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Abstract: Patients with non-alcoholic fatty liver disease (NAFLD) may show mild cognitive impair-
ment. Neuroinflammation in the hippocampus mediates cognitive impairment in rat models of
minimal hepatic encephalopathy (MHE). Treatment with rifaximin reverses cognitive impairment
in a large proportion of cirrhotic patients with MHE. However, the underlying mechanisms remain
unclear. The aims of this work were to assess if rats with mild liver damage, as a model of NAFLD,
show neuroinflammation in the hippocampus and impaired cognitive function, if treatment with
rifaximin reverses it, and to study the underlying mechanisms. Mild liver damage was induced
with carbon-tetrachloride. Infiltration of immune cells, glial activation, and cytokine expression, as
well as glutamate receptors expression in the hippocampus and cognitive function were assessed.
We assessed the effects of daily treatment with rifaximin on the alterations showed by these rats.
Rats with mild liver damage showed hippocampal neuroinflammation, reduced membrane expres-
sion of glutamate N-methyl-D-aspartate (NMDA) receptor subunits, and impaired spatial memory.
Increased C-C Motif Chemokine Ligand 2 (CCL2), infiltration of monocytes, microglia activation,
and increased tumor necrosis factor α (TNFα) were reversed by rifaximin, that normalized NMDA
receptor expression and improved spatial memory. Thus, rifaximin reduces neuroinflammation and
improves cognitive function in rats with mild liver damage, being a promising therapy for patients
with NAFLD showing mild cognitive impairment.

Keywords: hepatic encephalopathy; mild liver damage; rifaximin; microglia; NMDA receptor; spatial
learning and memory

1. Introduction

Chronic liver failure can alter brain function and the set of neurological symptoms
produced is known as hepatic encephalopathy (HE). Around 40% of cirrhotic patients show
minimal hepatic encephalopathy (MHE), MHE induces psychomotor slowing, attention
deficits, mild cognitive impairment and motor incoordination [1]. Steatohepatitis, is an
early stage of liver disease, characterized by fatty-inflamed liver. Many patients suffering
from steatohepatitis may already show mild cognitive impairment before developing
cirrhosis [2–4]. The prevalence has been reported to be 32% [4].

Studies in animal models show that neuroinflammation is responsible for cognitive
and motor impairment in MHE [5–7]. Hippocampus modulates spatial learning and mem-
ory [8,9] and other cognitive processes such as object recognition memory [10,11] and
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working memory [12–14]. In animal models of MHE, neuroinflammation in the hippocam-
pus (astrocytes and microglia activation and increased levels of pro-inflammatory TNFα
and interleukin-1β (IL-1β)) leads to altered glutamatergic neurotransmission, with altered
membrane expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
and NMDA receptor subunits which is responsible for cognitive impairment [15–18].
Treatments preventing or reversing neuroinflammation in the hippocampus, such as
sulphorafane, sildenafil, extracellular cyclic guanosine monophosphate (cGMP), antag-
onists of the IL-1 receptor, or infliximab, normalize membrane expression of glutamate
receptors and improve spatial learning and memory [15–20], supporting that neuroinflam-
mation is a main responsible for cognitive impairment in MHE.

Cirrhotic patients died with HE or MHE also show neuroinflammation [21,22]. Patients
who died with steatohepatitis show neuroinflammation in the cerebellum, with infiltration
of T lymphocytes and loss of Purkinje and granular neurons [21]. This suggests that also in
these patients neuroinflammation would be responsible for cognitive impairment. However,
it has not been studied in detail if mild liver failure (steatohepatitis) is enough to induce
neuroinflammation in the hippocampus, the characteristics of this neuroinflammation and
if this is associated with altered glutamatergic neurotransmission and cognitive impairment.
We addressed these questions in the present work.

Neuroinflammation and cognitive impairment in MHE is a consequence of alterations
in peripheral inflammation [17,20,23,24]. However, how these peripheral alterations are
transmitted into the brain remains unclear. Several mechanisms have been proposed
including (1) activation by peripheral pro-inflammatory cytokines (IL-6, IL-17, TNFα)
of their receptors in endothelial cells in the blood–brain barrier and transmission of the
alterations to neighboring astrocytes in the brain [25–27]; (2) infiltration of extracellular
vesicles from the blood [28]; and (3) activation by pro-inflammatory cytokines of vagal
nerve and transmission of the signals to brain. In some pathologies (multiple sclerosis,
cerebral ischemia, . . . ) a main mechanism of transmission of peripheral alterations is by
infiltration of peripheral lymphocytes and/or monocytes into the brain [29–32]. These
immune cells are attracted to the brain by release of specific chemokines, such as CCL2.
The increase in CCL2 expression in the hippocampus has been associated to recruitment
of monocytes, exacerbation of microglia activation, neuronal disfunction, and memory
impairment [33–35].

