after 
discarding the first 50,000 iterations.

Beef cattle data
The dataset included 35,126 (Pirenaica) and 75,194 (Rubia 
Gallega) records on live weights (one per individual) 
between 170 and 250  days of age, which were provided 
by the two breeding associations and had been recorded 
since 1989 and 1991, respectively, until 2018. The aver-
age (± standard deviation) weights in the Pirenaica and 
the Rubia Gallega breeds were 258.4  kg (± 58.0  kg) and 
281.4 kg (± 46.7 kg), respectively. The genealogical infor-
mation dated back to 1920 (Pirenaica) and 1955 (Rubia 
Gallega), and comprised 308,836 and 384,434 individ-
ual-sire-dam records, respectively. The average depth of 
the pedigree of the individuals for which there was phe-
notypic information was 5.9 and 3.9 generations for the 
Pirenaica and the Rubia Gallega breeds, respectively. In 
the Pirenaica breed, 248,471 (80.5%) individuals were 
inbred and had an average inbreeding (± standard devia-
tion) coefficient of 0.030 (± 0.056). In the Rubia Gallega 
breed, inbreeding affected 176,048 (45.8%) individuals, 
and the average inbreeding coefficient (± standard devia-
tion) was 0.020 (± 0.048). The evolutions of the average 
inbreeding and the percentage of inbred individuals from 
1975 to 2017 are shown in Additional file  1: Figures  S1 
and Additional file  2: Figure S2 for Pirenaica and Rubia 
Gallega, respectively.

The partial inbreeding coefficients from the Mende-
lian decomposition of inbreeding were derived from the 
procedure of García-Cortés et  al. [12], which generated 
16,099,374 and 5,080,457 coefficients from 8721 and 
3601 ancestors in the Pirenaica and Rubia Gallega breeds, 
respectively. The average partial inbreeding coefficients 
(± standard deviation) were 5.7 × 10−4 (± 4.2 × 10−3) in 
the Pirenaica and 1.5 × 10−3 (± 6.9 × 10−3) in the Rubia 
Gallega breed. Most of the partial inbreeding coefficients 

were very low (Table  1); 99.3 and 93.0%, and 97.4 and 
81.2% were lower than 0.01 and 0.001 in the Pirenaica 
and Rubia Gallega breeds, respectively.

Once the partial inbreeding coefficients from the Men-
delian decomposition of inbreeding were available, the 
phenotypic data were analyzed with the following model:

where t is the vector of age at recording, b is the vector of 
systematic effects, which included sex and age of the dam 
(15 levels), p is the vector of herd-year-season effects 
(Pirenaica, 6503 levels and Rubia Gallega, 5251 levels), 
and a , i , and e are the vectors of direct genetic, inbreed-
ing load, and residual effects, respectively. Furthermore, c 
is the covariate with age at recording, and X , W , Z , and K 
are the appropriate incidence matrices.

Under a hierarchical Bayesian analysis, it was assumed 
that prior distributions for the permanent environmen-
tal, additive, and inbreeding load effects followed a multi-
variate Gaussian distribution:

where σ2p is the variance of the permanent environmental 
effects and

as in Model (4).
The prior distribution for systematic effects were uni-

form between − M and M, being M a very large value. 
The prior distributions for σ2p was an inverted Chi-
square 

(

χ−2(s, v)
)

 distribution with parameters s = 0 and 
v = −2 , and the prior distribution for G were inverted 
Chi-square and inverted Wishart (IW (S, v)) distribution 
with:

y = tc + Xb+Wp+ Za + Ki + e,

p ∼ N
(

0, Iσ 2
p

)

,

(

u
i

)

∼ N

(

0
0
,G⊗ A

)

,

S =

(

0 0
0 0

)

,

Table 1  Distribution of  partial inbreeding coefficients 
(number and  percentage) based on  their magnitude 
in the Pirenaica and Rubia Gallega breeds

Partial inbreeding Pirenaica Rubia Gallega

< 10-4 10,996,924 (68.30%) 1,564,740 (30.80%)

10-4-10-3 3,967,842 (24.65%) 2,559,733 (50.38%)

10-3-10-2 1,028,578 (6.39%) 823,410 (16.21%)

10-1-10-2 126,238 (0.78%) 124,155 (2.44%)

> 10-1 9792 (0.06%) 8.419 (0.17%)



Page 6 of 12Varona et al. Genet Sel Evol           (2019) 51:78 

and v = −3 , that reduces to a uniform distribution. The 
Gibbs sampler [14] was implemented with two chains of 
550,000 iterations, after discarding the first 50,000 itera-
tions. Convergence was confirmed by visual inspection 
of the chains (see Additional file 3: Figures S3 and Addi-
tional file 4: Figure S4) and by the use of the CODA pack-
age in the R software [15].

