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Rhinovirus (RV), the causative agent of the common cold, causes only mild upper
respiratory tract infections in healthy individuals, but can cause longer lasting and more
severe pulmonary infections in people with chronic lung diseases and in the setting of
immune suppression or immune deficiency. RV-infected lung structural cells release type I
interferon (IFN-I), initiating the immune response, leading to protection against viruses in
conjunction with migratory immune cells. However, IFN-I release is deficient in some
people with asthma. Innate immune cells, such as natural killer (NK) cells, are proposed to
play major roles in the control of viral infections, and may contribute to exacerbations of
chronic lung diseases, such as asthma. In this study, we characterized the NK cell
response to RV infection using an in vitro model of infection in healthy individuals, and
determined the extent to which IFN-I signaling mediates this response. The results
indicate that RV stimulation in vitro induces NK cell activation in healthy donors, leading
to degranulation and the release of cytotoxic mediators and cytokines. IFN-I signaling was
partly responsible for NK cell activation and functional responses to RV. Overall, our
findings suggest the involvement of NK cells in the control of RV infection in healthy
individuals. Further understanding of NK cell regulation may deepen our understanding of
the mechanisms that contribute to susceptibility to RV infections in asthma and other
chronic lung diseases.
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INTRODUCTION

Respiratory viruses, particularly rhinoviruses (RV), typically cause only mild, self-limited infections
in healthy individuals, but the consequences of infection can be much more serious in people with
chronic lung diseases and in the setting of immune suppression or immune deficiency (Glezen et al.,
2000; Versluys et al., 2010; Costa et al., 2011; Jacobs et al., 2013). For example, RV are implicated in
both the induction of asthma and exacerbations of established asthma, representing the most
common cause of asthma-related death (Longini et al., 1984; Beasley et al., 1988; Gern et al., 1996;
Papadopoulos et al., 2002a; Papadopoulos et al., 2002b; Hansbro et al., 2008). Asthmatics are no
gy | www.frontiersin.org October 2020 | Volume 10 | Article 5106191
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more likely than healthy individuals to develop a cold, but are
substantially more likely for the infection to spread to the lower
respiratory tract, causing more severe symptoms (Corne et al.,
2002). This raises important questions regarding the
mechanisms by which healthy people are able to mount an
effective host response to RV. Understanding these processes
that occur in healthy individuals might help to explain why RV
infections can have such severe outcomes in people with asthma.

Bronchial epithelial cells (BECs) are the primary point of
contact between infecting respiratory viruses and the host (Bals
and Hiemstra, 2004). During infections, BECs release type I
(IFN-I) and III IFNs, which are integral for the induction of
innate immune response, conferring protection against viruses in
conjunction with migratory immune cells (Hansbro et al., 2008;
Message et al., 2008). Some investigators report that RV-induced
IFN-I release is deficient in asthma (Gern et al., 2000; Corne
et al., 2002; Wark et al., 2005; Hansbro et al., 2008), though other
reports have been unable to confirm these findings (Sykes et al.,
2014; Xi et al., 2015). Cell-mediated immunity to RV is also
important in the control and clearance of infection and may be
abnormal in asthmatics (Message and Johnston, 2001). Innate
immune cells, such as natural killer (NK) cells have been
proposed to play a major role in both asthma (Message et al.,
2008; Culley, 2009), and the control of viral infections in general
(Biron et al., 1999; Biron and Brossay, 2001; Barnig et al., 2013;
Lam and Lanier, 2017); however, little is known about the role
NK cells play in RV infections.

NK cells are large, granular lymphocytes involved in the innate
immune response to infected or malignant cells (Trinchieri, 1989;
Alter et al., 2004; Vivier et al., 2008; Bryceson et al., 2010;Montaldo
et al., 2013). Without prior exposure or antigen sensitisation, NK
cells are able todetect andkill infectedoraberrant cells, andproduce
chemokines andcytokines that primeand shapeadaptive immunity
(Kay, 1985; Colucci et al., 2003; French and Yokoyama, 2003;
Bryceson et al., 2010). Interestingly, circulating NK cells appear to
reflect the maturation status of lung-resident NK cells, with a
phenotype capable of both cytokine production and cytotoxicity
(Ivanova et al., 2014).

Human NK cells are identified as CD56+ lymphocytes that
lack markers specific to other lymphocytes, such as CD3 on T
cells, CD14 on monocytes, and CD19 on B cells (Herberman and
Ortaldo, 1981; Robertson and Ritz, 1990; Bancroft, 1993;
D’Arena et al., 1998; Papamichail et al., 2004). Two distinct
subsets of human NK cells have been identified and classified
based on the cell-surface density of CD56; these subsets appear to
have distinct phenotypic and functional properties (Lanier et al.,
1986; Cooper et al., 2001a; Sedlmayr et al., 2004; Moretta, 2010).
The CD56dim subset of NK cells appear more naturally cytotoxic,
but have a reduced ability to produce cytokines upon stimulation
(Cooper et al., 2001a; Di Santo, 2008); while the CD56bright

subset of NK cells are distinguished by potent production of both
Th1 and Th2 cytokines in response to stimulation, but have
reduced cytotoxic capacity (Lanier et al., 1986; Cooper
et al., 2001b).