We have recently shown that mild liver failure in rats, similar to steatohepatitis in hu-
man patients, induces infiltration of lymphocytes and macrophages in the cerebellum [36].
We have also now analyzed infiltration of immune cells in the hippocampus and its possible
relationship with neuroinflammation and cognitive impairment.

It has been shown that cognitive impairment may be improved in cirrhotic patients
with MHE by treating them with rifaximin, the only treatment approved to prevent ap-
pearance of HE [37]. Rifaximin, a semi-synthetic and non-absorbable antibiotic which
reduces the risk of overt HE recurrence and mortality rate in comparison to non treated
patients [38]. Rifaximin acts on microbiota function [39], has anti-inflammatory effects [40]
and improves MHE only in cirrhotic patients which improve peripheral inflammation and
immunophenotype [37]. However, how rifaximin affects the brain to improve cognitive
function remains unknown. We hypothesized that rifaximin would improve cognitive
function in rats with mild liver failure by reducing neuroinflammation and alterations
in neurotransmission.

The aims of this work were to assess: (a) if mild liver damage in rats induces hip-
pocampal neuroinflammation; (b) if this is associated with alteration of neurotransmission
and cognitive impairment; (c) if infiltration of lymphocytes and/or monocytes may con-
tribute to induction of neuroinflammation; and (d) if treatment with rifaximin reverses the
induction of neuroinflammation and of cognitive impairment.
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2. Materials and Methods
2.1. Animal Model and Treatment with Rifaximin

Male Wistar rats (Charles River) weighing 150–180 g were intraperitoneally injected
3 times/week during 4 weeks with 1 mL/kg body weight of carbon tetrachloride (CCl4) to
induce liver damage. CCl4 was prepared 1:10 (v:v) in corn oil as previously described [36,41]
Control rats were intraperitoneally injected with corn oil. Rifaximin (Sigma, St. Louis, MO,
USA) was dissolved in 100% ethanol and administered orally (20 mg/kg body weight).
Two weeks after first CCl4 injection started daily rifaximin treatment and it was maintained
until sacrifice. Control rats were orally treated with the same volume of 100% ethanol.
At 4 weeks of CCl4 injections, this animal model shows liver steatosis, inflammation
and fibrosis, but not hyperammonemia [36], similar to mild steatohepatitis in humans.
The experiments were approved by the Ethic Committee of Animal Experimentation of
our Center and by the Conselleria de Agricultura of Generalitat Valenciana and were
performed in accordance with guidelines of the Directive of the European Commission
(2010/63/EU) for care and management of experimental animals. Experiments complied
with the ARRIVE guide for animal experimentation. Rats were randomly distributed
into four groups: control; control + rifaximin; CCl4 and CCl4 + rifaximin. Four different
experiments with 8 rats per group were carried out, using a total of 32 rats per group. The
number of rats used for each parameter is indicated in the corresponding figure legend.
Rats were sacrificed at 4 weeks to analyze alterations in the hippocampus.

2.2. Immunohistochemistry

Rats were anaesthetized with sodium pentobarbital (1 mL/kg body weight) and
transcardially perfused with 0.9% saline followed by 4% paraformaldehyde in 0.1 M
phosphate buffer (pH 7.4). Brains were removed and post-fixed in the same fixative
solution for 24 h at 4 ◦C. Five-micrometer thick, paraffin-embedded sections (5 µm) were
cut and mounted on coated slide glass. Sections were rehydrated and antigen retrieved
with the Dako 3 in 1 AR buffer EDTA pH 9.0 in a DAKO PT link and then processed with
the Envision Flex kit (DAKO) blocking endogenous peroxidase activity for 5 min and then
incubated with primary antibodies. Primary antibodies used for the study were: anti-
ionised calcium binding adapter molecule 1 (IBA1) (Wako (019-19741); 1:300 for 30 min),
anti- Glial Fibrillary Acidic Protein (GFAP) (Dako (IR524); ready to use for 20 min), anti-IL-
1β (Abcam (9722; 1:300), anti-TNFα (Abcam (ab6671); 1:300), and CCL2 (Proteintech (66272);
1:200). To visualize the reaction Envision Flex + horseradish peroxidase was added for
20 min and finally diaminobenzidine (DAB) was added for 10 min. Mayer’s hematoxylin
(DAKO S3309; Ready to use) for 5 min was used to nucli staining.

2.3. Analysis of IL-1β, TNFα and CCL2 Expression in the CA1-Region of Hippocampus

Analysis of these cytokines in the hippocampus was performed on 10 40×-fields per
rat randomly photographed. The mean gray value in the pyramidal neurons of the CA1
layer was calculated using ImageJ software.