Results
Simulation study
The posterior distributions of σ2a , σ2i  , r(a, i) and σ2e 
obtained from the simulation study are shown in Fig. 2. 
The variance components used in the simulation were 
within the posterior mean ± 2 times the posterior 

standard deviation. Figure  3 shows the plots of the 
simulated direct genetic and inbreeding load effects 
and their predictions (posterior mean estimates) for 
sires and for individuals without progeny. In addition, 
the correlations between the simulated and predicted 
effects for sires and individuals without progeny are 
shown. The correlations between the direct genetic 
effects and their predictions ranged from 0.76 (individ-
uals without progeny in case (i)) to 0.98 (sires in case 
(ii)), and were always higher than their counterparts 
for the inbreeding loads. Nevertheless, the correlations 
between simulated and predicted inbreeding loads 
were always positive, and ranged from 0.27 (individuals 
without progeny in case (ii)) to 0.82 (sires in case (i)).

Fig. 2  Posterior distributions of the variance components in the simulation study. Posterior distributions of the additive variance σ2a , inbreeding 
load variance σ2i  , genetic correlation r(a, i) and residual variance σ2e from the two simulation cases with the values used in the simulation (vertical red 
line)
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Beef cattle datasets
The posterior mean estimates of the variance compo-
nents in the Pirenaica and Rubia Gallega breeds are in 
Table  2. The posterior mean estimates of the additive 
genetic variance and inbreeding load variance compo-
nents were equal to 695.0  kg2 and 29,966.8  kg2 in Pire-
naica, and 439.8  kg2 and 28,222.4  kg2 in Rubia Gallega, 
respectively. The posterior mean estimates of the genetic 

correlation between additive genetic and inbreeding load 
effects were − 0.43 in Pirenaica and − 0.04 in Rubia Gal-
lega. The posterior mean estimates of the permanent 
environmental and residual variances were 1035.2  kg2 
and 483.1 kg2 in Pirenaica, and 320.0 kg2 and 1018.2 kg2 
in Rubia Gallega.

Figure  4 presents, for each breed, a bivariate plot of 
the predictions (posterior mean estimates) of the direct 

Fig. 3  Relationship between simulated and predicted additive and inbreeding load effects in the simulation study. Simulated additive and 
inbreeding load effects (x axis) and their predictions (y axis) and correlation coefficients between them (r) for sires (a, b, e and f) and individuals 
without progeny (c, d, g and h). a–d Correspond to the first case of simulation and e–h to the second case
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additive and inbreeding load effects and a histogram that 
represents the distribution of the predicted inbreeding 
loads. In the Pirenaica breed, the bivariate plot indicated 
a clear negative relationship between direct genetic and 
inbreeding load effects, which was not apparent in the 
Rubia Gallega breed. The average (and standard devia-
tion) of the predicted inbreeding loads were -69.3 (58.6) 
kg and − 32.3 (41.7) kg in Pirenaica and Rubia Gallega 
breeds, respectively, and ranged from − 369.1 to 234.7 
in Pirenaica and from − 374.1 to 266.1 in Rubia Gallega. 
The proportion of individuals in the Pirenaica and Rubia 
Gallega breeds that had a positive predicted inbreeding 
load was equal to 10.5% and 22.5%, respectively.

Table 2  Posterior mean estimates (and posterior standard 
deviation) of  variance components in  the  Pirenaica 
and Rubia Gallega breeds

σ
2
a is the additive genetic variance, σ2i  is the variance of individual inbreeding 

loads, r(a, i) is the correlation between additive genetic and individual 
inbreeding loads, σ2p is the permanent environmental variance and σ2e is the 
residual variance

Population

Pirenaica Rubia Gallega

σ
2
a

695.016 (25.688) 439.803 (18.121)

σ
2
i

29,966.800 (5868.275) 28,222.360 (5454.273)

r(a, i) − 0.429 (0.102) − 0.043 (0.087)

σ
2
p

1035.209 (27.714) 320.023 (11.273)

σ
2
e

483.060 (15.010) 1018.207 (12.612)

Fig. 4  Relationship between predicted additive and inbreeding load effects and distribution of inbreeding load effects for weaning weight in 
Pirenaica and Rubia Gallega. Predictions of the additive (x axis) and inbreeding load (y axis) effects for weaning weight in Pirenaica (a) and Rubia 
Gallega (b) and histograms of predictions of inbreeding load effects for weaning weight in Pirenaica (c) and Rubia Gallega (d)
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Discussion
Inbreeding load and inbreeding depression are heterogene-
ous among populations [5] or families [6, 7], as inbreeding 
depression is affected by the variants of recessive alleles in 
each population, or even in each ancestor that generates 
inbreeding. Variability in inbreeding depression has been 
confirmed in several livestock populations [16–21] with the 
approach proposed by Lacy et al. [10], which is consistent 
with the results of previous studies [22–24] that revealed 
heterogeneity in the contribution of genomic regions to 
inbreeding depression in several traits and species.