NK cell recognition of target cells relies on an assortment of
both activating and inhibiting receptors that detect microbial
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
products, cytokines, stress signals, and MHC class I molecules
(Lanier, 2000; Smyth et al., 2000; Moretta et al., 2001; Radaev and
Sun, 2003). NK cell activation does not rely on an individual
receptor, but on a combination of activating and inhibiting
signals, with activation occurring when different combinations
of receptors are ligated to overcome a threshold of activation
(Bryceson et al., 2005; Lanier, 2008). NK cell surface receptor
repertoire has been reported to vary between subsets, and thus
subset activation may vary based on the stimulus (Cooper et al.,
2001a; Sedlmayr et al., 2004).

NK cell activation can also be induced by interactions with
antigen-presenting cells (APCs), such as DCs and macrophages,
and by cytokines, including IFN-I (Gern et al., 1996; Biron et al.,
1999; Biron and Brossay, 2001; Moretta, 2002; Vivier et al., 2008).
Increased cell-surface CD69 expression is widely used as a
marker of NK cell activation (Gern et al., 1996; Vering et al.,
2000; Draghi et al., 2007; Barnig et al., 2013).

NK cells can lyse target cells through the directed exocytosis of
cytolytic granules containing perforin and granzyme at the
immunological synapse between the NK cell and target cell
(Robertson and Ritz, 1990; Cooper et al., 2001a; Artis and Spits,
2015). In particular, granzyme B (GzymB) has been shown to be
required for the rapid induction of NK cell-mediated apoptosis of
target cells (Shresta et al., 1995). The release of these cytolytic
granules can be indicated through the presence of cell surface
CD107a (Alter et al., 2004; Bryceson et al., 2010).

In addition to cytolytic function, NK cells produce
chemokines and cytokines that can recruit other immune cells,
promote cellular resistance to infection, and influence the
formation of adaptive immunity (Robertson and Ritz, 1990;
Bancroft, 1993; Cooper et al., 2001a; Bryceson et al., 2010). An
important cytokine produced by NK cells is IFNg, with known
immunoregulatory effects (Gern et al., 1996; Cooper et al., 2001a;
Cooper et al., 2001b; Colucci et al., 2003; Maroof et al., 2008;
Strowig et al., 2008; Bi et al., 2017).

With the strong association between respiratory viral
infections and asthma exacerbations, it has been speculated
that inappropriate immune activation, possibly due to defective
IFN-I response, may be involved in the susceptibility of
asthmatics to more persistent and severe infections (Wark
et al., 2005; Message et al., 2008; Culley, 2009).

Therefore, this study aimed to determine whether RV can
activate NK cells, and the extent to which NK cell activation and
function in vitro are IFN-I dependent.
MATERIALS AND METHODS

Participants
All volunteers completed a detailed questionnaire regarding
respiratory symptoms, prior medical diagnoses, and
medication use. Healthy participants had no symptoms or
prior self-reported physician diagnoses of respiratory disease
(including asthma) and had not experienced respiratory
infection symptoms within the preceding month. All
participants underwent skin prick testing (SPT) against a panel
October 2020 | Volume 10 | Article 510619
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of common allergens (Aspergillus fumigatus, Alternaria, grass
pollen, house dust mite, and dog and cat dander) to determine
allergic status. Prior to sample collection, volunteers were asked
to abstain from antihistamine use for 72 h. The study was
approved by the Human Ethics Committees at The University
of Queensland and the Princess Alexandra Hospital, and all
participants provided written consent.

Rhinovirus Generation and Titration
RV16 stocks were generated by passage in Ohio HeLa cells, as
previously described (Sanders et al., 1998). RV16 was purified
over Optiprep gradient (Sigma-Aldrich) as described by Xi et al.
(2015). Viral titer was determined using TCID50, and RV16 at
an MOI of 1 was used in culture (Pritchard et al., 2012).