2.4. Analysis of Astrocytes and Microglia Activation

Sections stained with IBA1 and GFAP were scanned with Panoramic Scanner (3DHIS-
TECH, Budapest, Hungary) and photographs were taken with Panoramic viewer software
(3DHISTECH, Budapest, Hungary). Analysis of IBA1 and GFAP staining was performed in
the whole hippocampus using the Image J software. To measure the perimeter of microglia
in white matter of cerebellum, 2000–20,000 size filter was applied. For each rat at least
10 fields (56×) were photographed and 30–40 cells were quantified. The 10 fields were
randomly chosen to cover most of the hippocampus. The results were then converted from
pixels to micrometers. For GFAP analysis no size filter was applied. Ten fields (56×) for rat
were randomly photographed and the total GFAP stained area was quantified. The results
were expressed as percentage of GFAP stained area.
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2.5. Membrane Surface Expression of Subunits of AMPA and NMDA Glutamate Receptors

It was analyzed as described in [42]. Rats were euthanized by decapitation and each
dissected hippocampus was put into ice-cold Krebs buffer (in mmol/L): NaCl 119, KCl 2.5,
KH2PO4 1, NaHCO3 26.2, CaCl2 2.5, and glucose 11, aerated with 95% O2 and 5% CO2 at
pH 7.4. Transversal 400 µm thick slices were obtained with a chopper. Slices were added to
tubes containing ice-cold Krebs buffer with or without 2 mM bis(sulfosuccinimidyl)suberate
(BS3) (Pierce, Rockford, IL, USA) and incubated for 30 min at 4 ◦C. Cross-linking was
terminated by adding 100 mM glycine (10 min, 4 ◦C). The slices were homogenized by
sonication for 20 s. Samples treated with or without BS3 were analyzed by Western blot
using antibodies against NR1 (NMDA Receptor subunit 1) subunit of NMDA receptor
(1:1000; BD Biosciences, Franklin Lakes, NJ, USA), NR2B (NMDA Receptor subunit 2B)
subunit of NMDA receptor (1:1000; Millipore, MA, USA), NR2A (NMDA Receptor subunit
2A) subunit of NMDA receptor (1:1000; Millipore), GluA1 subunit of AMPA receptor
(1:1000; Millipore) GluA2 subunit of AMPA receptor (1:2000; Millipore). The surface
expression of receptor subunits was calculated as the difference between the intensity of
the bands without BS3 (total protein) and with BS3 (non-membrane protein) [27].

2.6. Novel Object Recognition (NOR) and Novel Object Location (NOL) Memory Tests

Tests were performed in an open-field arena (70 × 70 × 40 cm) with visuospatial cues
on the walls as in [19]. Habituation was performed during 5 days by allowing the rats
freely explore the empty field arena for 5 min each day The NOL test was performed on
day 6. First, two identical objects were placed in the arena. After freely exploring for 3 min
the rat was put into its cage for two h. After that, the test was performed, moving one
of the objects to a different location and allowing the rat to freely explore again for 3 min.
The NOR test was performed on day 7. As in NOL, two identical objects were placed
in the arena, and rats freely explored for 3 min. In this case the rat was put into its cage
waiting 6 hours to perform the test, which consisted of changing one of the objects for an
unexplored object and allowing the rat to freely explore again for 3 min. A discrimination
ratio was calculated, considering individual differences in the total time of exploration. The
discrimination ratio was calculated as the difference between the time spent exploring the
object whose location had been changed (NOL) or the new, unexplored object (NOR) with
the object that was still in its initial position.

2.7. Radial Maze

Radial maze was performed as in [16], in a maze consisting in 8 arms (70 cm long and
10 cm wide) radially distributed from a central area with a diameter of 30 cm. Rats were
habituated during 2 sessions allowing them to freely explore the maze for 5 min each day
(at first session pellets were located along all the maze while the second day pellets were
placed at the end of all arms). Test was performed during 4 days (three trials per day). The
task involved locating two pellets, each placed at the end of a different arm according to a
random configuration. Configurations were specific for each rat and were kept invariable
throughout training. The number of spatial reference errors (first visits to arms with no
food) and working errors (visits to arms already visited in the same trial) were calculated.
A learning index was calculated as the number of right choice–number of errors.

2.8. Statistical Analysis

GraphPad Prism software v. 7.0 was used to statistical analysis. Data are expressed
as mean ± SEM. Statistical analysis was carried out using one-way ANOVA and Tukey’s
multiple comparisons test or two-way ANOVA with repeated measures and Bonferroni’s
multiple comparisons test, when appropriate. Data that did not pass the normality test
(D’Agostino and Pearson or Komogorov–Smirnov tests) were analyzed with the nonpara-
metric test Kruskal–Wallis test, with Dunn’s test for multiple comparisons. When standard
deviations (SDs) were not equal, Welch’s ANOVA with Dunnett’s T3 multiple comparisons
test was applied. A confidence level of 95% was considered as significant.
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3. Results
3.1. Rats with Mild Liver Damage Show Microglia and Astrocyte Activation in the Hippocampus
Rifaximin Reverses Microglia but Not Astrocyte Activation

