
Citation: Munkley, J. Aberrant

Sialylation in Cancer: Therapeutic

Opportunities. Cancers 2022, 14, 4248.

https://doi.org/10.3390/

cancers14174248

Academic Editor: Tatsuro Irimura

Received: 12 July 2022

Accepted: 23 August 2022

Published: 31 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Aberrant Sialylation in Cancer: Therapeutic Opportunities
Jennifer Munkley

Centre for Cancer, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK;
jennifer.munkley@ncl.ac.uk

Simple Summary: All cells are covered in a thick layer of sugar molecules known as glycans. Changes
to this sugar coat are common in cancer, and in particular cancer cells often display high levels of a
glycan known as sialic acid. Sialic acid glycans play important roles in cancer biology and can help
tumours grow, spread to other sites, and evade the immune system. Strategies to target sialic acid are
being actively investigated and hold huge potential for cancer research. Here, I outline why sialic
acid is so important in cancer, discuss recent advances in this field, and highlight opportunities for
the development of new sialic acid targeting therapies.

Abstract: The surface of every eukaryotic cell is coated in a thick layer of glycans that acts as a
key interface with the extracellular environment. Cancer cells have a different ‘glycan coat’ to
healthy cells and aberrant glycosylation is a universal feature of cancer cells linked to all of the
cancer hallmarks. This means glycans hold huge potential for the development of new diagnostic
and therapeutic strategies. One key change in tumour glycosylation is increased sialylation, both
on N-glycans and O-glycans, which leads to a dense forest of sialylated structures covering the
cell surface. This hypersialylation has far-reaching consequences for cancer cells, and sialylated
glycans are fundamental in tumour growth, metastasis, immune evasion and drug resistance. The
development of strategies to inhibit aberrant sialylation in cancer represents an important opportunity
to develop new therapeutics. Here, I summarise recent advances to target aberrant sialylation in
cancer, including the development of sialyltransferase inhibitors and strategies to inhibit Siglecs and
Selectins, and discuss opportunities for the future.
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1. Introduction

Glycosylation is the most common, complex, and dynamic post-translational mod-
ification of both membrane-bound and secreted proteins [1]. Glycans are fundamental
to many biological processes and play a key role in protein folding, stability, trafficking,
and activity, and act as regulators of signalling pathways, cell differentiation, immune
recognition, and host–pathogen interactions [2–4]. Glycans consist of two main classes:
O-glycans, initiated in the Golgi apparatus by the initial attachment of GalNAc moieties to
serine or threonine residues to form the Tn antigen, and N-glycans, which are initiated in
the ER via the addition of an oligosaccharide chain to asparagine residues [5,6]. In addition,
intracellular proteins can be modified with O-GlcNAc [7]. Glycan chains may be branched
or elongated and the cellular glycome is composed of glycans covalently linked to lipids
(glycolipids and glycosphingolipids) or proteins (glycoproteins and proteoglycans). The
synthesis of glycans is non-templated, meaning that glycan sequences are not directly
coded by the genome [8]. Instead, glycans are produced at the tissue level and can respond
dynamically to environmental stimuli and signalling molecules via the coordinated activity
of biosynthetic enzymes, the trafficking of these enzymes to the endoplasmic reticulum (ER)
and Golgi apparatus, and the availability of sugar donors [3]. Glycans can be conjugated to
proteins and lipids, or they can be secreted without conjugation to other macromolecules.
In human cells, glycans are primarily constructed from ten monosaccharides: glucose
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(Glc), galactose (Gal), N-acetylgalactosamine (GalNAc), N-acetylglucosamine (GlcNAc),
fucose (Fuc), sialic acid (Neu5Ac), mannose (Man), xylose (Xyl), glucuronic acid (GlcA),
and iduronic acid (IdoA). These monosaccharides are assembled into glycans by biosyn-
thetic enzymes in the Golgi apparatus and the ER, and additional complexity can arise
from further modifications by sulfation, phosphorylation, methylation, and acetylation. In
addition to glycosylation being an intracellular event, recent studies have demonstrated
that glycans can undergo further modification by extracellular enzymes, further revealing
the complexity of the dynamic glycome [9–11].

Aberrant glycosylation in cancer was first described more than fifty years ago [12].
Since then, changes to glycans have been identified in every type of cancer [13], and altered
glycosylation has been linked to all of the cancer hallmarks [3,14,15]. Many of the first
cancer-specific antibodies detect oncofoetal antigens present on embryonic and cancer cells
but not in adult healthy tissue [16], and numerous FDA-approved tumour markers, includ-
ing CEA, CA125, and PSA, are glycan antigens or glycoproteins [17–19]. Common changes
to the tumour glycome include aberrant sialylation, fucosylation, truncated O-glycans and
alterations to O- and N-glycan branching. A dense layer of tumour-associated glycans coats
the cell surface of cancer cells and is a driving force behind tumour growth, metastasis
and immune evasion [15,20,21]. Aberrant glycosylation can interfere with cell adhesion
molecules such as cadherins and integrins and alter the function of receptor tyrosine ki-
nases (RTKs). Tumour-associated glycans can also bind to lectins, including galectins, sialic
acid-binding immunoglobulin-type lectins (Siglecs) and Selectins. Glycans have functional
roles in regulating cell proliferation, cell signalling, cell adhesion, extracellular matrix
interactions and proximal and distal communication [3]. These biological processes play
a critical role in cancer biology, and it has become evident that tumour glycosylation can
have a major impact on cancer progression, tumour immunity, and clinical outcome.