PBMC Isolation and Culture
Human peripheral blood was collected into heparinized tubes
(BD Vacutainer) from 12 healthy volunteers (mean age 21.6 ± 2.8
years, 67% female, 25% atopic). Peripheral blood mononuclear
cells (PBMCs) and plasma were isolated by density gradient
centrifugation with Lymphoprep (Stemcell Technologies).
PBMC suspensions (4×106 cells/ml) were prepared in media
(RPMI 1640 (Gibco) supplemented with 5% autologous plasma,
2-ME, penicillin, streptomycin, and glutamine). 500 µL of the
PBMC suspensions (2×106 cells) were seeded on a 24-well flat
bottom plate. IFN-I signaling was blocked in PBMC cultures
using recombinant B18R protein (100 ng/ml, eBioscience),
alongside a media-only control, for 1 h at 37°C with 5% CO2.
B18R acts as a decoy receptor for IFN-I with high specificity and
affinity for all known subtypes of the IFN-I family, blocking IFN-
I signaling into target cells (Colamonici et al., 1995; Symons et al.,
1995; Alcamı ́ et al., 2000; Pritchard et al., 2012; Pritchard et al.,
2014). PBMC cultures were then stimulated with RV16
(MOI=1), or media alone, for 24 h at 37°C with 5% CO2. To
assess NK cell degranulation, CD107a-BV786 Ab (Table S1) was
added for the last 6 h of culture. Brefeldin A (BFA, BioLegend)
and monensin (GolgiStop™, BD Biosciences) were added for the
last 5 h of cultures to allow for the detection of intracellular
cytokine production and the detection of reinternalized CD107a,
respectively, as previously described (Alter et al., 2004).

Flow Cytometry
Flow cytometry was used to identify immune cell populations and
their expression of activation and function markers. Cell cultures
were centrifuged, cell pelletswerewashedwithPBSand labeledwith
live/dead (L/D) aqua viability dye (1:500 in PBS, Thermo Fisher
Scientific) for 30 min on ice, protected from light, to allow for the
exclusion of dead cells. Cells were surface stainedwith the following
Abs: CD3-FITC, CD14-PerCp-Cy5.5, CD19-APC, CD56-PE-Cy7,
and CD69-APC-Cy7 (Table S1); for 30 min on ice, protected from
light. Cell were then fixed and permeabilised using the Cytofix/
Cytoperm™ Fixation/Permeabilisation kit (BD Biosciences) and
stained intracellularly with IFNg-PE and GzymB-BV421 Abs
(Table S1) for 30 min at room temperature, protected from light.
Stained cells were then fixed in 2% paraformaldehyde. A total of
~200,000 events per sample were collected using LSRFortessa X-20
(BD Biosciences) and the results were analyzed using FlowJo
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
software (v10.7, Tree Star, Inc.). NK cells were identified as CD3–

CD14–CD19–CD56+ lymphocytes, activated NK cells as CD3–

CD14–CD19–CD56+CD69+, and degranulating NK cells as
CD3–CD14–CD19–CD56+CD107a+ (Herberman and Ortaldo,
1981; Robertson and Ritz, 1990; Bancroft, 1993; D’Arena et al.,
1998; Vering et al., 2000; Alter et al., 2004; Papamichail et al., 2004;
Draghi et al., 2007; Bryceson et al., 2010; Wang et al., 2012; Barnig
et al., 2013).

ELISA
Cell-free culture supernatants were collected and stored in deep-well
plates at −30°C, until required. IFNg and GzymB concentrations in
culture supernatant were measured using ELISA. IFNg assays used
commercially available paired Abs and recombinant cytokines (BD
Pharmingen; limit of detection = 3.91 pg/ml). GzymB assays used a
commercially available ELISA kit (R&DSystems; limit of detection =
39.1 pg/ml), according to the manufacturer’s instructions.

Statistical Analysis
Data were analyzed using Graphpad Prism (version 8.1) using
Wilcoxon matched-pairs signed rank tests to compare
differences between paired samples. Data are represented as
median (interquartile range – IQR). A p value of <0.05 was
considered statistically significant.
RESULTS

RV16, But Not IFN-I Signaling, Causes
Minor Changes in NK Cell Populations
To determine whether RV could activate NK cells, and the extent
to which NK cell activation and functional changes are IFN-I
dependent, PBMCs from healthy volunteers were cultured for 1 h
in the presence or absence of B18R to block IFN-I signaling, prior
to culture for 24 h in the presence or absence of RV16
stimulation. Following this, flow cytometry was used to
identify and evaluate the frequency of CD56+ NK cells, along
with CD56dim and CD56bright NK cell subsets (Figure S1).

Our results demonstrate that neither RV16 stimulation, nor
blocking of IFN-I signaling, altered the frequency of lymphocytes
(Figure 1A), though RV16 induced a small increase in CD56+

NK cell frequency that was less apparent when IFN-I signaling
was blocked (Figure 1B). Stimulation with RV16 induced minor
changes in the distribution of CD56dim and CD56bright NK cell
subsets, with a decrease in the frequency of CD56dim NK cells
and a corresponding increase in the frequency of CD56bright NK
cells (Figure 1C). These changes in the distribution of the
CD56dim and CD56bright NK cell subsets were not substantially
altered when IFN-I signaling was blocked.

