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Parasites are the cause of major diseases affecting billions of people. As the inflictions
caused by these parasites affect mainly developing countries, they are considered as
neglected diseases. These parasitic infections are often chronic and lead to significant
immunomodulation of the host immune response by the parasite, which could benefit
both the parasite and the host and are the result of millions of years of co-evolution. The
description of parasite extracellular vesicles (EVs) in protozoa and helminths suggests that
they may play an important role in host–parasite communication. In this review, recent
studies on parasitic (protozoa and helminths) EVs are presented and their potential use as
novel therapeutical approaches is discussed.
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PARASITIC DISEASES AND EXTRACELLULAR VESICLES
Evidence of parasite infections has been found very early in human
evolution. In fact, some parasites were inherited from our primate
ancestors in Africa, and some others were acquired from animals
during our evolution, migrations, and agricultural practices (1). It
is estimated that about 300 species of helminths and over 70 species
of protozoa affect humans (1). A relatively small proportion of
these parasites cause some of the most important diseases in the
world, such as malaria, Chagas’ disease, sleeping sickness, schisto-
somiasis, filariasis, and soil-transmitted helminthiasis among oth-
ers. Despite their elevated global prevalence, they are considered
as neglected tropical diseases1. In endemic areas, epidemiological
studies of some immunological disorders (i.e., atopy) suggest that
current parasitic infections have a protective effect (2). In contrast,
in developed countries, where improved living conditions and vac-
cination are common, the lack of exposure of our immune system
to infections of historical importance, could lead to an increase in
hypersensibility and autoimmune diseases.

In the last decades, extracellular vesicles (EVs) have been
well recognized as mediators of intercellular communications in
prokaryotes and eukaryotes. They are able to carry proteins, lipids,
and nucleic acids, which are incorporated by recipient cells, where
in turn they have different effects. EVs carry a common group
of proteins and also specific proteins that reflect the particu-
lar role and/or composition of their cell of origin. EVs include
usually apoptotic bodies, microparticles/microvesicles (origi-
nated by plasma membrane budding), and exosomes [released
from multivesicular bodies (MVBs)] (3, 4). Different EVs have
been described in most groups of parasitic protozoa, including

1http://www.who.int/neglected_diseases/diseases/en/

flagellates, sporozoa, and microsporidians, and they have been
detected in extracellular and intracellular stages. In addition to
protozoa, parasitic helminths have been recently shown to release
EVs (Table 1).

With respect to EVs composition, studies in Leishmania spp.
parasites, the protozoan causing different forms of leishmaniases2,
have shown the presence of protein homologs to known pro-
teins that regulate exosome biogenesis and release in mammalian
cells (42, 43). Recently, Silverman and Reiner have proposed that
Leishmania are capable of secreting both exosomes and plasma
membrane blebs, as mammalian cells do, suggesting that both
types could play a role in pathogenesis (5). Most of the studies
on EVs composition have been focused on intracellular stages of
Leishmania spp., and it has been shown that changes in the envi-
ronment seem to affect vesicle release and cargo (6, 42). In fact,
proteomic analysis has revealed that the protein cargo of Leish-
mania exosomes is quantitative different in response to changes
in temperature and pH (42). In this context, exosomes obtained
at neutral pH were enriched in kinase activity, meanwhile in
acidic pH they were enriched in phosphatase activity (42). Similar
results were obtained after treating in vitro extracellular stages of
Leishmania with a short heat-shock treatment (6).

Among the proteins identified in Leishmania EVs, there are
virulence factors like GP63/leishmanolysin, membrane proteins,
and redox enzymes like tryparedoxin peroxidase and heat-shock
proteins (Hsp) (5). As suggested by Silverman and Reiner, this
specific packaging of individual proteins and functional groups
may likely reflect a sophisticated packaging of virulence factors by
Leishmania in response to specific environments (5).

2http://www.who.int/mediacentre/factsheets/fs375/en/
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Table 1 | Parasites and EVs.

