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Abstract. Microplastics (MPs) are pervasive in several ecosys-
tems and have the potential to infiltrate multiple aspects of
human life through ingestion, inhalation and dermal exposure,
thus eliciting substantial concerns regarding their potential
implications for human health. Whilst initial research has docu-
mented the effects of MPs on disease development across
multiple physiological systems, MPs may also facilitate tumor
progression by influencing the tumor microenvironment (TME).
This evolving focus underscores the growing interest in the role
of MPs in tumorigenesis and their interactions within the TME.
In the present review, the relationship between MPs and the
TME is comprehensively assessed, providing a detailed analysis
of their interactions with tumor cells, stromal cells (including
macrophages, fibroblasts and endothelial cells), the extracellular
matrix and inflammatory processes. Recommendations for
future research directions and strategies to address and reduce
microplastic pollution are proposed.
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1. Introduction

The presence of substantial quantities of plastic debris in
the environment has been documented since the 1960s (1).
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However, it was not until 2004 that the term ‘microplastic’
(MP) was introduced in a report to characterize microscopic
plastic debris (2), signifying the commencement of research
focused on MPs. The production of plastic has surged mark-
edly in recent decades. As of 2015, ~4.9 billion tons of plastic
waste had accumulated in landfills or the natural environment.
Projections indicate that this figure could rise to ~12 billion
tons by 2050 (3). The nature of global MP pollution is of
notable concern.

Compared with other suspended particulate matter, MPs
are distinguished by their extensive size distribution, diverse
shapes, low densities-often approximating that of water-and
high persistence (4). Plastics that accumulate in substantial
quantities in the environment undergo degradation due to
several environmental factors, including ultraviolet radiation
from sunlight, precipitation, water flow, biological oxidation
and mechanical weathering. The degradation products exhibit
a wide range of forms such as fragments, fibers, spheres, pellets,
lines, sheets, flakes and foams, with fragments being the most
prevalent (5). These products can be further classified by size
into nanoplastics (NPs; <0.1 ym), MPs (<5 mm), medium
plastics (0.5-5 cm), megaplastics (5-50 cm) and macroplastics
(=50 cm) (6). The densities of plastics vary markedly, ranging
from 50 kg/m?3 for extruded polystyrene foam to 1,400 kg/m?3 for
polyvinyl chloride (PVC); however, the densities of numerous
plastics are similar to that of water (4).

MPs can also be categorized into primary and secondary
types based on their origin. Primary MPs are small plastic
particles that are either intentionally manufactured or gener-
ated as by-products of industrial processes (7). They are
commonly present in products such as exfoliating beads
in facial cleansers (8). Secondary MPs originate from the
fragmentation or degradation of larger plastic materials (9),
with the majority of environmental MPs considered to
be secondary in nature (10). Furthermore, the substantial
persistence of MPs enables their prolonged presence in waste
streams and environmental contexts. Research suggests that
these particles can accumulate and persist in natural environ-
ments for decades (11). These characteristics notably influence
their environmental mobility, distribution patterns, modes of
human exposure and potential hazard levels.