Sialic acid is a key monosaccharide building block of mammalian cell-surface glycans
and in humans, the most common sialic acid is N-acetylneuraminic acid (Neu5Ac). Sialic
acid residues are present at the tip of glycans, positioning them at the forefront of crucial
biological processes [22]. One common feature of cancer cells is increased cell-surface
sialylation [22,23]. The ‘sialome’ is a subclass of the glycome [24], and has been described
as a dense forest coating the cell surface in a complex array of sialylated structures that has
far-reaching consequences for cancer [25]. In this review, I discuss the mechanisms behind
how cancer cells become hypersialylated, how increased sialylation is advantageous to
cancer cells and tumours, and highlight emerging strategies to target aberrant sialylation to
develop new cancer therapeutics.

2. Aberrant Sialylation in Cancer

Aberrant sialylation is a prominent feature across many cancer types and has been
recognised as a cancer hallmark [26,27]. The first indications that sialylation is important in
tumourigenesis came from studies that discovered increased sialylation and sialyltrans-
ferase activity in malignant cells [28–30], and showed that the pre-treatment of cancer cells
with neuraminidase can reduce engraftment and inhibit tumour growth in vivo [31–33].
Early studies also showed that the ability of tumour cells to metastasise correlates with
total sialic acid levels [34], and it was proposed that increased sialylation in tumour cells
can act as a mask to evade recognition by the immune system [29]. Sialoglycans are known
to regulate glycoprotein and glycolipid structure, stability, function and trafficking, and
a growing body of evidence now demonstrates how hypersialylation is advantageous to
tumours. Increased sialylation of cancer cells can promote tumour growth, metastasis,
immune evasion and drug resistance [23], meaning strategies to block aberrant sialylation
on tumours will be highly beneficial.

Cancer patients have long been reported to express ‘Hanganutziu–Deicher’ antibodies
that recognise gangliosides carrying the non-human sialic acid Neu5Gc (N-glycolylneuraminic
acid), which is also detected in human tumours [15]. Neu5Gc is a major form of sialic
acid in mammals but cannot be biosynthetically produced in humans due to the loss of
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CMP-sialic acid hydroxylase (CMAH) [35–37]. Neu5Gc differs from human sialic acid,
Neu5Ac, by addition of a single oxygen atom and can be present in humans due to the
incorporation of diet-derived Neu5Gc into human glycans [15,38]. Humans show variable
levels of anti-Neu5Gc antibodies, which has been linked to tumourigenesis. Specifically, in
a humanised mouse model lacking the CMAH gene, anti-Neu5Gc antibodies have been
linked to an increased rate of liver cancer [35]. The primary dietary source of Neu5Gc is
red meat, and it has been speculated that this may help explain the increased cancer risk
associated with red meat consumption [15].

2.1. Sialylated Glycans

The cell surface of cancer cells is covered in a dense layer of sialylated glycans, which
can include sialyl-Tn (sTn), sialyl-T (sT) and sialyl-Lewis antigens, polysialic acid, and
gangliosides [39] (Figure 1 and Table 1). These tumour-associated antigens are often
exploited as markers for the detection and monitoring of cancer [15,40]. The sTn antigen
is a truncated O-glycan containing a sialic acid α-2,6 linked to GalNAc and is a well-
characterised cancer-associated glycan that is upregulated in virtually all epithelial cancers
and associated with a poor patient outcomes [40]. sTn has been investigated widely as
a circulating biomarker for several cancers, and a vaccine against sTn has been tested in
clinical trials [41]. The sialyl-T (sT) antigen (Neu5Acα2-3Galβ1-3GalNAc-) is upregulated
in several tumour types, including breast, ovarian, brain and renal cancers, and is associated
with reduced survival times in patients [42–47].

Other important sialylated glycans include the sialyl Lewis antigens, sLeA and sLeX,
which are found at high levels in many solid tumours and adenocarcinomas. Both sLeA

and sLeX are ligands for Selectins, a family of lectins that play a role in immune-cell
trafficking [48]. Cancer cells displaying sLeA and SLeX are recognised as leucocytes, which
enables them to leave the bloodstream and metastasise to other sites [49]. The cancer antigen
CA 19-9 contains sLeA and is routinely used to monitor treatment response in pancreatic
cancer [50], and sLeX is associated with a higher risk of metastasis [51,52]. Increased
levels of sialylation on cancer cells also leads to upregulation of sialylated ligands that
are recognised by lectin receptors known as Siglecs (Sialic acid-binding immunoglobulin-
type lectins) on immune cells, and Siglec–sialoglycan interactions can modulate immune
cell function and promote an immunosuppressive tumour microenvironment (TME) [53]
(Figure 2).

Cancer cells also display increased expression of the α2,8-linked polymer known
as polysialic acid (polySia). Upregulation of polysialic acid has been detected in several
cancer types and is associated with high-grade tumours [3,22,54,55]. Polysialic acid is often
present on NCAM1 (neural cell adhesion molecule 1) [54,56], and expression correlates with
metastatic disease and poor clinical prognosis [57,58]. Gangliosides (sialic-acid-containing
glycosphingolipids) such as the complex ganglioside GD2 can also be upregulated in
cancer and are implicated in tumour development [59,60]. Strategies to therapeutically
target GD2 are currently in development, including GD2-CAR T cell therapy [61] and the
monoclonal antibody dinutuximab [62]. The ganglioside GM3 is also implicated in cancer
and is being investigated as a target for immunotherapy [63,64]. In addition to an overall
upregulation of sialylated glycans in tumour cells, there can also be changes in sialic acid
modifications [15]. A growing number of studies associate sialic acid O-acetylation with
cancer, and this has been linked to metastasis and tumour immunity [65–67].
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Figure 1. Hypersialylation is a common feature of cancer cells. Tumour cells have increased levels 
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sialyl-Tn (sTn), Sialyl-T (sT), polysialic acid (polySia), GM3 and GD2 antigens. 

Table 1. Summary of sialylation changes in cancer. 