Reference

PROTOZOANS

Trypanosomatids

Leishmania spp. Exosomes and EVs from infected macrophages (5–8)

Trypanosoma brucei Exosomes (9)

Trypanosoma cruzi Outer membrane-derived vesicles, exosomes (9–15)

Apicomplexa (sporozoa)

Plasmodium vivax Plasma-derived MPs (16, 17)

Plasmodium berghei Plasma-derived MPs (from infected mice) (18, 19)

Plasmodium yoelii Plasma-derived exosomes (20)

Plasmodium falciparum Plasma-derived exosomes and vesicles (60–100 nm) and microvesicles (100–1000 nm) (17, 21–23)

Plasmodium malariae Plasma-derived exosomes (17)

Toxoplasma gondii Exosomes from infected cells; exosomes (24–26)

Cryptosporidium parvum Exosomes from infected cells (27)

Eimeria spp. Dendritic cells derived exosomes (from infected chickens) (28, 29)

Flagellates

Trichomonas vaginalis Exosomes (30)

Giardia duodenalis Secretory vesicles, exosomes (31, 32)

HELMINTHS

Cestodes

Echinococcus multilocularis Vesicles derived from metacestodes (33–35)

Trematodes

Schistosoma spp. Shedding vesicles (36)

Echinostoma caproni EVs; exosomes (37, 38)

Fasciola hepatica EVs; exosomes (37, 39)

Dicrocoelium dendriticum Exosomes (40)

Nematodes

Heligmosomoides polygyrus EVs (41)

Data were obtained also from Ref. not cited in the text (8, 9, 14, 15, 19, 22, 23, 33–36, 38, 39).

Other intracellular organisms like apicomplexans Plasmodium
and Toxoplasma species have been described to produce EVs.

Plasmodium species are the causative agents of malaria, a dis-
ease affecting an estimated 207 million individuals3. Although
previous studies had detected EVs in peripheral blood of Plas-
modium falciparum as well as Plasmodium vivax patients (16–18),
the first description of Plasmodium spp. exosomes was reported in
2011 by Del Portillo and co-workers (20), who revealed the pres-
ence of parasite proteins in reticulocyte-derived exosomes (rex)
from experimental infections. These parasite antigens included
serine-repeat antigens, merozoite surface proteins 1 and 9, meta-
bolic enzymes like lactate dehydrogenase, GAPDH, enolase and
aldolase, cysteine proteases, and Hsp among others (20).

Toxoplasma gondii is responsible for toxoplasmosis, an impor-
tant public health problem infecting about 30% of the world’s pop-
ulation, including immunocompromised individuals (44). Toxo-
plasma is promiscuous and can infect virtually any nucleated host
cell (45). The existence of EVs (65 nm) in MVBs, has been detected
in Toxoplasma secretory organelles (24). Lately, the presence of
miRNA in T. gondii exosomes has been reported (25).

3http://www.who.int/mediacentre/news/releases/2013/world-malaria-report-
20131211/en/

The kinetoplastida Trypanosoma cruzi and Trypanosoma brucei
are the causal agents of the Chagas’ disease and sleeping sickness,
respectively. Chagas’ disease affects 7–8 million people mostly in
Latin America4, and sleeping sickness threats millions of people in
36 countries in sub-Saharan Africa5.

The extracellular phase of T. cruzi (trypomastigota) pro-
duces EVs that contain surface components like glycoproteins
gp85/transialidases, alphaGal-containing molecules, proteases
(i.e., cruzipain), cytoskeleton proteins, mucins, and associated to
GPI (glycosylphospatidylinositol)-anchored molecules. All these
molecules are engulfed by host cells in the absence of parasitic cells,
and are accumulated in phagocytic/endocytic compartments (10).

In addition to proteins, the presence of small RNA in EVs from
T. cruzi has been reported, including tRNA, which were actively
secreted to the extracellular medium and acted as vehicle for the
transfer of these molecules to other parasites and to mammalian
cells (11). Furthermore, EVs secreted by T. cruzi epimastigotes are
able to induce epigenetic changes in host cells (12).