At four weeks of CCl4 injections, microglia were activated in the hippocampus
(386 ± 11 µm for CCl4 rats compared to 504 ± 17 µm in controls, p < 0.0001). Treatment
with rifaximin for two weeks reversed microglial activation in rats with mild liver failure
(469± 16, p < 0.001) and induced microglial activation in control rats (428± 14 µm, p < 0.01)
(Figure 1A,C).
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Figure 1. Astrocyte and microglia activation in the hippocampus. The perimeter of the microglia
(stained with Iba1 marker (A)) and the percentage of GFAP stained area (B) was analyzed. Values
are the mean ± SEM of 8 rats per group. In (C) the data were analyzed using the non-parametric
Kruskal–Wallis test and Dunn’s multiple comparisons test. In (D) the data were analyzed using a one-
way ANOVA and Tukey’s multiple comparisons test. The asterisks indicate a significant difference
with respect to the control group * p < 0.05, ** p < 0.01, **** p < 0.0001, “aaa” p < 0.001. C: control;
C-RIF: Control rats + rifaximin; CCl4: CCl4 injected rats and CCl4-RIF: CCl4 rats + rifaximin.

Astrocytes activation was also observed in the hippocampus at 4 weeks of CCl4
injections. GFAP stained area increased (p < 0.01) in CCl4 rats to 110 ± 1.8% of control
rats and remained at 108 ± 2.1% in CCl4 rats treated with rifaximin (p < 0.05 compared
to controls), indicating that rifaximin treatment does not reverse astrocytes activation
(Figure 1B,D).

We also analyzed by immunohistochemistry the content of IL-1β, TNFα, and CCL2 in
the neurons of the CA1 region of hippocampus. IL-1β levels were increased in rats with



Biomedicines 2022, 10, 1263 6 of 19

mild liver damage (120 ± 4% of controls, p < 0.001), in control rats treated with rifaximin
(115 ± 3%, p < 0.01), and in the CCl4 rats treated with rifaximin (113 ± 2%, p < 0.05),
indicating that rifaximin does not prevent the increase in IL-1β (Figure 2A).
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Figure 2. IL-1β (A), TNFα (B), and CCL2 (C) content in CA1 region of hippocampus. It was analyzed
by immunohistochemistry. The quantification was expressed according to the mean on the grey
scale (Mean Grey Value) and as percentage of control rats for IL-1β quantification. Values are the
mean ± SEM of 6 rats per group. The data were analyzed using a one-way ANOVA and Tukey’s
multiple comparisons test. The asterisks indicate a significant difference compared to the control
group * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001; “a” compared to the CCl4 rats “a” p < 0.05,
“aa” p < 0.01.

TNFα levels were increased in CA1 neurons of CCl4 injected rats (21 ± 1 a.u.) com-
pared to control rats (17 ± 1 a.u., p < 0.05). Rifaximin reversed the increase in TNFα
(15.8 ± 1.4 a.u.) in CCl4 rats (p < 0.01; Figure 2B).

CCL2 content increased (p < 0.0001) in the CA1 neurons in CCl4 rats (19 ± 1 a.u.)
compared to 12± 0.6 a.u. in controls. Rifaximin treatment reduced this increase (15 ± 1 a.u.,
p < 0.05) in CCl4 rats and increased CCL2 content in control rats (16 ± 1 a.u. p < 0.05)
(Figure 2C).

3.2. Hippocampus of Rats with Mild Liver Damage Shows an Increase in Infiltrated Macrophages
and Lumphocytes

As CCL2 promotes monocytes and lymphocytes infiltration from blood, we analyzed
in the meninges of hippocampus the presence of macrophages (marked with Iba1) or
lymphocytes (marked with CD4). Rats with mild liver damage showed increased number
of both, macrophages (10.0 ± 0.6 cells in CCl4, compared to 7.2 ± 0.4 cells in control
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rats, p < 0.01), and lymphocytes (6.4 ± 1.4 cells in CCl4 rats, compared to 2.0 ± 0.5 cells
in control rats, p < 0.05) in the meninges of the hippocampus (Figure 3A–D). Treatment
with rifaximin completely prevented the increase in macrophages (5.0 ± 0.6 cells in CCl4-
RIF, p < 0.001 vs. CCl4 group) but not that of lymphocytes (6.9 ± 2.6 in CCl4-RIF group)
(Figure 3A–D).
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Figure 3. Infiltration of macrophages (A) and CD4+ T lymphocytes (B) into meninges of the hippocam-
pus. It was analyzed by immunohistochemistry with anti-Iba1 or anti-CD4 markers, respectively.
Values are the mean ± SEM of 5 rats per group. In (C) data were analyzed using one-way ANOVA
and Tukey’s multiple comparisons test and in (D) using a Welch’s ANOVA test and Dunnett’s multi-
ple comparisons test. The asterisks indicate a significant difference compared to the control group
* p < 0.05, ** p < 0.01, and “aaa” p < 0.001.