Sialylation Change Link to Cancer References 

sialyl Tn (sTn) 

sTn is upregulated in numerous epithelial cancers and associated with poor 
patient outcomes. sTn has been investigated as a circulating biomarker for 
several cancers, and the Theratope vaccine against sTn has been tested in 

clinical trials. 

[40,41] 

Sialyl-T (sT) 
The sT antigen is upregulated in several tumour types, including breast, 
ovarian, brain and renal cancers, and is associated with reduced survival 

times in patients.  
[42–47]. 

Selectin ligands 
The sialyl Lewis antigens (sLeA and SLeX) are found at high levels in many 

cancer types and linked to metastasis. sLeA and SLeX are ligands for Selectins 
and enable cancer cells to leave the bloodstream and colonise other organs. 
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Polysialic acid  
(polySia) 

Polysialic acid is often upregulated in high-grade tumours, and expression 
correlates with metastatic disease and poor clinical prognosis. [3,22,54,55,57,58] 

Gangliosides  
The gangliosides GD2 and GM3 can be upregulated in cancer and are being 

actively investigated as therapeutic targets. [59–64] 

Figure 1. Hypersialylation is a common feature of cancer cells. Tumour cells have increased levels
of sialylated glycans on their cell surface, which include sialyl LewisA (SLeA), sialyl-LewisX (SLeX),
sialyl-Tn (sTn), Sialyl-T (sT), polysialic acid (polySia), GM3 and GD2 antigens.
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Figure 2. Siglec–sialoglycan interactions can modulate immune cell function and promote an im-
munosuppressive tumour microenvironment (TME). 
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Table 1. Summary of sialylation changes in cancer.

Sialylation Change Link to Cancer References

sialyl Tn (sTn)

sTn is upregulated in numerous epithelial cancers and associated with
poor patient outcomes. sTn has been investigated as a circulating

biomarker for several cancers, and the Theratope vaccine against sTn has
been tested in clinical trials.

[40,41]

Sialyl-T (sT)
The sT antigen is upregulated in several tumour types, including breast,
ovarian, brain and renal cancers, and is associated with reduced survival

times in patients.
[42–47].

Selectin ligands

The sialyl Lewis antigens (sLeA and SLeX) are found at high levels in many
cancer types and linked to metastasis. sLeA and SLeX are ligands for

Selectins and enable cancer cells to leave the bloodstream and colonise
other organs.

[48,49,51,52]

Siglec ligands

Increased levels of sialylation on cancer cells leads to upregulation of
sialylated ligands that are recognised by Siglec receptors on immune cells.

Siglec–sialoglycan interactions can modulate immune cell function and
promote an immunosuppressive tumour microenvironment (TME).

[53]

Polysialic acid (polySia) Polysialic acid is often upregulated in high-grade tumours, and expression
correlates with metastatic disease and poor clinical prognosis. [3,22,54,55,57,58]

Gangliosides The gangliosides GD2 and GM3 can be upregulated in cancer and are
being actively investigated as therapeutic targets. [59–64]

2.2. Sialyltransferase Enzymes

Twenty different sialyltransferase enzymes have been identified and classified into
four groups: ST3GAL, ST6GAL, ST6GALNAC and ST8SIA [68,69]. These enzymes add
sialic acid (Neu5Ac) to galactose (ST3GAL and ST6GAL), N-acetylgalactosamine (GalNAc)
(ST6GALNAC), or sialic acid (ST8SIA) in α2-3, α2-6, or α2-8 glycosidic linkages, respec-
tively [70]. The altered expression of sialyltransferase enzymes plays a critical role in
tumour biology, and sialyltransferase enzymes have been linked to malignant disease [22].
Sialic acid can be removed from glycoconjugates by sialidase enzymes (also known as
neuraminidases) [71]. There are four sialidase enzymes (NEU1-4) [72], and individual
sialidases have also been associated with certain cancer types [73]. The upregulation of
sialyltransferases has been linked to Ras and c-Myc signalling, as well as gene amplification,
DNA methylation, hypoxia and androgen steroid hormones [74–77].

The most well-described sialyltransferase is human ST6GAL1, which adds sialic acids
in an α2-6 linkage to galactose residues of Galβ1-4GlcNAc-R on N-glycans [75]. A second
enzyme, ST6GAL2, can also add α2-6 linked sialic acid to N-glycans, but this enzyme
is mainly expressed in the brain [78]. ST6GAL1 is overexpressed in numerous cancer
types, and there is extensive literature linking ST6GAL1 to tumour grade, metastasis
and poor patient prognosis [75,79–82]. ST6GAL1 mediated α2,6-linked sialylation of
receptors, including the β1 integrin [83–87], the receptor tyrosine kinases EGFR, MET
and HER2 [88–90] and the Fas and TNFR1 death receptors [91,92], can promote invasion
and resistance to apoptosis. ST6GAL1 is also implicated in the epithelial to mesenchymal
transition (EMT) [88,93] and can promote a cancer-stem-cell phenotype [80,94]. In addition,
ST6GAL1 can modulate T-cell responses in the tumour microenvironment and play a role
in cancer cell immune evasion [95,96].

Canonically, ST6GAL1 is localised intracellularly within the trans-Golgi network, and
it is within this context that the role of ST6GAL1 in cancer biology has been interpreted.
However, catalytically active ST6GAL1 is also present in extracellular spaces and sys-
temic circulation, and extracellular ST6GAL1 is a potent modifier of processes including
inflammatory cell production, haematopoiesis, B-cell differentiation and the sialylation of
IgG [10,97–99]. Early work suggested that circulating ST6GAL1 is mainly released by the
liver [100], but recent studies suggest that cancer cells also have the capacity to increase ex-
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tracellular ST6GAL1 levels [11,101]. ST6GAL1 detected in patient blood has been identified
as a novel biomarker for lenvatinib-susceptible FGF19-driven hepatocellular carcinoma,
which could aid in optimal drug selection [101]. Excitingly, a recent study revealed that
breast cancer cells release ST6GAL1 in exosome-like vesicles, and this extracellular enzyme
can remodel the cell surface and secrete glycans to promote breast cancer cell growth and
invasiveness [11]. This finding is consistent with previous findings that exosomes are
enriched with both ST6GAL1 and α2,6-sialylated glycoproteins [102,103], and raises the
intriguing possibility of targeting extracellular ST6GAL1 therapeutically.