The extracellular flagellate Trichomonas vaginalis is the causal
agent of trichomoniases, the most prevalent curable sexually

4http://www.who.int/mediacentre/factsheets/fs340/en/
5http://www.who.int/mediacentre/factsheets/fs259/en/

Frontiers in Immunology | Immunotherapies and Vaccines September 2014 | Volume 5 | Article 433 | 2

http://www.frontiersin.org/Immunotherapies_and_Vaccines
http://www.frontiersin.org/Immunotherapies_and_Vaccines/archive


Montaner et al. Parasite extracellular vesicles in immunomodulation

transmitted infection globally (46). This parasite produces EVs
to allow its attachment to the host mucosa (30). The proteomic
analyses of these EVs revealed that 75% of the identified proteins
corresponded to orthologs of mammalian exosome proteomes
(exocarta). Common proteins represent core conserved exosomes
protein families such as tetraspanins, Alix, Rabs, Hsp70, subunits
of heterotrimeric G proteins, and TcTP (30). The identified pro-
teins were sorted into functional groups, and the more abundant
corresponded to signaling proteins (14%), metabolic enzymes
(14%), cytoskeletal proteins, and proteins involved in transport
and vacuolar proteins (30).

When comparing the proteomics profiles of intracellular and
extracellular protozoa EVs, it seems that a common pattern of
proteins is present in both, which include metabolic enzymes and
Hsp. An enrichment in proteins involved in transport and vacuo-
lar proteins is observed in EVs from extracellular protozoa (i.e.,
tetraspanins).

The diseases caused by helminths are considered the most
neglected ones, with a third of the human population affected
at least by one species (47). EVs from the trematode species Echi-
nostoma caproni, Dicrocoelium dendriticum, and Fasciola hepatica
have been isolated. The analysis of the composition of these
vesicles has identified proteins previously described in the excre-
tory/secretory products (ESP) (about 50% of proteins corre-
sponded to the proteins identified in the secretome) (37, 40),
which may explain the atypical protein secretion (lacking typ-
ical secretion signals) in flukes. These proteins include meta-
bolic enzymes like enolase, GAPDH, aldolase, and well-known
exosome components like Hsp70 and annexins (37, 40). Dif-
ferences in EVs composition were observed among the three
species, correlated with their respective ESP. Meanwhile, no pro-
teases were present in E. caproni EVs, D. dendriticum, and F.
hepatica EVs contained leucine aminopeptidase (LAP), and F.
hepatica EVs contained a large number of proteases (i.e., cathep-
sins), probably related to its migration along tissues (37, 40), as
well as chaperons, fatty-acid binding proteins, and detoxifying
enzymes (37). In addition to the presence of proteins in helminth
EVs, the presence of miRNA in D. dendriticum EVs has been
described (40).

PARASITIC EVs IN CELL–CELL COMMUNICATION
Parasite EVs participate in parasite–parasite and host–parasite
communication processes.

Very little information is available about the role of EVs in
intraspecific communications. A recent study has demonstrated
that P. falciparum infecting red blood cells directly communi-
cates with other parasites using EVs that are capable of delivering
genes. Importantly, communication via EVs also promotes differ-
entiation to sexual forms and survival of parasites, providing a
mechanism for increasing parasite persistence in times of stress
(48). Furthermore, the P. falciparum PfEMP1 trafficking protein
(PfPTP2), which plays a key role in the traffic to host cells, has
been identified. PfPTP2 functions in the release of EVs into the
supernatant, implicating P. falciparum molecular machinery in
intercellular communications (48).

In contrast, there are many examples of parasite EVs involved
in host–parasite communication.

Pioneering studies on EVs in trypanosomes described T. cruzi
shedding vesicles (20–80 nm) in cultured trypomastigotes (13),
and recently, a possible association between intensity of shedding
and infectivity of different strains has been proposed (47). These
authors suggest that these vesicles could be acting as messengers
for invasion, somehow preparing the host cell for the incoming try-
panosome,which represents a novel mechanism to explain parasite
interaction with the host (10, 49).