3.3. Membrane Expression of NMDA and AMPA Receptor Subunits Is Altered in the
Hippocampus of Rats with Mild Liver Damage

Membrane expression of GluA1 was not altered by CCl4 or rifaximin (Figure 4A). Rats
with mild liver damage show increased membrane expression of the GluA2 subunit of
AMPA receptors (181 ± 27% of controls, p < 0.05). Membrane expression of GluA2 was also
increased in both control and CCl4 rats treated by rifaximin (227 ± 43%, p < 0.05 in controls
and 216 ± 49%, p < 0.05 in CCl4 rats) (Figure 4B).
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Figure 4. Membrane expression of GluA1 (A) and GluA2 (B) AMPA receptor subunits; of NR1 (C),
NR2A (D) and NR2B (E) NMDA receptor subunits in the hippocampus. Samples from slices with (+)
or without (-) the crosslinker BS3 were analyzed in the same western blot and the surface expression
of receptor subunits was calculated as the difference between the intensity of the bands without BS3
(total protein) and with BS3 (non-membrane protein). Values are the mean ± SEM of 15 rats per
group. Data were analyzed using a one-way ANOVA and Tukey’s multiple comparisons test except
for GluA2 (B) that Welch’s ANOVA test and Dunnett’s multiple comparisons test was used. The
asterisks indicate a significant difference with respect to the control group * p < 0.05. The “a” indicate
a significant difference with respect to the CCl4 rats “a” p < 0.05.

Regarding NMDA receptor, the membrane expression of NR1 and NR2A subunits
was reduced in rats with mild liver damage compared to control rats (65 ± 8%, p < 0.05
and 61 ± 9%, p < 0.05, respectively; Figure 4C,D), whereas membrane expression of the
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NR2B subunit was not significantly affected (Figure 4E). Treatment with rifaximin normal-
ized membrane expression of NR1 and NR2A subunits in rats with mild liver damage
(109 ± 13%, p < 0.05 and 99 ± 13%, p < 0.05) (Figure 4C,D). Rifaximin did not affect
membrane expression of NMDA receptor subunits in control rats.

3.4. Spatial Learning and Memory Are Impaired in Rats with Mild Liver Damage While
Non-Spatial Memory and Working Memory Are Not Altered

We then analyzed if hippocampal neuroinflammation and alterations in glutamate
receptors induce cognitive impairment in rats with mild liver failure. Spatial learning
and working memory were analyzed using the radial maze test. Reference errors were
not significantly affected in CCl4 rats compared to control rats (Figure 5A,B). However,
rifaximin increased slightly reference errors in control rats, suggesting a mild learning
impairing (Figure 5A). At day 4 there was a tendency to increase the reference errors in
CCl4 rats compared with controls, but the difference did not reach statistical significance
(Figure 5B).
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and working memory (E,F) were evaluated in the radial maze. Values are the mean ± SEM of
15 rats per group. In (A,C,E) the data were analyzed using a two-way ANOVA with repeated
measures and Tukey’s multiple comparison test. In (A), only for time a significant effect was found
(F (2.856, 142.8) = 4.332, p < 0.01); in (C)the effect between groups was significant (F (3, 40) = 2.925,
p < 0.05) as well as the time effect (F (2.949, 118.0) = 13.69, p < 0.0001); in (E), only the time was
significant (F (3, 72) = 4.24, p < 0.01). In B and F non-parametric Kruskal–Wallis test and Dunn’s
multiple comparisons test was used and no significant effects were found. In (D) one-way ANOVA
and Tukey’s multiple comparisons test was used and statistic value was F (3, 45) = 3.789, p < 0.05. In
multiple comparisons, the asterisks indicate a significant difference with respect to the control group
* p < 0.05, ** p < 0.01, “a” with respect to CCl4 rats “a” p < 0.05 and “b” compared with C-RIF group,
“b”, p < 0.05. The symbol # indicates within the same group significant difference with respect to day
1 “#” p < 0.05 and “##” p < 0.01. The $ symbol indicates within the same group a significant difference
with respect to day 2 “$” p < 0.05. Rats were evaluated for the ability to identify the change in location
of an object through the NOL test (G) and to identify a new object by the NOR test (H). Values
are mean ± SEM of 13 rats per group. Data were analyzed using a one-way ANOVA and Tukey’s
multiple comparison test (F(3, 34) = 5.389 for NOL test). The asterisks indicate a significant difference
with respect to the control group * p < 0.05, and “a” with respect to the CCl4 rats “a” p < 0.05.

The learning index increased over the 4 days of test in all groups except for CCl4 rats,
which do not improve learning (Figure 5C). The learning index of rats with mild liver
damage was lower than for control rats at day 4 (3.0± 0.67, p < 0.05, compared to 5.8± 0.65
in control rats; Figure 5D). Rifaximin treatment restored learning index in CCl4 injected
rats at day 4 (5.5 ± 0.65, p < 0.05; Figure 5D).

Working errors decreased along days of training, similarly in all groups. No significant
differences in total working errors were observed between different groups, except for a
lower number of total working errors on the fourth day of the test in CCl4 rats treated with
rifaximin (Figure 5E,F).

We also analyzed novel object location (NOL test) as a measure of spatial memory and
novel object recognition memory (NOR test) as a non-spatial memory.