RV16 Induces Intense NK Cell Activation,
Which Is Partly Dependent on IFN-I
Signaling
NK cell activation was assessed based on cell surface CD69
expression. Both an increase in the frequency of CD69+ cells
and the expression intensity of CD69 can be used to assess NK
October 2020 | Volume 10 | Article 510619
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cell activation (Draghi et al., 2007; Du et al., 2010; Souza-
Fonseca-Guimaraes et al., 2012; Barnig et al., 2013). RV16
stimulation of PBMC for 24 h led to substantial and significant
increases in the proportion of NK cells expressing CD69, though
this occurred to a lesser extent in the absence of IFN-I signaling
(Figure 2A, left). Blocking IFN-I signaling had a larger impact on
the percentage of CD69+ cells in the CD56bright subset (Figure
2A, right) than in the CD56dim subset (Figure 2A, middle). RV16
also increased the median fluorescent intensity (MFI) of CD69
surface expression on NK cells (Figure 2B), especially the
CD56dim subset (Figure 2B, middle).

RV16 Induces NK Cell Cytolytic Granule
Release Which Is Partly Dependent on
IFN-I Signaling
NK cell degranulation was assessed based on CD107a surface
expression. CD107a lines the cytolytic granules that are secreted
during cytolysis, and appearance at the cell surface is upregulated
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
following stimulation, correlating with target cell lysis (Alter et al.,
2004; Bryceson et al., 2005; Bryceson et al., 2010). The presence of
CD107a at the cell surface is an indicator of NK cell release of
cytotoxic granules (Haworth et al., 2011; Barnig et al., 2013). RV16
stimulation of PBMC cultures resulted in significant increases in the
proportion of CD56+ NK cells expressing cell surface CD107a
(Figure 3A, left). Blocking of IFN-I signaling in vitro led to a lower
frequency of degranulatingCD56+NKcells, both in the presence and
absence of RV16 stimulation. These trends were also observed in
both the CD56dim (Figure 3A, middle) and CD56bright NK cell
subsets (Figure 3A, right). Stimulation with RV16 had no
significant effect on the MFI of CD107a surface expression on
CD56+ NK cells (Figure 3B, left). There were no significant
changes in the level of CD107a surface expression in the CD56dim

NK cell population (Figure 3B, middle). However, in the CD56bright

NK cell population (Figure 3B, right), blocking of IFN-I signaling
resulted in a small increase in theMFI of CD107a surface expression,
in both the presence and absence of RV16 stimulation (Figure 3C).
A B

C

FIGURE 1 | RV16 altered NK cell populations, in an IFN-I independent manner. PBMCs from healthy people (n=12) were cultured in vitro with B18R (100 ng/ml)
for 1 h to block IFN-I signaling, alongside a media-only control (UT), prior to stimulation with RV16 (MOI = 1), alongside an unstimulated control (US) for 24 h.
(A) Percentage of lymphocytes, (B) total CD56+ NK cells, (C) and NK cell subsets (CD56dim and CD56bright) were evaluated using flow cytometry. Raw dot plots are
representative of all 12 healthy donors. Each colored symbol represents data from one donor, lines represent medians. Data are representative of three experiments.
*p<0.05, ***p<0.001 by Wilcoxon matched-pairs signed rank tests. RV16, rhinovirus 16; IFN-I, type I interferon; NK, natural killer; PBMC, peripheral blood
mononuclear cell; UT, untreated; MOI, multiplicity of infection; US, unstimulated; SSC-A, side scatter-area.
October 2020 | Volume 10 | Article 510619
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RV16 Induces Small Changes in Both the
Percentage of GzymB-Producing NK Cells
and Their Intracellular GzymB
The cytolytic granules released through directed exocytosis
contain proteins, such as GzymB, which is important in NK
cell-mediated apoptosis of target cells (Shresta et al., 1995). RV16
stimulation of PBMC cultures resulted in small, but statistically
significant, increases in the proportion of CD56+ NK cells
producing GzymB (Figure 4A, left). This was most apparent in
the CD56bright NK cell population (Figure 4A, right). Blocking of
IFN-I signaling in vitro with B18R did not significantly alter the
frequency of GzymB-producing NK cells (Figure 4A). RV16
stimulation also increased the intracellular GzymB MFI of
CD56+ NK cells (Figure 4B, left), with changes observed in
both the CD56dim (Figure 4B, middle) and CD56bright NK cell
subsets (Figure 4B, right). Blocking of IFN-I signaling caused
only minor changes in these responses.