Various studies have described the isolation of EVs from
different T. cruzi stages (10, 11, 26, 49). Importantly, the pre-
immunization of mice using trypomastigote vesicles induce severe
heart pathology with intense inflammatory reaction and higher
number of amastigote nests in cardiac tissue (10), indicating the
impact of host–parasite communication. After EVs release, these
vesicles form a complex with C3 convertase on the parasite surface,
stabilizing the enzyme and inhibiting its activity, protecting para-
sites from complement lysis and increasing parasite survival (50).
Interestingly, these vesicles also carry transforming growth factor
β (TGFβ), which could promote parasite invasion in the course of
infection in vivo and in vitro (50).

As pointed out by Deolindo et al. (26), the production of
EVs by infective stages of T. cruzi confirms their role in para-
site survival strategies and in cell–cell communication. Supporting
this notion, Garcia-Silva et al. (12) have shown that parasite EVs
elicited changes in the host transcriptome upon their incorpora-
tion in the cells, which include modification of immune responses
pathways (12).

Little is known about EVs in Giardia duodenalis, an extracellu-
lar parasite of the human intestine that causes diarrheal illness, and
with high global prevalence6. Some authors reported the presence
of secretory vesicles in this parasite associated with encystation
processes. The process of release of these vesicles has been sug-
gested to occur after fragmentation of large encystation-specific
secretory vesicle in small secretory vesicles, followed by exocytosis,
but this was not fully demonstrated (31, 32). Because Giardia is
one of the earliest branching protists, knowledge of the secretory
organelle biogenesis that occurs during its differentiation into cysts
offers novel insights into the molecular machinery required for the
regulation of the protein transport in higher organisms (31, 32).
Recently, it has been reported an increase in G. duodenalis EVs
formation in response to different conditions (i.e., pH changes,
presence of bile, etc.), suggesting that these vesicles could provide
a mechanism for parasite adaptation to changing environment
encountered in the host during the course of the infection (26).

The finding that helminth EVs are internalized by host cells
suggests an important role for these vesicles in host–parasite
communications (37). It is possible that helminths could send
messengers like mRNA or miRNA into EVs to act on host targets.
Supporting this notion, the presence of molecules of miRNA in
D. dendriticum EVs has been reported (40). Preliminary studies
have shown that the nematode Heligmosomoides polygyrus pro-
duce EVs, which alter inflammatory responses in both cultured
cells and in a murine model. These findings would explain how
these nematode EVs could mediate cross-phylum communication
and may help to suppress the host inflammatory response (51).

6http://www.cdc.gov/parasites/giardia/epi.html#one
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INDUCTION OF HOST EVs SECRETION
Some descriptions of host–parasite communication through EVs
in infected cells have been reported, with examples including
mainly apicomplexan like Toxoplasma (27), Plasmodium (16–18),
Eimeria (28, 29), and Cryptosporidium (52) species.

As mentioned above, Plasmodium proteins were detected in rex
in experimental infections, which confirm that they are taken up by
host cells (20). Studies to determine whether these vesicles are con-
stitutively released, or whether they are released during a particular
phase in the parasite cycle, have been reported recently (21). They
present evidence that reticulocyte microvesicles (RMVs) release
increases steadily during the parasite cycle and peaks late during
schizogony or shortly thereafter. This pattern of release coincides
with the emergence of a prominent vesicular subpopulation of
150–250 nm in the infected red blood cells (iRBCs) preparation.
Altogether, these data demonstrate that the peak release of RMVs
from iRBCs occurs shortly before egression (i.e., within the last
6–8 h of the parasite asexual cycle) (21).

Another apicomplexan protozoan are Eimeria spp., the eti-
ologic agents of avian coccidiosis, a major parasitic disease of
poultry (28). EVs from dendritic cells infected with Eimeria tenella
parasites were shown to protect animals by (a) increasing body
weight gain, (b) decreasing feed conversion ratios, (c) reducing
fecal oocyst shedding, (d) decreasing intestinal lesions, and (e)
reducing mortality compared with animals given parasite Ag alone
(28). Similar results were obtained for other Eimeria species, sug-
gesting that this protocol is an efficient way of immunizing against
other apicomplexans (29).