CCl4 rats showed a lower discrimination ratio compared to control rats in the novel
object location (−0.11 ± 0.06 vs. 0.21 ± 0.06 in controls, p < 0.05). Treatment with rifaximin
restores object location memory in rats with mild liver damage (0.18 ± 0.05, p < 0.05)
and tended to reduce location memory in control rats, but the effect was not significant
(Figure 5G).

NOR test was also performed at three weeks to evaluate non-spatial memory. Rats
with mild liver damage did not show impaired object recognition memory (Figure 5H) and
rifaximin did not affect it either.

4. Discussion

The results reported (summarized in Table 1) show that rats with mild liver damage,
steatosis and hepatic inflammation, with incipient fibrosis, similar to steatohepatitis in
human patients, already show neuroinflammation in the hippocampus. This is associated
with altered glutamatergic neurotransmission, with altered membrane expression of AMPA
and NMDA receptors subunits, and impaired spatial learning and memory, indicating that
this mild liver damage already induces hippocampus-dependent neurological impairment.

Patients with mild steatohepatitis would also present neuroinflammation in the hip-
pocampus, as reported in the cerebellum [21], which would contribute to mild cognitive
impairment reported in these patients [2–4], and our results in rats with mild liver damage
in this study support this and describe some potential underlying mechanisms. Up to
32% of patients diagnosed with NAFLD have mild cognitive impairment. This study sup-
ports the therapeutic use of rifaximin also in patients with NAFLD, not only in cirrhotics,
presenting cognitive impairment.



Biomedicines 2022, 10, 1263 11 of 19

Table 1. Summary of CCl4 and rifaximin effects.

CCL4 C-RIF CCL4-RIF

Microglia activation ↑ ↑ Normalized

Astrocyte activation ↑ Not affected ↑
Content of IL-1β ↑ ↑ ↑
Content of TNFα ↑ Not affected Normalized

Content of CCL2 ↑ ↑ Normalized

Macrophages in meninges ↑ Not affected Normalized

CD4+ Lymphocytes in meninges ↑ Not affected ↑
Membrane expression of GluA1 Not affected Not affected Not affected

Membrane expression of GluA2 ↑ ↑ ↑
Membrane expression of NR1 ↓ Not affected Normalized

Membrane expression of NR2A ↓ Not affected Normalized

Membrane expression of NR2B Not affected Not affected Not affected

Reference Errors Not affected Not affected Not affected

Working Errors Not affected Not affected Not affected

Learning Index ↓ Not affected Normalized

NOL ↓ Not affected Normalized

NOR Not affected Not affected Not affected
The effects of CCl4-induced mild liver damage and those of rifaximin administration, both in control rats and
in rats with liver damage, for each outcome analyzed (first column), are summarized. ↑ means increased and
↓ decreased. Normalized means that rifaximin normalize the alteration induced by CCl4.

Rats with mild liver damage show infiltration of monocytes (macrophages) and CD4+
lymphocytes in the hippocampus. This is associated with increased levels of CCL2 in
neurons and with activation of microglia and astrocytes. IL-1β and TNFα levels are also
increased in neurons in the CA1 region of hippocampus and this is associated with increased
membrane expression of the GluA2 subunit of AMPA receptors and reduced membrane
expression of the NR1 and NR2A subunits of NMDA receptors. The altered membrane
expression of glutamate receptors is also associated with impaired spatial learning and
memory, reflected in reduced learning index in the radial maze and impaired novel object
location memory.

Treatment with rifaximin reverses the alterations in CCL2, in monocytes infiltration
and microglia activation, in TNFα in neurons, in membrane expression of NR1 and NR2A
and in spatial learning and memory. The fact that treatment with rifaximin reverses all these
steps support that the process, summarized in Figure 6, would be the main mechanism
by which mild liver damage impairs spatial learning and memory and rifaximin restores
them. However, rifaximin treatment does not reverse the infiltration of CD4+ lymphocytes,
activation of astrocytes and the increase in IL-1β and in membrane expression of GluA2,
suggesting that these effects contribute to a lesser extent to spatial memory impairment in
our rats.

These results suggest that the increase in CCL2 in the hippocampus would be an
early event in the process leading to cognitive impairment in rats with mild liver damage
as summarized in Figure 6. The increase in CCl2 would promote both the infiltration of
monocytes into the hippocampus to became macrophages and the activation of microglia.