RV16 Induces IFNg-Producing NK Cells in
an IFN-I Dependent Manner
NK cells are known to produce IFNg in response to other viruses,
including influenza viruses (Du et al., 2010). IFNg activates
multiple pathways associated with direct antiviral functions
and immunoregulation, and promotes downstream protective
immune responses (Biron and Brossay, 2001). Herein, we have
found that RV16 stimulation resulted in a significant increase in
the frequency of IFNg-producing CD56+ NK cells (Figure 5A,
left), and in the intracellular IFNg MFI (Figure 5B, left). These
trends were observed in both CD56dim (Figure 5A, middle; 5B,
middle) and CD56bright NK cell subsets (Figure 5A, right; 5B,
right). The increase in frequency of IFNg-producing cells due to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
RV16 stimulation was most prominent in the CD56bright NK cell
subset (Figure 5A, right). When IFN-I was blocked, there was a
significant decrease in the frequency of RV16-stimulated IFNg-
producing CD56+ NK cells, which was reflected in both the
CD56dim and CD56bright NK cell subsets (Figure 5A). This
indicated that the RV16-stimulated increase in the frequency
of IFNg-producing NK cells was only partially dependent on
IFN-I signaling.

IFN-I Signaling Is Involved in the RV16-
Stimulated Release of GzymB and IFNg
ELISA techniques were used to quantify RV16-stimulated
GzymB and IFNg release. Herein, we found that RV16
stimulation of PBMCs resulted in significant GzymB and IFNg
release into the culture supernatants (Figure 6). When IFN-I
signaling was blocked, there was a decrease in the concentration
of released GzymB, in both the presence and absence of RV16
stimulation (Figure 6A). In the presence of RV16 stimulation,
blocking of IFN-I signaling also decreased IFNg concentrations
in culture supernatant (Figure 6B).

NK Cells Make a Large Contribution to the
Production of GzymB and IFNg
As there are multiple cell types in PBMC (other than NK cells)
that can respond to viral stimuli, the amount of GzymB and IFNg
in culture supernatant cannot be wholly attributed to NK cells
(Hornung et al., 2002). Thus, we next determined the relative
levels of GzymB and IFNg produced by other cells types (T and
NKT cells) versus NK cells. In order to do this, surface staining
was used to identify T cells and NKT cells (Figure S1), and the
iMFI was calculated for GzymB and IFNg production for each of
A

B

FIGURE 2 | RV16 induces NK cell activation as assessed by CD69 expression, and this is attenuated by blocking of IFN-I signaling. PBMCs from healthy people
(n=12) were cultured in vitro with B18R (100 ng/ml) for 1 h, prior to stimulation with RV16 (MOI = 1), alongside an unstimulated control (US) for 24 h. (A) Percentage
of activated (CD69+) CD56+ (left), CD56dim (middle), and CD56bright (right) NK cells. (B) Level of expression (indicated by MFI) of the activation marker (CD69) on
CD56+ (left), CD56dim (middle), and CD56bright (right) NK cells. Each colored symbol represents data from one donor, lines represent medians. Data are
representative of three experiments. **p<0.01, ***p<0.001 by Wilcoxon matched-pairs signed rank tests. IFN-I, type I interferon; NK, natural killer; RV16, rhinovirus
16; PBMC, peripheral blood mononuclear cell; UT, untreated; MOI, multiplicity of infection; US, unstimulated; MFI, median fluorescence intensity.
October 2020 | Volume 10 | Article 510619
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these cell types, as described by Darrah et al. (Darrah et al., 2007).
We then scaled this relative to the size of each population by
multiplying the iMFI by the frequency of each cell type of the
total lymphocyte population.

We found that RV16 stimulation significantly upregulated the
relative iMFI of GzymB+ cells in NK cells, T cells, and NKT cells,
both in the presence and absence of IFN-I signaling (Figure 7A).
In the NK cell and NKT cell populations, the relative iMFI of
GzymB+ cells increased when IFN-I signaling was blocked in the
absence of RV16 stimulation (Figure 7A, left and right). In all
the conditions tested, the relative iMFI of GzymB+ cells was
highest in NK cells (Figure 7A, left). It is worth noting that,
unlike in the ELISA results, there was no significant decrease in
RV16-stimulated GzymB when IFN-I signaling was blocked.

RV16 stimulation significantly upregulated the relative iMFI
of IFNg+ cells in all three of the populations tested, in both the
presence and absence of IFN-I signaling (Figure 7B). In RV16-
stimulated cultures, blocking of IFN-I signaling resulted in a
significant decrease in the relative iMFI of IFNg+ NK cells and T
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
cells, but not NKT cells (Figure 7B). The trends observed in NK
cells and T cells reflect the levels of IFNg detected in the culture
supernatant (Figure 7B, left and middle). Stimulation with RV16
caused the largest change in the relative iMFI of IFNg+ cells in the
NK cell population (Figure 7B, left).
DISCUSSION