Cryptosporidium species are another example in which intra-
cellular parasites communicate with their host increasing the pro-
duction of EVs. Cryptosporidiosis is one of the most frequent
causes of diarrhea worldwide, affecting immunocompromised
and/or immunocompetent patients (53). The occurrence of large-
scale outbreaks of human cryptosporidiosis is often attributed to
contaminated drinking water (54).

It has been reported that Cryptosporidium parvum infection
increases luminal release of EVs from the biliary epithelium,
probably through TLR4/IKK2-mediated activation of the mul-
tivesicular body exocytic pathway (52). Immunogold staining
revealed that these microvesicles were positive for the exosome
markers CD63 and ICAM-1. Release of EVs involves activation of
TLR4/IKK2 signaling through promoting the SNAP23-associated
vesicular exocytic process (52). Furthermore, these authors pre-
sented evidence that activation of TLR4 signaling stimulates the
biogenesis and luminal release of antimicrobial peptide-shuttling
EVs. The anti-C. parvum activity of apical EVs released from
the epithelium may involve direct binding these vesicles to the
C. parvum sporozoite surface (52). Confocal analyses showed the
fusion of these EVs with C. parvum sporozoites causing cargo
release within the parasite. These results suggest that all extracellu-
lar stages of C. parvum (sporozoites, merozoites, and microgame-
tocytes) may be vulnerable to EVs binding/targeting, contributing
to gastrointestinal mucosal anti-C. parvum defense (52).

Extracellular vesicles derived from macrophages infected with
Leishmania mexicana display unique protein signatures (compo-
sition and abundance of many functional families of proteins,
such as plasma membrane-associated proteins, chaperones, and

metabolic enzymes) (7). L. mexicana surface protease GP63 has
been identified in EVs from macrophages exposed to parasite
promastigotes (7).

PARASITIC EVs AS IMMUNOMODULATORS
Many of the immunomodulatory proteins lack typical secretion
signals for delivery to the extracellular environment, so new secre-
tion routes should be active, involving host–parasite interactions
at cellular and subcellular levels, which in turn could be related to
immunomodulation processes.

The role of exosomes in modulating the immune response was
first described in Leishmania spp. in 2010 (42). This study also
demonstrated that certain factors associated with infection were
able to positively regulate the release of exosomes and modulate
their composition (42). A recent study has shown that Leishmania
parasites mutants lacking the metalloprotease GP63 have a reduced
modulatory capacity in relation to wild-type parasites in animal
models, and they have also described that exosomes are involved
in recruiting neutrophils exhibiting stronger pro-inflammatory
properties than the neutrophils recruited by parasites (55).

Trypanosomes also constitute a good example of immunomod-
ulation. Proteins like phosphoglycerate mutase, enolase, pyruvate
kinase, and phosphoglycerate kinase, known to be involved in
immunosuppressive activity in other organisms, have been also
found in the T. brucei secretome, suggesting a similar role in infec-
tion. T. brucei releases a higher amount of proteins in EVs than
using a classical secretory pathway, which suggests that T. brucei
may deliver an avalanche of new epitopes to overwhelm the host
immune system, or to communicate between trypanosomes them-
selves. This is achieved by exchanging receptors in their cytosolic
form, which may represent an important survival strategy at the
population level (9). Several proteins secreted by T. brucei are
also detected in Leishmania and T. cruzi secretomes, suggest-
ing that they are the result of an active and common secretion
process (49).

They are interesting immunomodulation studies in malaria.
When mice were immunized with Plasmodium yoelii purified
rex, an increase in the reticulocytemia and in the production
of IgG antibodies capable of recognizing P. yoelii iRBCs was
observed. Remarkably, in combination with the adjuvant CpG
oligodeoxynucleotide, rex from an experimental infection with
a P. yoelii reticulocyte-prone non-lethal strain conferred full and
long-lasting protection upon immunization and lethal challenge.
Thus, these data show, for the first time, that rex can be explored
as a new vaccine against malaria (20).