ST3GAL1 acts predominantly on core-1 O-glycans and catalyses the transfer of sialic
acid to a galactose residue in α2-3 linkage to generate the sialyl-T antigen from the T antigen
Galβ1-3GalNAc. ST3GAL1 is overexpressed in malignant tissues, including breast [42]
and ovarian cancer [43]. In breast cancer, ST3GAL1 has been shown to promote tumori-
genesis [104] and is associated with poor clinical outcomes and an inflammatory pheno-
type [105,106]. ST3GAL1 has also been linked to immune evasion through the sialylation
of CD55 [107]. In pancreatic cancer, ST3GAL1 enhances metastatic potential [108] and
promotes the synthesis of ligands for Siglec-7 and Siglec-9 on tumour cells to drive tumour-
associated macrophage differentiation [109]. Other members of the ST3 family, namely
ST3GAL4 and ST3GAL6, have been linked to cancer [22,110–114]. ST3GAL4 and ST3GAL6
are both involved in the synthesis of sLeA and sLeX [48,115]. Cell-surface glycans contain-
ing sLeA and sLeX act as binding ligands for Selectins and play key roles in facilitating
metastasis. ST3GAL4 upregulation promotes c-Met activation and an invasive phenotype
in gastric carcinoma cells [114], and in multiple myeloma ST3GAL6 promotes homing and
engraftment to the bone marrow niche and is associated with inferior overall survival in
patients [111].

The ST6GALNAC family catalyses the glycosidic linkage of sialic acids to GalNAc (N-
galactosamine) residues found on O-glycosylated proteins or glycolipids in an α2-6 linkage.
ST6GALNAC1 adds sialic acid to O-linked GalNAc residues to promote the formation
of the tumour-associated sialyl-Tn (sTn) antigen [116]. sTn is overexpressed in many
cancer types [40,117] and is associated with poor clinical outcomes [118–121]. Upregulation
of ST6GALNAC1 can promote tumour growth and metastasis [122–124] and is linked
to cancer cell stemness [121,123]. ST6GALNAC1 can be induced by cytokines [125], and
studies show that binding of sTn to Siglec-15 on macrophages can suppress T-cell responses,
leading to immune evasion in the tumour microenvironment [126–128]. High expression of
ST6GALNAC2, which synthesises the sialyl-6-T antigen and to a lesser extent sialylates
the Tn antigen [116,129], has been linked to poor prognosis in colorectal cancer [130] and
metastasis in thyroid cancer [131], but has been identified as a metastasis suppressor and
correlated with increased patient survival times in breast cancer [132].

ST8SIA enzymes transfer a sialic acid residue to another sialic acid in α2-8 linkages,
contributing to the synthesis of oligosialic and polysialic acid chains [133–135]. Of particular
interest, 2,8-disialic structures have been shown to be ligands for Siglec-7 and Siglec-9 and
may act as glycoimmune checkpoints in cancer [100,101]. ST8SIA2 and ST8SIA4 are polysia-
lyltransferases producing polysialylated cell adhesion molecules, which are re-expressed
during cancer progression [134,136,137]. ST8SIA2 correlates with tumour progression in
non-small-cell lung cancer [138] and has been linked to tumour invasion and metasta-
sis [139,140]. ST8SIA4 is overexpressed in breast and renal cell carcinoma tissues [141,142]
and is linked to chemoresistance in acute myeloid leukaemia [143]. In contrast, in follicular
thyroid carcinoma, ST8SIA4 is downregulated and has been shown to suppress tumour
growth [144]. ST8SIA3 generates oligo-sialylated structures [133] and has been identified
as a therapeutic target for glioblastomas [145]. Other ST8SIA family members, including
ST8SIA1, ST8SIA and ST8SIA6, have also been linked to a malignant potential. ST8SIA1
and ST8SIA5 produce di- and tri-sialylated structures, respectively, but exclusively on gan-
gliosides. ST8SIA1 (also known as GD3 synthase) catalyses the ganglioside GD3 [15] and
has been associated with tumour growth and progression [146,147]. Decreased expression
of ST8SIA5 correlates with reduced survival in patients with colorectal cancer [148] and
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has been linked to gene regulation by FOXO3, which may facilitate inflammation-mediated
colon cancer growth [148]. ST8SIA6 transfers sialic acid onto NeuAcα2,3 (6)Gal disaccha-
ride acceptor substrates including glycolipids and O-linked glycoproteins [149] to generate
α2,8-linked disialic acids. ST8SIA6 is upregulated in many cancer types and is associated
with poor prognosis [150]. Studies show that ST8SIA6 can promote tumour growth in mice
by inhibiting immune responses in tumours, characterised by macrophage polarisation
toward M2 and upregulation of the immune modulator arginase [150].

2.3. Sialidase Enzymes

Sialidases cleave sialic acids from glycoconjugates and are key enzymes controlling
the sialic acid content of cells. Sialylation levels can be modified synergistically by both
sialyltransferase and sialidase enzymes, and while the role of sialyltransferase enzymes
in malignancy is well-explored, far fewer studies have investigated the role of sialidases
in cancer. There are four mammalian sialidases, NEU1-4, and each enzyme has a distinct
cellular location. NEU1 is predominantly located in lysosomes, NEU2 in the cytosol, NEU3
in the plasma membrane, and NEU4 is located in mitochondria [151]. The four human
sialidases also differ in their substrate specificities and appear to have differing roles in
malignancy [151].