This proposed mechanism is supported by reports in the literature. Infiltration of
peripheral monocytes/macrophages is promoted by CCL2 and chemokine (C-X3-C motif)
ligand 1 (CX3CL1 or fractalkine) [43,44]. We show here that CCL2 is increased in the
hippocampus of rats with mild liver damage. Moreover, we previously showed that these
rats have increased plasma levels of CX3CL1 at 4 weeks of CCl4 treatment [36]. This suggest
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that the increased levels of CCL2 in the hippocampus and of CX3CL1 in blood of these rats
would contribute to the infiltration of monocytes in the hippocampus.
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Figure 6. Proposed mechanisms leading to the impaired learning and memory in rats with mild liver
damage. These results suggest that the increase in CCL2 in the hippocampus would be an early event
in the process leading to cognitive impairment in rats with mild liver damage. The increase in CCl2
would promote both the infiltration of monocytes into the hippocampus to became macrophages and
the activation of microglia. Microglia activation in turn would contribute to the increase in TNFα in
hippocampal neurons of these rats, leading to the reduced membrane expression of NR1 and NR2A
subunits of NMDA receptors which, in turn, would lead to the impairment in spatial learning and
memory. All this process is reversed by treatment with rifaximin, that restores cognitive function
in rats with mild liver damage. Mild liver damage also triggers infiltration of CD4+ lymphocytes,
activation of astrocytes, increased levels of IL-1β and enhanced membrane expression of the GluA2
subunit of AMPA receptors in the hippocampus. These changes are not reversed by treatment with
rifaximin. Created with BioRender.com.

It has been reported that CCL2 promotes microglia activation through activation of its
receptor CCR2 [45–47]. The increase in CCL2 in rats with mild liver damage would also
contribute to microglia activation in the hippocampus.

Microglia activation in turn would contribute to the increase in TNFα in hippocampal
neurons of these rats, as occurs in rats with chronic hyperammonemia and hepatic en-
cephalopathy [15–17,20,24,48–50], in meningitis [51], in dorsal horn neurons and the spinal
cord [52,53], or in propofol-induced neurotoxicity [54].

The increased levels of TNFα in turn would contribute to the reduced membrane
expression of the NR2A subunits of NMDA receptors in the hippocampus of rats with mild
liver damage. Balosso et al. [55] reported that in TNFR2 (p75) knockout mice membrane
expression of NR2A/B in the hippocampus is increased, suggesting that activation of
TNFR2 by TNFa shold lead to a decrease in membrane expression of these subunits as we
find in the present study.

It has been reported that both TNFα and IL-1β may modulate membrane expression
of the NR1, NR2A, and NR2B subunits of NMDA receptors and of the GluA1 and GluA2
subunits. However, the effects reported are different depending on the experimental
conditions, the pathology studied or the concentration of TNFα and IL-1β. An opposite
effect of TNFα and IL-1β on GluA1 membrane expression has been reported. TNFα
selectively enhances membrane expression of GluA1 in hippocampal neurons [56]. In
contrast, IL-1β increased membrane expression of GluA1 more slightly [57] or, at high
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concentrations, reduces it [58]. An increase in membrane expression of GluA1 induced by
TNFα has been also reported in [18,59–61] while a decrease in membrane expression of
GluA1 induced by IL-1β has been reported in [19,55,62–65].

Opposite effects of TNFα and IL-1β on membrane expression of NR2A and NR2B
have also been reported in [18,66,67].

This suggests that the final effect on membrane expression of GluA1, NR2B, and
NR2A would depend on the grade of neuroinflammation and on the total and relative
concentrations of TNFα and IL-1β. It is likely that a similar differential modulation occurs
for NR1 and GluA2.

In rats with chronic hyperammonemia and additional neuroinflammation due to inser-
tion of canula into the cerebral ventricle, Cabrera-Pastor et al. [18] propose that increased
levels of TNFα enhance membrane expression of GluA1 and reduces that of GluA2 while
increased levels of IL-1β increase membrane expression of NR1 and NR2A. However,
Taoro-González et al. [62] showed that, in hippocampal slices from hyperammonemic rats
(without the intracerebral canula) increased levels of IL-1β are responsible for the increased
membrane expression of NR2B and GluA2 and for reduced membrane expression of GluA1.

In the rats with mild liver damage used in the present work the increased levels of
TNFα are associated to a reduced membrane expression of the NR1 and NR2A subunits of
NMDA receptors in the hippocampus and the changes in both TNFα and NR1 and NR2A
are reversed by treatment with rifaximin.

Rats with mild liver damage show impaired spatial learning and memory while non-
spatial memory was not impaired. This suggests that impaired spatial learning and memory
is an early event in the progression of liver disease and that working and recognition
memory would be impaired at more advanced stages of liver damage, when there is also
hyperammonemia [36]. Rats with chronic hyperammonemia show impaired working and
novel recognition memory [18,19], suggesting that peripheral hyperammonemia would be
a main contributor to this type of cognitive impairment while other factors would mediate
impairment of spatial learning and memory.

Different mechanisms for these two types of neuroinflammation-induced memory
impairments have been already reported in hyperammonemic rats by Taoro-Gonzalez
et al. [19], supporting a role for neuroinflammation in other brain areas, such as prelim-
bic and post and perirhinal cortex. A differential role of hippocampus in location and
recognition memory has been reported [10], suggesting that spatial memory performance
involves other brain areas in addition to hippocampus, while recognition memory would
not. These differential underlying mechanisms would explain why spatial memory, but not
recognition memory, is impaired in our model of mild liver damage.