Furthermore, Mantel et al. have demonstrated that the release
of RMVs from iRBCs can activate the pro-inflammatory cytokines
interleukin-6 (IL-6), IL-12, and IL-1b, as well as the anti-
inflammatory cytokine IL-10, in a dose-dependent manner (21).
They also showed that neutrophils pre-incubated with RMVs from
uninfected red blood cells (uRBCs) migrated at a slower rate com-
pared these pre-incubated with RMVs from iRBCs or untreated
controls. Together, these data demonstrate that RMVs from iRBCs,
but not from uRBCs, can strongly stimulate cells of the innate
immune system (21).

Extracellular parasites could use exosomes to deliver proteins
and/or RNA to manipulate host cell responses, while remaining
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FIGURE 1 | Immune response against helminths. Helminth infection
mainly leads to Th2 response, involving immune system cells and
cytokines. Parasite antigens are recognized by dendritic cells, which in
turn act as antigen-presenting cells (APC) for T cells, initiating parasites
expulsion. Releasing of cytokines like IL-5, which triggers eosinophilia,
and IL-4, IL-9, IL-13, as well as IgE, which bind to the FceRI (high-affinity
Fc receptors for IgE), lead to the activation of basophils and mast cells,
and cause secretion of inflammatory mediators. IL-4 and IL-13 increase

smooth-muscle-cell motility, stimulates intestinal permeability, and
elevate mucous secretion by globet-cells. These cytokines also
promote the differentiation of alternatively activated macrophages
(AAM), which in turn, can inactivate the production of Th1, Th2, or Th17
cells, and in some cases, like in schistosomiasis, induce fibrosis in
tissues. ADCC, antibody dependent cellular cytotoxicity; APC,
antigen-presenting cells; DC, dendritic cells; AAM, alternatively
activated macrophages.

in the extracellular space, generating important changes in both
host immune response and parasite attachment to host cells (30).
In this context, T. vaginalis may use exosomes to manipulate host
defense responses, similarly to the secretion of virulence factors
and vesicles by pathogenic bacteria (30). By reducing the IL-8
expression of host ectocervical cells, T. vaginalis exosomes may
be playing an important role in the establishment of a chronic
infection. These EVs may lead to the regulation of IL-6 and IL-8
secretion, preparing and facilitating colonization of the urogenital
tract (30).

Helminthiases are parasitic diseases with a high prevalence,
which reflects their ability to manipulate the host immune system,
preventing parasite expulsion. Helminths are interesting organ-
isms to study immunomodulation, since host immunity has also
developed mechanisms to limit their pathology and the ensuing
injury, as in some cases, their elimination originates even worse
collateral damage.

Immune responses to helminths comprise a combination of
both innate defense and Th2 response, which disable, degrade,

and dislodge the parasites (56). Characteristic features of helminth
infection are Th2-dominated immune responses and Th1/Th17
immunity blocking, allowing for the survival of the parasite in a
“modified Th2 environment” (57, 58) (Figure 1).

The immune regulation originated by helminths may offer
new routes to treat immune dysfunctions like allergy, autoim-
munity, and inflammatory bowel diseases (58, 59). Various clin-
ical trials that use helminths to treat autoimmune diseases are
underway (60). Furthermore, enhanced allograft tolerance with
helminth infection has been reported in various species, suggesting
that the infection or defined products from immunomodulatory
helminths could be of interest in future transplantation protocols
(61). Much research has focused on ESP released by live helminths,
which can interfere with every aspect of host immunity. Schisto-
soma species secrete proteins capable of activating the release of
IL-4 and activate the degranulation of basophils (human and mice)
to promote a Th2 response in the surrounding environment. In
addition, Schistosoma spp. eggs secrete among others, the protein
omega-1, an abundant ribonuclease associated with egg transit
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through host tissues, and responsible for activating Th2 mech-
anisms that allow for egg survival and excretion. Furthermore,
extensive glycosylation of some Schistosoma proteins also trigger
Th2 responses in vivo through TLR4 ligation (57, 62).