Published data investigating the role of NEU1 in cancer are somewhat contradictory. In
colon cancer, NEU1 has been linked to the suppression of metastasis through de-sialylation
of integrin beta4 [152], and in bladder cancer, NEU1 is downregulated and can suppress
in vivo tumour formation by inhibiting Akt signalling [153]. Downregulation of NEU1
can also inhibit the cell proliferation and invasion capabilities of ovarian cancer cells [154].
However, in contrast, studies have also demonstrated that NEU1 can promote pancreatic
cancer metastasis [155]. NEU3 is upregulated in numerous cancer types [156–159] and
contributes to tumorigenesis, most likely by modifying transmembrane signalling [160],
and downregulation of NEU4 correlates with increased invasion in colon cancers [161].
These studies show that while increased sialylation of tumours is often attributed to the
upregulation of sialyltransferase enzymes, sialidase enzymes are also important modulators
of sialylation in cancer cells and can contribute to tumour hypersialylation.

3. The Functional Role of Sialylation in Cancer
3.1. Metastasis

Metastasis is the spread of cancer cells from the primary tumour to surrounding
tissues and other organs and is the main cause of death in cancer patients [162]. Metastasis
consists of several steps to enable cancer cells to leave the primary tumour mass, to
intravasate and survive in the circulation, to extravasate and seed in secondary sites, and
to initiate the growth of metastatic lesions. Although recent advances have shed light
on the metastatic cascade [163], there is still more to uncover, in particular in relation
to the role of glycosylation in metastasis. Hypersialylation is closely linked to a pro-
metastatic phenotype, and sialylated glycans are critical to several processes involved in
metastasis [13,25,32].

Altered adhesion between cancer cells and the extracellular matrix (ECM) and other
cells in the tumour is a key mechanism that allows cells to dissociate from the primary tu-
mour, leading to potential metastasis at secondary sites. Numerous studies have revealed a
link between hypersialylation and the altered adhesion of cancer cells [25]. For example, the
sialylation of integrins can modulate the adhesion, migration, and signalling of metastatic
cells [85–87,164]. In breast cancer cells, α2,6 hypersialylation of integrin β1 decreases cell
adhesion [165], and in colon cancer cells, enhanced sialylation of β1 promotes adhesion to
collagen I and increases cancer cell migration [84], and decreased sialylation of integrin β4
can suppress cell migration, adhesion and invasion [152].

EMT is the process by which immobile epithelial cells transition into motile mesenchy-
mal cells [166]. EMT involves the disruption of cell–cell adhesion and polarity, remodelling
of the cytoskeleton, and changes to cell–matrix adhesion. Sialyltransferases play an integral
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role in EMT to promote cancer cell invasiveness and metastatic activity [167]. In breast
cancer, ST6GAL1 can promote TGFβ-induced EMT as well as maintenance of a mesenchy-
mal state [93], and in pancreatic cancer, ST6GAL1-mediated sialylation can upregulate
mesenchymal markers and enhance cell invasion [168]. The ST3GAL1 enzyme has also
been shown to promote cell migration, invasion, and TGF-β1-induced EMT in ovarian
cancer [43,47]. In contrast, other studies show that sialylation can be downregulated during
EMT, but then increased again once cells are in a mesenchymal state [169].

To metastasise, cancer cells circulating in the bloodstream or lymphatic system must
‘tether’ to cells at a secondary site by interacting with extracellular molecules, followed by
‘rolling’ of the cancer cell against endothelial cells, resulting in firm adhesion and facilitating
extravasation and colonisation. The adhesion of tumour cells to endothelial cells occurs
through interactions with a family of cell-adhesion molecules known as Selectins [48,115].
Selectins are classified as P-, E-, and L-selectin and are expressed on platelets, endothelial
cells and leukocytes, respectively, and their ligands, sLeA and sLeX, are found on cell-surface
antigens such as CD24, CD44 and the P-selectin glycoprotein ligand (PSGL1) [3,170]. The
Selectins and their ligands play a key role in cancer metastasis [115,171–173] and have also
been linked to therapy resistance [174,175]. E-selectin ligands have been shown to promote
homing to bone marrow and may play a role in the metastasis of cancer cells to bone [176].
E-selectin is also important in breast cancer, where E-selectin facilitates entry into the bone
marrow niche [177], and the binding of cancer cells to E-selectin induces EMT and WNT
signalling and promotes breast cancer bone metastasis [178].

3.2. Cancer Cell Survival

The ability of cancer cells to evade programmed cell death by apoptosis is a hallmark
of cancer [179]. Glycans play an important role in many of the processes leading to
apoptosis, and altered glycosylation of cell death receptors can enable cancer cells to
resist cell death [180]. Hypersialylation of receptors, such as Fas and tumour necrosis
factor receptor 1 (TNFR1) death receptor, can protect against apoptosis and contribute
to increased cancer cell survival [91,92]. Sialylated glycans can also inhibit interactions
between Galectin-3 (Gal-3) and its binding partners (which include integrins, collagen,
mucins, and fibronectin) [181]. Together, these findings highlight the role of sialylated
glycans in promoting cancer cell survival and raise the possibility of targeting aberrant
sialylation as a therapeutic strategy to hinder the ability of cancer cells to evade apoptosis.