The role of glutamate receptors on spatial learning and memory has been well es-
tablished. The literature reports show that both increase or decrease in hippocampal
expression of the different NMDA receptor subunits can induce learning and memory
impairments [68–72], and underly the importance of the relation between NR2A and NR2B
subunit content [73–75]. We show here that mild liver damage is associated to decreased
membrane expression of NMDA subunits NR1 and NR2A with not change in NR2B sub-
unit, indicating a decrease in NRA/NR2B ratio. Louveau et al. [76] reported that mice
lacking the protein CD3ζ show reduced postsynaptic localization of NR2A and spatial
learning and memory deficits in the Barnes and NOL tests, supporting the contribution of
NR2A to these spatial learning and memory tasks also in rats with mild liver damage.

Moreover, membrane expression of AMPA subunit GluA2 was increased in CCl4 rats,
as well as in control or CCl4 rats treated with rifaximin, suggesting a minor role in the
induction of spatial learning impairment, as this was not affected by rifaximin in control
rats. However, increased GluA2 could participate in object location memory, partially
impaired by rifaximin in control rats. The decrease in NR1 and increase in GluA2 were
also reported [17] in rats with porta-cava anastomosis (PCS), another widely used animal
model of liver failure and HE. Decreased membrane expression of AMPA and NMDA
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receptor subunits is involved in impaired long-term potentiation in the hippocampus of
PCS rats [77], then impairing spatial learning and memory in the Morris water maze.

In addition to the CCL2–monocytes–microglia–TNFα–NMDA receptor–spatial learn-
ing and memory pathway summarized in Figure 6, mild liver damage also triggers infiltra-
tion of CD4+ lymphocytes, activation of astrocytes, increased levels of IL-1βand enhanced
membrane expression of the GluA2 subunit of AMPA receptors (Figure 6). These changes
are not reversed by treatment with rifaximin. This suggests that the mechanisms modulat-
ing the changes in these parameters are different to those discussed above. The infiltration
of CD4+ lymphocytes and the activation of astrocytes would lead to the increase in IL-
1βlevels, which in turn would increase membrane expression of GluA2, as suggested by
Taoro-Gonzalez et al. [62] for hyperammonemic rats.

An important contribution of endotoxemia, that is, of the increase in LPS, to appear-
ance of NAFLD has been described [78]. On the other hand, the induction of neuroinflam-
mation and cognitive alterations due to LPS has also been described, mainly in studies on
the mechanisms of Alzheimer’s disease [79,80]. Therefore, we cannot exclude the contribu-
tion of this endotoxin to the appearance of neurological alterations in NAFLD. Furthermore,
the model we have used in this study, CCl4-induced liver damage, has been reported
to induce an increase in LPS [81,82]. The main mechanism of LPS-induced damage is
the induction of oxidative stress. Oxidative stress also contributes to the development of
liver damage and is present in CCl4-induced liver injury [78,83]. In addition, oxidative
stress, associated with neuroinflammation, also contributes to cognitive alterations in dif-
ferent pathologies [84,85], including MHE [16,86–89], and therefore could play a role in the
impaired spatial memory in our model.

Future research would be necessary to delve into the role of endotoxemia and oxidative
stress in the appearance of neurological alterations and MHE in NAFLD.

Rifaximin has been shown to decrease endotoxemia in cirrhotic patients [90–94] and
also in animal models of cirrhosis [95,96]. However, its effect on endotoxemia in NAFLD or
in patients or animal models with mild liver injury in general has not been well studied, and
yet few studies have been conducted on the effect of rifaximin on NAFLD in patients [97–99]
or in animal models [100,101]. Although a main mediator of the damage produced by
LPS is oxidative stress, this has not been analyzed in any of these studies. Therefore,
future studies should analyze the effect of rifaximin on endotoxemia and oxidative stress
in NAFLD.

5. Conclusions

These results suggest that the increase in CCL2 in the hippocampus would be an early
event in the process leading to cognitive impairment in rats with mild liver damage. The
increase in CCl2 would promote both the infiltration of monocytes into the hippocampus
to became macrophages and the activation of microglia. Microglia activation in turn
would contribute to the increase in TNFα in hippocampal neurons of these rats, leading
to the reduced membrane expression of NR1 and NR2A subunits of NMDA receptors
which, in turn, would lead to the impairment in spatial learning and memory. All this
process is reversed by treatment with rifaximin, that restores cognitive function in rats
with mild liver damage. Mild liver damage also triggers infiltration of CD4+ lymphocytes,
activation of astrocytes, increased levels of IL-1β and enhanced membrane expression
of the GluA2 subunit of AMPA receptors in the hippocampus. These changes are not
reversed by treatment with rifaximin. These results show that mild liver damage, such as
that present in NAFLD, already induces neuroinflammation and cognitive alterations and
that rifaximin treatment reduces neuroinflammation and improves cognitive impairment
in these rats, suggesting that rifaximin could be also used as treatment to improve mild
cognitive impairment in NAFLD patients.
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