Management of inbreeding to prevent the undesir-
able consequences is an important aspect of conserva-
tion genetics [25] and in livestock and plant breeding 
programs [26, 27]. Purging is a natural process of selec-
tion against recessive alleles that are expressed in the 
homozygous state [28]. Purging during past generations 
can be inferred in pedigreed populations [29–31], and 
evidence of purging has been detected in natural [32–34] 
and livestock [29, 35] populations.

Genetic variability of the inbreeding loads among indi-
viduals within a population can be taken into account in 
‘artificial’ purging strategies, to avoid the use of those indi-
viduals with poor inbreeding loads for reproductive pur-
poses. However, it requires prediction of the inbreeding 
loads of young individuals without inbred progeny. The 
approach proposed by Lacy et al. [10] is useful for describ-
ing the heterogeneity of inbreeding depression among 
founders, yet in most livestock populations, the founders 
live several generations before the current candidates for 
selection and, therefore, the prediction of the inbreeding 
loads based on Lacy’s approach is not useful for practi-
cal ‘artificial’ purging strategies. Casellas [8] proposed 
an approach that uses the Mendelian decomposition of 
inbreeding and provides prediction of the inbreeding 
loads from both founders and the Mendelian sampling of 
the non-founders. However, it can only provide prediction 
of the inbreeding loads of the individuals that contribute 
to the inbreeding of individuals with known phenotypes. 
Moreover, its estimates of the variance of the inbreeding 
loads are biased, since it ignores the reduction in variance 
due to the Mendelian segregation of the progeny.

Although the approach proposed by Casellas [8] was 
the basis of the approach proposed in our study, rather 
than using directly the partial inbreeding coefficients 
derived from García-Cortes et  al. [12], the coefficients 
were transformed by the I–P recursive transformation 
in order to predict the total individual inbreeding load 
( i ). The parametrization is crucial because it allows the 
assumption that individual inbreeding loads follow a 
multivariate Gaussian distribution and permits the use 
of the numerator relationship matrix ( A ) to predict the 
inbreeding loads of individuals that have yet to contribute 

to inbreeding but have relatives that have done so. The 
approach is illustrated with the results obtained from a 
simulation study, which used the same model of analysis 
to generate the simulated datasets. In spite of the limited 
amount of data, the posterior distribution of the variance 
components did not differ significantly from the simu-
lated ones (Fig.  2), which suggests that there is enough 
information to recover the variance of inbreeding loads 
and their covariance with the direct additive effects. The 
most outstanding result of the simulation study is that it 
demonstrates the ability of prediction of the inbreeding 
loads of individuals without progeny, since the correla-
tions between the predicted and simulated inbreeding 
loads were 0.27 and 0.48 in the first (i) and second (ii) 
case of simulation, respectively (Fig.  3). The higher cor-
relation in the second case was caused by the larger σ2i  
used in the simulation. The correlations obtained from 
the individuals without progeny were lower than those 
for the sires, which had many inbred progeny, and they 
were also lower than the correlations between simulated 
and predicted additive effects. Nonetheless, these results 
might provide a basis for the development of “artificial” 
purging strategies in order to avoid the undesirable con-
sequences of inbreeding depression. One approach might 
be to develop a selection index by weighting the breeding 
values and inbreeding loads in an appropriate way.