Recent studies have shown that antigens derived from F. hepat-
ica tegument inhibit mast cells, which normally play a protec-
tive role during microbial infections. This modulating effect is
mediated by the induction of suppressors of cytokine signal-
ing (SOCS), which are essential for self-regulatory inflammatory
Th1-dependent processes (63).

Interestingly, other helminths produce molecules that have
a cytokine-like effect on mammalian cells. Proteins like the
macrophage migration inhibitory factor (MIF) are produced by
the nematode Brugia malayi (57). This parasitic molecule can
synergize with IL-4 to induce the development of fully sup-
pressive, alternatively activated macrophages in vitro. Thus, in
a Th2 environment, parasitic MIF may prevent the classical
pro-inflammatory activation of macrophages (57).

As reviewed by Dalton et al. (64), F. hepatica ESP includes mol-
ecules that drive the immune response toward a favorable, non-
protective, Th2-mediated environment. These immunomodula-
tory molecules include cathepsin L, peroxiredoxins, and helminth
defense molecules (i.e., HDM-1/MF6p), which could help treat
autoimmune diseases and chronic inflammation in humans
and animals (64). Interestingly, two of these proteins (perox-
iredoxins and cathepsins) are present in F. hepatica EVs (37),
and the third type of immunomodulating molecules (HDM-
1/MF6p) have been detected in exosomes from the related trema-
tode species D. dendriticum (40), and preliminary results sug-
gest their presence in F. hepatica and E. caproni EVs (unpub-
lished data).

Fasciola hepatica HDM-1/MF6p exhibits biochemical and
functional characteristics similar to human defense peptides, par-
ticularly CAP18. FhHDM-1 modulates innate cell activation by
classical toll-like receptor (TLR) ligands, such as lipopolysaccha-
ride (LPS), indicating its therapeutic potential for autoimmune
diseases (65). Furthermore, FhHDM-1 might mitigate the inflam-
matory response of macrophages to LPS by inhibiting the pro-
duction of TNFα and IL-1β, as mice treated with a single dose of
FhHDM-1/MF6p prior to, or after, bacterial LPS had significantly
lower levels of circulating TNFα and IL-1β (64–66). FhHDM-
1/MF6p has been recently characterized as a heme-binding pro-
tein, suggesting that its role as a heme chaperone that may par-
ticipate in important physiological processes for the parasite (i.e.,
heme trafficking and storage). However, it does not seem to act as
a primary ligand for LPS (67).

It has been shown that F. hepatica ESP prevents type 1 diabetes
(T1D) in non-obese diabetic (NOD) mice, which is associated
with suppression of IFNγ secretion from auto-reactive T cells, and
the switch to IgG1 auto-antibody production (68).

As previously mentioned, recent studies have shown the
immunomodulatory effect H. polygyrus EVs on a murine model
(51), confirming previous results with ESP from the same nema-
tode (41).

Future studies will focus on the potential use of parasitic EVs
as therapeutic tools to treat autoimmune disorders and chronic
inflammation.

CONCLUDING REMARKS
There has been an increasing number of research publications
dealing with the study of EVs and their role in intercellular com-
munication and immunomodulation in the last few years. EVs
have been described in parasitic organisms, mostly protozoa, and
more recently in helminths. Parasitic protozoa EVs carry viru-
lence factors, immunomodulatory molecules, and nucleic acids.
These vesicles have been shown to provide long-lasting protection
upon immunization and lethal challenge. Current clinical trials
are evaluating the use of helminth secretory products to treat
chronic inflammatory and autoimmune diseases. Interestingly,
some of the characterized parasitic immunomodulatory proteins
have been identified in EVs, raising the intriguing possibility of
the therapeutic use of parasitic EVs.
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