3.3. Immune Evasion

To grow and successfully metastasise, cancer cells must avoid detection and destruc-
tion by the immune system [182]. One way cancer cells achieve this is by mimicking the
cell-surface glycosylation of healthy cells to employ a self signal and avoid immune at-
tack [183]. Glycan structures on the cell surface are among the first assemblies that interact
with immune cells, and the specific glycan signatures found on tumour cells, known as the
tumour glyco-code, can alter how the immune system perceives cancer cells and can induce
immune suppression [184]. The early evidence that tumour sialic acid promotes immune
evasion came from the discovery that de-sialylated fibrosarcoma cells show decreased
proliferation in immunocompetent mice but not in irradiated mice [185]. A family of lectin
receptors known as Siglecs (Sialic acid-binding immunoglobulin-type lectins) have emerged
as key mediators of this effect [186] and hypersialylation is now emerging as a potential new
immune checkpoint [53] (Figure 2). Siglecs are primarily expressed on immune cells, such
as T cells, NK cells and monocytes, and have an immunoreceptor tyrosine-based inhibitory
motif [187]. Siglecs transmit inhibitory signals and are comparable with the immune check-
point inhibitor programmed death protein 1 (PD-1) [187,188]. A recent explosion of data
implicating Siglecs in cancer has made this an active area of research [188], and studies have
shown that tumour cells can exploit Siglec-sialoglycan interactions to modulate immune
cell function and promote an immunosuppressive tumour microenvironment (TME) [53].
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Siglec-7 and -9 expression on tumour-associated macrophages (TAMs) can promote
cancer progression by driving macrophage polarisation towards the M2 phenotype to
establish an immunosuppressive tumour microenvironment [109,189,190]. Siglec-10 is also
expressed by tumour-associated macrophages and can interact with tumour-expressed
CD24 to promote immune suppression [191]. Similarly, interactions between tumour
sialoglycans and Siglec-7 or Siglec-9 expressed on natural-killer (NK) cells can inhibit
tumour cell death [192,193]. In mouse models of lung cancer, neutrophils that express
Siglec-F (the mouse homologue to Siglecs 5 and 8) can remodel the tumour immune
microenvironment and drive the growth of tumours [194]. Studies suggest that T cells can
express and be negatively regulated by Siglec-5, Siglec-7, Siglec-9 and Siglec-10 [195,196],
and Siglec-15 has been shown to increase tumour growth rates and suppresses antigen-
specific T-cell responses [126]. Siglec-15 has also been identified as an immune suppressor.
Recent findings show that Siglec-15 is upregulated in the tumour microenvironment, and
its expression is mutually exclusive to PDL1 across numerous cancer types [126].

Although it was initially hypothesised that immune cells expressing Siglecs are in-
hibited upon binding to sialylated ligands on target cells, it has now been discovered
that Siglec-15 is present on both tumour-infiltrating myeloid cells and tumour cells [126].
There are differences in Siglecs between mouse and humans [197], and moving forward,
the development of models expressing human Siglecs on murine immune cells or mouse
models engrafted with human immune cells [198–200] will increase our understanding of
the role Siglecs play in the tumour microenvironment [22]. In addition to Siglecs, numer-
ous other mechanisms have been proposed for how hypersialylation modulates the host
immune response to cancer cells, including the skewing of T cell responses [96,201] and
sialic-acid-mediated self-recognition by complement factor H [202].

3.4. Therapy Resistance

Increased sialylation of tumours can contribute to chemotherapy and radiotherapy
resistance in several types of cancer, believed to be potentially due to the physical bar-
rier of extra sialic acid on the cell surface potentially absorbing ionising radiation, mod-
ifying key receptors, and blocking the uptake of drug molecules into the cell. Altered
sialylation of tumour cells has been linked to cisplatin and paclitaxel resistance in ovar-
ian cancer [43,203,204], docetaxel sensitivity in hepatocarcinoma [205], imatinib resis-
tance in chronic myeloid leukaemia [206], multidrug resistance in human acute myeloid
leukaemia [143], chemotherapy resistance in gastric cancer [207], resistance to tyrosine
kinase inhibition in lung cancer [208], and bortezomib sensitivity of myeloma cells [49]. A
correlation between hypersialylation and radiotherapy resistance have also been reported,
particularly in colorectal cancer [209–212]. A recent study also reported that sialylation of
the oncogenic receptor Erb2 can mask the epitope of an anti-cancer antibody (trastuzumab)
to promote resistance to treatment [213]. These studies raise the potential for targeting
aberrant sialylation alongside existing therapies to boost treatment response and suggest
that sialylated glycans can likely also be exploited to predict sensitivity and resistance to
treatment strategies. As the mechanisms underlying sialic-acid-mediated drug resistance
are poorly understood, further investigations in this area will be crucial to develop new
therapeutic strategies to disarm drug resistance.

4. Therapeutic Strategies to Inhibit Aberrant Sialylation
4.1. Sialyltransferase Inhibition

There are several potential strategies to block the incorporation of sialic acid onto
cell-surface glycans. These include inhibition of the CMP-sialic acid transporter and
inhibition of sialyltransferase enzymes. Targeting CMP-sialic acid via a specific inhibitor
decreases cell-surface sialic acid and can inhibit the metastasis of colorectal cancer [214], and
knockdown of the CMP-sialic acid transporter impeded the growth of melanoma tumours
and suggested that hypersialylation impedes T-cell-mediated anti-tumour responses while
promoting tumour-associated regulatory T cells [215].
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Inhibition of sialyltransferase enzymes is also being pursued as a strategy to block
cell-surface sialylation. The cell-permeable peracetylated 3Fax-Neu5Ac (P-3FAX-Neu5Ac)
is a global metabolic inhibitor of sialylation [216,217]. Intracellularly, the fluorinated
prodrug P-3Fax-Neu5Ac is converted into the active inhibitor CMP-3Fax-Neu5Ac to inhibit
all sialyltransferases and reduce global sialylation. 3FAX-Neu5Ac fails to be used as a
substrate by biosynthetic enzymes, and thus diminishes sialic acid content by ~80–90%.
However, when P-3FAX-Neu5Ac was tested in a murine model, the global inhibition of
sialylation produces liver and kidney dysfunction [218]. To overcome the deleterious effect
on liver and kidney function, Bull et al. have performed targeted delivery of P-3FAX-
Neu5Ac using nanoparticles to prevent metastasis in a mouse lung cancer model [219], and
have also utilised intra-tumoural injection of 3Fax-Neu5Ac to suppress tumour growth in
multiple cancer models by promoting T-cell-mediated immunity [201]. Despite the localised
site of injection, renal toxicity was still noted at higher doses, thus highlighting the need
for better-tolerated versions of 3FAX-Neu5Ac for use in vivo. Further derivatives of 3Fax-
Neu5Ac have been developed and tested as cancer therapeutics, including C-5-modified
3-fluoro sialic acid sialyltransferase inhibitors (where the natural N-acetamide group is
replaced with a carbamate functionality) [220]. These novel inhibitors are more efficiently
metabolised towards their CMP analogues, reach higher effective concentrations within the
cell, and induce prolonged inhibition of both α2,3 and α2,6-linked sialylation [220]. Hence,
C-5 carbamate sialyltransferase inhibitors hold promise to inhibit sialylation in cancer, and
future studies should explore the use of these new inhibitors in vivo.