This study aimed to investigate the possible role for NK cells in
the immune response to RV infection and determine the extent
to which RV16-induced activation and function of NK cells in
vitro is dependent on IFN-I signaling. The key findings to emerge
were that in cultured PBMCs from healthy people, RV16
stimulation affected NK cell activation and function, in a
manner that was partially regulated by IFN-I signaling. IFN-I
signaling partly contributed to RV-stimulated NK cell activation.
Blocking of IFN-I signaling in PBMC cultures prior to RV16
stimulation reduced, but did not eliminate, NK cell activation.
A

B

C

FIGURE 3 | RV16 stimulation enhances NK cell CD107a expression, and this is attenuated by blocking of IFN-I signaling. PBMCs from healthy people (n=12) were
cultured in vitro with B18R (100 ng/ml) for 1 h, alongside a media-only control (UT), prior to stimulation with RV16 (MOI = 1), alongside an unstimulated control (US)
for 24 h. (A) Percentage of degranulating (CD107a+) CD56+ (left), CD56dim (middle), and CD56bright (right) NK cells. (B) Level of surface expression (indicated by MFI)
of the degranulation marker (CD107a) on CD56+ (left), CD56dim (middle), and CD56bright (right) NK cells. (C) Frequency and MFI of CD107a+ CD56bright NK cells.
Each colored symbol represents data from one donor, lines represent medians. Data are representative of three experiments. *p<0.05, **p<0.01 by Wilcoxon
matched-pairs signed rank tests. IFN-I, type I interferon; NK, natural killer; RV16, rhinovirus 16; PBMC, peripheral blood mononuclear cell; UT, untreated; MOI,
multiplicity of infection; US, unstimulated; MFI, median fluorescence intensity.
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The magnitude of the effect varied between donors, but was
generally modest.

IFN-I has previously been shown to play both a direct and
indirect role in the activation of NK cells (Biron et al., 1999;
Cooper et al., 2001b; Hansbro et al., 2008). RV16 induces PBMCs
to release IFN-I into the supernatant within 24 h (Khaitov et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
2009). DC-mediated activation of NK cells involves both IFN-I
dependent and independent mechanisms (Benlahrech et al.,
2009). This is consistent with the NK cell activation observed
in this study.

NK cells can be activated by several stimuli, including
interactions with APCs, and cytokines, including IL-2, IL-12,
A

B

FIGURE 4 | Blocking IFN-I signaling alters the amount of GzymB produced, but has little effect on the proportion of NK cells producing GzymB. PBMCs (n=12)
were cultured in vitro with B18R (100 ng/ml) for 1 h, prior to stimulation with RV16 (MOI = 1), alongside an unstimulated control (US) for 24 h. (A) Percentage of
GzymB-producing CD56+ (left), CD56dim (middle), and CD56bright (right) NK cells. (B) Amount (indicated by MFI) of intracellular GzymB in CD56+ (left), CD56dim

(middle), and CD56bright (right) NK cells. Each colored symbol represents data from one donor, lines represent medians. Data are representative of three experiments.
*p<0.05, **p<0.01, ***p<0.001 by Wilcoxon matched-pairs signed rank tests. IFN-I, type I interferon; GzymB, granzyme B; NK, natural killer; PBMC, peripheral blood
mononuclear cell; UT, untreated; RV16, rhinovirus 16; MOI, multiplicity of infection; US, unstimulated; MFI, median fluorescence intensity.
A

B

FIGURE 5 | RV16 stimulation induces NK cell IFNg production; this occurs to a lesser extent when IFN-I signaling is blocked. PBMCs from healthy people (n=12)
were cultured in vitro with B18R (100 ng/ml) for 1 h, prior to stimulation with RV16 (MOI = 1), alongside an unstimulated control (US) for 24 h. (A) Percentage of
IFNg-producing CD56+ (left), CD56dim (middle), and CD56bright (right) NK cells. (B) Amount (indicated by MFI) of intracellular IFNg in CD56+ (left), CD56dim (middle),
and CD56bright (right) NK cells. Each colored symbol represents data from one donor, lines represent medians. Data are representative of three experiments.
*p<0.05, **p<0.01, ***p<0.001 by Wilcoxon matched-pairs signed rank tests. IFN-I, type I interferon; NK, natural killer; IFNg, interferon gamma; PBMC, peripheral
blood mononuclear cell; UT, untreated; RV16, rhinovirus 16; MOI, multiplicity of infection; US, unstimulated; MFI, median fluorescence intensity.
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IL-15, and IL-18 (Orange and Biron, 1996a; Biron et al., 1999;
Biron and Brossay, 2001; Cooper et al., 2001b; Moretta, 2002; He
et al., 2004; Schoenborn and Wilson, 2007; Vivier et al., 2008).
RV infection induces IL-15 expression from DCs and BECs, and
can activate NK cells, inducing IFNg production, independent of
IFN-I signaling (Jayaraman et al., 2014; Xi et al., 2017; Kronstad
et al., 2018). RV16-stimulated activation of NK cells in PBMC
cultures where IFN-I signaling is blocked, suggests that RV16 can
activate NK cells via IFN-I-independent mechanisms, similar to
what has been reported for other viruses (Gary-Gouy et al., 2002;
Hornung et al., 2002). Further experiments are required to
analyze the exact nature of these IFN-I-independent
mechanisms involved in RV16-stimulated NK cell activation.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
Some respiratory viruses, such as influenza, can directly
interact with NK cells to elicit immune responses (Ennis et al.,
1981; Sirén et al., 2004; Hwang et al., 2013). The use of PBMC
cultures in this study did not allow us to determine the
contribution of direct interactions between RV16 and NK cells,
nor whether RV16 activates NK cells indirectly via other cells,
such as APCs. Future experiments could determine this by
studying purified NK cells.