Implementation of our model involved the construction 
of the mixed-model equations, which followed the same 
rationale as that of the maternal animal model [36]. The 
model attributes two genetic effects to each individual; 
one, i.e. a that it is expressed directly in the individual phe-
notype, and another, i.e. i that it is expressed only in the 
phenotype of its inbred descendants. In spite of the com-
plexity of the model, the results obtained from the simu-
lation study (Fig.  2) demonstrated its ability to recover 
the simulated parameters from the genealogical and phe-
notypic information. Computationally, the additional 
complexities beyond the standard mixed-model are the 
calculation of the partial inbreeding coefficients from the 
Mendelian decomposition of inbreeding and the calcula-
tion and storage of the K′K block. First, the tabular method 
that was implemented for the inbreeding decomposition 
described in [12] involves the construction of a square 
matrix with the dimension of the pedigree. Thus, for com-
putational feasibility, the partial inbreeding coefficients 
of each individual were calculated sequentially from a 
reduced pedigree that only included its ancestors. Second, 
the K′K matrix is more dense than is the Z′Z block and it 
requires more memory storage and computational time. 
Nevertheless, the contributions of the partial inbreeding 
coefficients to the K′K matrix were squared and, thus, the 
very small partial inbreeding coefficients generated almost 
null values, which could be discarded.
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The posterior distributions of the inbreeding load vari-
ances for weights at 210 days in the Pirenaica and Rubia 
Gallega breeds indicated high variability among them, 
which is consistent with the variability of inbreeding 
depression among sire families reported by Carolino 
and Gama [7]. The posterior mean estimates were much 
larger (29,966.8 and 28,222.4 in Pirenaica and Rubia Gal-
lega breeds, respectively) than those of the other variance 
components in the model, which was confirmed by the 
broad range of the prediction of the inbreeding loads. 
However, it should be noted that the model provides 
estimates of the inbreeding loads that must be under-
stood as the inbreeding depression achieved by a fully 
inbred (100%) descendent. Logically, the predictions are 
not realistic and have to be rescaled. Thus, the expected 
inbreeding depression from an ancestor that generates a 
partial inbreeding coefficient of 0.10 and has a predicted 
inbreeding load of − 100 kg is − 10 kg.

The analysis of the beef cattle datasets indicated 
that, for most of the individuals, the prediction of their 
inbreeding load was negative, which is consistent with 
several studies that have analyzed the inbreeding depres-
sion in body weights of beef cattle [7, 37–39]. However, a 
significant proportion of the individuals (10.52% in Pire-
naica, and 22.54% in Rubia Gallega) had a positive predic-
tion of their inbreeding loads. In spite of the prediction 
error variance of the inbreeding loads, these figures may 
indicate that a relevant proportion of the individuals 
might have had an incremental effect on the trait of inter-
est. Therefore, the potential inbreeding caused by mating 
between the descendants might not need to be avoided 
or could even be favored, at least for the analyzed trait. It 
should be noted that with a similar posterior mean esti-
mate of the variance component (29,966.8 and 28,222.4), 
the prediction of the inbreeding load effects was more 
variable in the Pirenaica (SD: 58.6 kg) than in the Rubia 
Gallega (SD: 41.7) breed. This was due to the different 
amounts of pedigree information available for the esti-
mation of the inbreeding loads (5.9 vs. 3.9 generations 
in Pirenaica and Rubia Gallega breeds, respectively). A 
deeper pedigree generates more partial inbreeding coef-
ficients (Table  1) and provides more reliable informa-
tion for the prediction of the inbreeding loads, which is 
reflected in larger variances for the predictors.

The additive nature of the inbreeding loads implies that 
it can be genetically correlated with other traits such as 
the direct additive effect on the analyzed traits. The mean 
posterior estimate of the genetic correlation between the 
inbreeding loads and the direct additive effect in the Pire-
naica breed was clearly negative (− 0.43) and the poste-
rior probability that it was negative was higher than 0.99. 
In contrast, the estimate of the genetic correlation in the 
Rubia Gallega breed was near zero. To our knowledge, 

to date there are no published studies that provide esti-
mates of the correlations between additive genetic and 
inbreeding load effects in livestock breeds, although Car-
olino and Gama [7] did not find a significant correlation 
between the breeding values of the sires and the inbreed-
ing depression associated with them. The only study 
available which provided an estimate of the genetic cor-
relation [40], although retracted, suggested a very small, 
negative genetic correlation [41]. A possible explanation 
of this negative correlation is that older individuals may 
have a smaller additive genetic effect due to selection 
and a higher inbreeding load as they are more exposed to 
purging than recent ancestors. This hypothesis may also 
explain the differences in the estimates of the genetic cor-
relation between the Pirenaica and Rubia Gallega breeds, 
since the depth of the pedigree in the Pirenaica was larger, 
and, therefore, older individuals with more opportunities 
of purging were included. Regardless of its cause, if the 
negative correlation is confirmed, it will mean that indi-
viduals with high breeding values tend to cause worse 
inbreeding depression if their descendants are inbred.

Finally, it is worth noting that the assumed model uses 
a prior distribution of the inbreeding loads centered at 
zero. Further research is necessary to define alternative 
prior distributions that allow the mean of the inbreeding 
loads to differ from zero.

Conclusions
Our study proposes a mixed-model approach that 
includes individual inbreeding depression loads, direct 
additive effects and the covariance between them. The 
approach was applied to simulated data and two datasets 
with records on weaning weight from beef cattle breeds 
(Pirenaica and Rubia Gallega) in Spain. The results 
demonstrated the ability of the model to recover the 
simulated parameters and to provide prediction of the 
individual inbreeding loads of candidates for selection 
without inbred progeny.
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