Several natural products with the potential to inhibit sialyltransferases are available,
including ginsenosides, which can inhibit both α-2,3- and α-2,6-sialylation [221], soyas-
aponin I, which inhibits ST3GAL1 [222,223], flavonoids that can inhibit ST6GAL1 [224], and
lithocholic acid, which is active against ST3GAL1 [225,226]. Further derivatives of litho-
cholic acid have been developed, including the novel sialyltransferase inhibitor Lith-O-Asp,
which inhibits ST3GAL1, ST3GAL3 and ST6GAL1 and can suppress metastasis [226]. Sialyl-
transferase inhibitors have also been identified through high-throughput screening, where
lead compounds include pyrazole, which shows high selectivity towards ST3GAL3 [227].
In addition, cyclopentanoid-type compounds have also been developed and have shown
promise as sialyltransferase inhibitors [228].

Due to the potential off-target effects on the liver and kidney exhibited by the pan-
inhibitor 3FAX-Neu5Ac, it has been suggested that for sialyltransferase inhibitors to proceed
to clinical trials, they will need to be specific to individual enzymes [25]. However, as
sialyltransferase enzymes are often membrane-bound proteins, this has led to difficulties
in successfully crystallising the enzymes, and only a handful of human sialyltransferase
structures exist [229]. These include ST6GAL1 [230], ST6GalNAC2 [231], and ST8SIA3 [232]
and have enabled the development of a new series of carbamate-linked sialyltransferase
inhibitors [233]. Of particular interest, arbamate-linked uridyl-based inhibitors of human
ST6GAL1 have been developed and provide a promising new class of sialyltransferase
inhibitors to be further explored [233]. To date, ST3GAL1 and ST6GAL1 have been the
most commonly investigated and targeted sialyltransferase enzymes in cancer. Moving
forward, wider studies including the entire panel of 20 human sialyltransferases hold
exciting potential to develop novel inhibitors.

4.2. Selectin Inhibitors

Anti-selectin antibodies, antibodies that target selectin ligands, and other platforms
to block Selectin–ligand interactions are being investigated as a means of blocking cancer
metastasis. Anti-Selectin antibodies in the pipeline as agents to block Selectin–ligand
interactions include crizanlizumab, which blocks P-selectin [234], and specific humanized
blocking antibodies for P-selectin and PSGL-1 [235]. The E-selectin inhibitor Uproleselan
(GMI-1271), developed by GlycoMimetics, has shown promise for treating acute myeloid
leukaemia (AML) in combination with chemotherapy (NCT02306291) [175,236,237], with
phase III trial results expected in 2023 (NCT03616470), and may also re-sensitise multiple
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myeloma to therapy [235]. In addition, other pharmacological approaches to disrupt
Selectin–ligand interactions are also being developed [238–242].

4.3. Antibody–Sialidase Conjugates

Increased sialylation helps cancer cells evade immune destruction, and targeting aber-
rant sialylation offers the ability to reprogram immune responses to tumours. Sialidase
treatment of a variety of cancer cells has been shown to remove Siglec ligands and enhance
the clearance of cancer cells injected into mice, thus highlighting an exciting opportunity to
sensitise cancer cells to immunosurveillance [192,243]. Antibody–sialidase conjugates can
enable the targeted destruction of self-associated sialylated glycans to enhance anti-tumour
immunity [244]. Novel routes to target Siglec–sialic acid interactions include using a siali-
dase conjugated to a HER2 antibody (trastuzumab) to de-sialylate cancer cells [193,245].
Here, cancer cell de-sialylation can remove Siglec ligands and enhance NK cell killing of
breast cancer cells. Improved antibody–enzyme conjugates have now been developed that
utilise a human sialidase with improved biocompatibility and stability in vivo [246]. In
syngeneic breast cancer models, the removal of sialylated glycans enhanced immune cell
infiltration and activation and prolonged survival times in mice with trastuzumab-resistant
breast cancer. These reagents are currently being further developed by Palleon Pharmaceu-
ticals [188], who are evaluating an HER2–sialidase conjugate, as both a single agent and
in combination with pembrolizumab (anti-PD1) in previously treated non-small-cell lung
cancer, colorectal cancer, melanoma, pancreatic cancer, and ovarian cancer (NCT05259696).
This exciting Phase I/II clinical trial will evaluate destroying sialylated glycan-mediated
immune checkpoints in combination with traditional immune checkpoint blockade as a
novel approach to overcome immune resistance in cancer. Antibody–sialidase conjugates
could be applicable to other tumour types in addition to breast cancer. It is exciting to
speculate that human sialidases could be conjugated to other antibodies, including, for
example, a prostate-specific membrane antigen (PSMA) antibody, to selectively de-sialylate
prostate cancer cells and induce an anti-tumour immune response. In addition, whereas
sialidases can remove Siglec ligands, other enzymes can likely also be used to modify the
cancer glycocalyx.