RV16-stimulated NK cell degranulation was reduced when
IFN-I signaling was blocked in vitro, as shown in Figure 3. This
correlates with previous research into murine models of viral
infection, with IFN-I signaling shown to contribute to the
degranulation of NK cells during MCMV infection (Orange
A B

FIGURE 6 | RV16 stimulated PBMCs release GzymB and IFNg; this occurs to a lesser extent when IFN-I signaling is blocked. PBMCs from healthy people (n=12)
were cultured in vitro with B18R (100 ng/ml) for 1 h, prior to stimulation with RV16 (MOI = 1), alongside an unstimulated control (US) for 24 h. ELISAs were
performed on cell-free supernatants to determine GzymB and IFNg concentrations. (A) Concentration of GzymB released into cell culture media by PBMCs.
(B) Concentration of for IFNg released into cell culture media by PBMCs. Each colored symbol represents data from one donor, lines represent medians. Data are
representative of three experiments. *p<0.05, **p<0.01, ***p<0.001 by Wilcoxon matched-pairs signed rank tests. IFN-I, type I interferon; GzymB, granzyme B; IFNg,
interferon gamma; PBMC, peripheral blood mononuclear cell; RV16, rhinovirus 16; UT, untreated; MOI, multiplicity of infection; US, unstimulated; ELISA, enzyme-
linked immunosorbent assay.
A

B

FIGURE 7 | NK cells are responsible for producing a large amount of the GzymB and IFNg seen in RV16-stimulated PBMCs. PBMCs from healthy people (n=12)
were cultured in vitro with B18R (100 ng/ml) for 1 h, prior to stimulation with RV16 (MOI = 1), alongside an unstimulated control (US) for 24 h. Expression of cell
surface markers and intracellular cytokine production was determined by flow cytometry. (A) iMFI GzymB-producing NK cells, T cells, and NKT cells, scaled to
account for their population size. (B) iMFI IFNg-producing NK cells, T cells, and NKT cells, scaled to account for their population size. Each colored symbol
represents data from one donor, lines represent medians. Data are representative of three experiments. *p<0.05, **p<0.01, ***p<0.001 by Wilcoxon matched-pairs
signed rank tests. NK, natural killer; GzymB, granzyme B; IFNg, interferon gamma; RV16, rhinovirus 16; PBMC, peripheral blood mononuclear cell; IFN-I, type I
interferon; UT, untreated; MOI, multiplicity of infection; US, unstimulated; iMFI, integrated median fluorescence intensity; NKT, natural killer T.
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and Biron, 1996b; Nguyen et al., 2002). Interestingly, blocking
IFN-I signaling reduced the proportion of CD107a+ NK cells
both in virus-stimulated and unstimulated cultures. The latter
observation may be attributed to autologous DCs inducing NK
cell degranulation, as described by others (Hornung et al., 2002;
Walwyn-Brown et al., 2018). Alternatively, it is possible there is a
certain amount of constitutive IFN-I signaling that produces
low-level NK cell degranulation. It has been suggested that
CD107a protects degranulating cells from their own cytolytic
granules, providing a basis for constitutive CD107a expression
(Cohnen et al., 2013). There were no notable differences between
the degranulation of CD56dim and CD56bright NK cell subsets.

GzymB is a cytotoxic mediator released from NK cells to
cause lysis of target cells (Fehniger et al., 2007). While RV16
stimulation increased the frequency of GzymB-producing NK
cells, blocking of IFN-I signaling did not have a significant
impact. Despite the frequency of GzymB-producing NK cells
not changing significantly, the amount of intracellular GzymB
(which was significantly increased in response to viral
stimulation) was lower in the absence of IFN-I signaling.
Previous studies have observed similar trends in murine
vaccinia virus infection, where the addition of IFN-I directly
stimulated NK cell production of GzymB (Martinez et al., 2008).
While constitutive expression of GzymB was noticeably higher in
CD56dim NK cells, similar trends were still observed in
CD56bright NK cells. RV16 stimulation induced GzymB release
into culture supernatant, in a manner partially dependent on
IFN-I signaling. Importantly, NK cells were observed to produce
more GzymB than T cells or NKT cells.