4.4. Anti-Siglec Antibodies

Monoclonal antibodies that target glycan-binding proteins have shown promise as
therapeutic agents. Antibodies avoid some of the challenges of directly targeting glycans
and benefit from favourable pharmacokinetics and manufacture. Anti-Siglec antibodies
can potentially block Siglec–ligand interactions and modulate the function of immune cells.
Several companies are pursuing strategies to create Siglec-blocking antibodies. Anti-Siglec-
9 antibodies can prevent Siglec-9 inhibitions on TAMs [247] and are currently in preclinical
development for cancer immunotherapy [248]. Anti-Siglec 7 antibodies have been shown
to be effective at blocking Siglec–ligand interactions to promote NK-mediated killing [192],
and an anti-Siglec-15 blocking antibody (NC318) is currently being tested in clinical trials
(NCT03665285) [249,250].

4.5. Vaccines

The development of vaccines as human glycan-targeted therapeutics is an active area
of research. MUC1 decorated with sTn can predict survival in ovarian cancer [251], which
led to the development of the Theratope sTn-KLH vaccine [252,253]. Initial clinical trials
showed that Theratope can promote the generation of antibodies against sTn [254], and the
presence of anti-sTn antibodies correlates with increased patient survival [255]. However,
unfortunately, a phase III clinical trial (NCT00003638) for metastatic breast cancer found
no benefit for patients receiving the Theratope vaccine [256]. It is important to note that
patient eligibility for the trial was not determined by tumour sTn expression, which could
explain the failure of this trial. Other vaccines have since been developed, including a
unimolecular pentavalent vaccine (containing glycan portions of Globo-H, GM2, sTn, TF
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and the Tn antigen) that increased antibody titres to these antigens in a phase I clinical
trial (NCT01248273) [257]. A KLH conjugate vaccine has also been produced for sLeA and
tested in metastatic breast cancer patients (NCT00470574) [258].

5. Conclusions

Hypersialylation is a common feature of tumours that has far-reaching consequences.
Aberrant sialylation plays a key role in tumour progression by enabling evasion of cell death
and immunosurveillance and by promoting metastasis. Sialylated glycans can also contribute
to chemotherapy and radiotherapy resistance in several cancer types. Targeting abnormal
sialylation represents an exciting strategy to develop new glycan-targeting therapeutics, and
the groundwork has been laid for an explosion of therapeutic opportunities in this area.
Among the most promising therapeutic agents in the pipeline are sialyltransferase inhibitors,
antibodies and inhibitors targeting Siglecs and Selectins, antibody–sialidase conjugates, and
vaccines (Figure 3 and Table 2). The sialome acts as an essential interface between cells and
the surrounding microenvironment; however, much remains to be uncovered regarding the
function of sialylated glycans in disease. New approaches to improve our ability to detect
altered sialylation will catalyse the development of new glycan-targeted therapeutics. As the
focus of cancer therapy moves towards precision medicine, the tumour glycome will provide
clinically actionable information towards patient-tailored treatments. There is much to be
gained from targeting aberrant sialylation in cancer but still so much to explore.

Table 2. Overview of therapeutic strategies to target aberrant sialylation in cancer.

Approach Progress References

Sialyltransferase
inhibitors

Intra-tumoural injection of 3Fax-Neu5Ac suppresses tumour growth in multiple
cancer models by promoting T-cell mediated immunity. Targeted delivery of
P-3FAX-Neu5Ac using nanoparticles can prevent metastasis in a mouse lung
cancer model. However, 3Fax-Neu5Ac has been shown to produce liver and

kidney dysfunction in mice. C-5 carbamate sialyltransferase inhibitors that reach
higher concentrations within the cell and induce prolonged inhibition of

sialylation have been developed but are yet to be tested in vivo.

[168,218–220]

Selectin inhibitors

Blocking antibodies for P-Selectin have been developed. The E-selectin inhibitor
Uproleselan (GMI-1271) has shown promise for treating acute myeloid

leukaemia (AML) in combination with chemotherapy, and may also re-sensitise
multiple myeloma to therapy.

[234,235]
NCT02306291
[175,235–237]
NCT03616470

Antibody–sialidase
conjugates

A sialidase conjugated to a HER2 antibody (tratuzumab) can de-sialylate cancer
cells, remove Siglec ligands and prolong survival times in mice. A

HER2-sialidase conjugate is currently in Phase I/II clinical trials in combination
with traditional immune checkpoint blockade for patients with non-small cell

lung cancer, colorectal cancer, melanoma, pancreatic cancer, and ovarian cancer.

[188,193,245,246]
NCT05259696

Anti-Siglec
antibodies

Anti-Siglec 9 antibodies are in preclinical development. Anti-Siglec 7 antibodies
have been shown to promote NK mediated killing. The anti-Siglec-15 blocking

antibody (NC318) is being tested in clinical trials.

[192,247–250]
NCT03665285

Vaccines

The Theratope sTn-KLH vaccine can promote the generation of anti-sTn
antibodies, but a phase III trial showed no benefit for metastatic breast cancer
patients. A unimolecular pentavalent vaccine containing vaccine portions of
Globo-H, GM2, sTn, TF and the Tn antigen has been tested in patients with

ovarian, fallopian tube or peritoneal cancer, and produced increased antibody
titres to these antigens in a phase I clinical trial. A KLH conjugate vaccine has
also been produced for sLeA and tested in metastatic breast cancer patients.

NCT00003638
[256]

NCT01248273
NCT00470574

[257,258]
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