Stimulation by viruses and cytokines induces NK cell
production of IFNg (Cooper et al., 2001b; Papadopoulos et al.,
2002b; Maroof et al., 2008). RV16 stimulation significantly
increased both the frequency of IFNg-producing NK cells and
their level of intracellular IFNg. Blocking IFN-I signaling resulted
in a reduction in the frequency of IFNg-producing NK cells in
RV16-stimulated cultures. This indicates that IFN-I signaling
plays a role in RV16-stimulated IFNg production by NK cells,
and is consistent with previous studies on the role of IFN-I on
NK cell IFNg in other viral infections (Biron et al., 1999; Gary-
Gouy et al., 2002; Martinez et al., 2008; Kronstad et al., 2018).
Notably, almost three times as many CD56bright NK cells were
producing IFNg in response to RV16 stimulation, than CD56dim

NK cells. RV16 stimulation also significantly increased the
amount of released IFNg, and this was also partly dependent
on IFN-I signaling. Importantly, NK cells were found to be more
responsive to both RV16 stimulation and IFN-signaling, than T
cells or NKT cells. Subsequent studies could elucidate the
variations in NK cell surface receptor repertoire, specifically
the density of IFNAR, that may contribute to the differential
effects of RV on the CD56dim and CD56bright NK cell subsets
(Cooper et al., 2001a; Sedlmayr et al., 2004).

The limitations of this study must be acknowledged. Firstly,
the use of PBMCs as opposed to lung immune cells for in vitro
experiments. However, NK cells in the lung seem to primarily
consist of circulating rather than tissue resident cells (Marquardt
et al., 2017). In addition to this, RV stimulation of PBMCs has
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
been shown to be a suitable in vitro model in which to observe
immune responses (Message and Johnston, 2001; Papadopoulos
et al., 2002b; Hornung et al., 2002; Xi et al., 2015; Xi et al., 2017).
It is also worth noting that the sample size of this study was small
(n=12); despite this, there was enough statistical power identify
significant differences between groups. The age of participants in
this study (21.6 ± 2.8 years) was also restricted. Future studies
should be conducted in larger cohorts, with a broader age range,
to confirm these findings and account for interindividual
variation in response to viral stimulation. This study only
assessed NK cell response at a single time point with a single
MOI of one serotype of human RV. There are over 150 serotypes
of human RV (Glanville and Johnston, 2015). These serotypes
are categorized into major and minor subtypes, based on their
method of cell entry; however, even serotypes that share a
common method of cell entry can follow different endocytic
pathways and release of viral genome at different locations within
the infected cells (Blaas and Fuchs, 2016), leading to diversity in
the elicited immune response (Wark et al., 2009). Despite this,
recognition of pathogen associated molecular patterns that are
highly conserved across RV serotypes, such as ssRNA, by pattern
recognition receptors triggers the activation of the innate
immune response (Triantafilou et al., 2011). Activation of
PBMCs in response to RV stimulation has also been shown to
be dose-dependent (Gern et al., 1996). Future studies using
multiple MOIs and different serotypes of RV could address the
question of dose-dependent and serotype-dependent differences
in NK cell responses. It is also important to acknowledge that
immune cells, including NK cells, do not interact with RV in
circulation, but at the airway epithelium. Thus, further studies
should be conducted in co-cultures of respiratory epithelial cells
and NK cells, in order to observe the NK cell response to virally
infected respiratory epithelial cells. Future studies should also
assess the levels of RV-specific neutralizing antibodies in the
serum of each participant. A deficiency in RV-specific
neutralizing IgG antibodies, specifically those targeting the
VP1 viral capsid protein, has previously been associated with
increased risk of exacerbations in patients with COPD
(Yerkovich et al., 2012). Future studies should examine
whether variations in RV-induced NK cell activation are
associated with susceptibility to colds. A study of this nature
would require a large cohort of participants to have sufficient
study power.

In conclusion, we demonstrated that RV16 stimulates NK
cells in vitro, and that this response is partially, but not
completely, regulated by IFN-I signaling. These results
established that RV16 stimulation of PBMCs leads to NK cell
activation, degranulation, cytotoxic mediator production,
cytokine production, and the release of cytotoxic mediators
and cytokines into the culture supernatant. These aspects of
NK cell activation and function were all partially dependent on
IFN-I signaling. While deficient IFN-I signaling may play some
role in the susceptibility of asthmatics to more persistent and
severe infections, our findings also indicate that further studies
need to examine other cytokines and APC function, and how this
impacts on NK cell function. This study provides an important
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foundation for future studies into NK cell activation and
function in asthma.
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