A particularly concerning facet of pervasive MP pollution
is their potential implications for human health. Research
indicates that MPs can enter the human body via ingestion,
inhalation or dermal contact, thereby posing diverse health
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risks (12). Among these, ingestion is identified as the predomi-
nant exposure pathway, with frequent vectors including marine
crustaceans, fish (13), sea salt, lake salt (14), tap water, spring
water and bottled water (15). Schwabl er al (16) reported the
presence of MPs in human feces, indicating that following
ingestion, MPs can traverse the esophagus, stomach, small
intestine and large intestine. This pathway may lead to their
accumulation in specific target organs, thus posing potential
health risks. Research performed on mice and zebrafish has
reported that ingested MPs can accumulate in the intestines,
potentially causing intestinal damage or dysbiosis of the gut
microbiota (17,18). Furthermore, prolonged accumulation
of MPs may contribute to carcinogenesis (19). MPs are also
present in atmospheric deposition as well as in both indoor and
outdoor environments (20). These particles may originate from
urban dust, synthetic textiles, material abrasion (such car tires
or buildings) and the resuspension of surface MPs (21). Plastic
particles measuring <5 pm in length and <3 ym in diameter
are readily inhalable (22), with certain particles accumulating
in lung tissue due to their inherent durability. This accumula-
tion has the potential to contribute to pulmonary inflammation,
fibrosis or cancer (23,24). Moreover, occupational exposure,
particularly amongst workers in the textile or mining indus-
tries, has been associated with higher incidences of respiratory
irritation (25). Previous studies have also highlighted dermal
contact as a potential route for MPs to enter the body, with
personal care products such as cosmetics, toothpaste and soaps
being major sources (26,27). Wu et al (27) reported that the
dermal barrier could be crossed by NPs (<100 nm), synthetic
fibers (<25 pm), the monomers, as well as the additives due to
the skin pores ranging from 40 to 8 pm. Furthermore, plastic
particles may also gain entry through wounds, sweat glands or
hair follicles (28).

In previous years, the relationship between MPs and
tumorigenesis has emerged as a key focus in MP and human
health research. Owing to their extensive surface area and
high adsorption capacity, MPs serve as vectors for several
environmental toxicants, including polycyclic aromatic
hydrocarbons (29,30), heavy metals (31) and organochlorine
pesticides (32), all of which are recognized as potent carcino-
gens. These substances can enter the human body alongside
MPs and, under certain conditions, may be either released or
retained, thus increasing the risk of carcinogenesis. Moreover,
research indicates that MPs with diameters ranging from
0.25-10 pm can penetrate cell membranes and accumulate
within cells, indicating their potential for prolonged persis-
tence within the body (33,34). MPs may interact with cellular
components through mechanisms (35-37) such as: i) Elevating
intracellular reactive oxygen species (ROS) levels, which can
lead to oxidative stress, lipid peroxidation, protein oxidation
and DNA damage; ii) promoting cytokine release upon cellular
contact, activating specific pathways and triggering inflam-
matory responses; and iii) disrupting immune surveillance
by interacting with immune cells, activating innate immune
receptors [such as toll-like receptors (TLR)] and perpetuating
chronic inflammation. These mechanisms collectively create
a conducive environment for tumor growth and influence the
tumor microenvironment (TME).

The TME is a complex network consisting of tumor
cells, several stromal cells (such as fibroblasts, lymphocytes,

macrophages and endothelial cells) and extracellular compo-
nents [such as cytokines, inflammatory cells, signaling
molecules and extracellular matrix (ECM)] (38). It serves a
crucial role in cancer development and progression. Recent
in vitro experiments have demonstrated that exposure to
polystyrene (PS)-NPs can promote the progression of ovarian
cancer in murine models by modifying the TME (39), thereby
providing further evidence of the connection between MPs
and the TME.

Given that direct research on the TME in the context of
MPs remains in its nascent stages, the present review aimed to
analyze the interactions between MPs and the TME. By evalu-
ating previous studies on the interactions of MPs with tumor
cells, macrophages, fibroblasts, endothelial cells and inflam-
matory processes, the present study aimed to consolidate the
latest evidence from research on both cancerous and normal
tissue cells. Furthermore, the present study aimed to elucidate
the potential links between MPs, the TME and tumorigenesis.

2. MPs and the TME

MPs can influence the TME by affecting several cell types.
Fig. 1 illustrates a brief overview of the role of MPs in the
TME.

MPs and tumor cells. Tumor cells, which represent a substan-
tial component of the TME, engage in a reciprocal relationship
with their environment, mutually influencing their behaviors
and progression. As articulated by Paget (40) in their ‘seed
and soil’ hypothesis over a century ago, the TME serves a
critical role in tumor development. Modifications in the TME
can notably affect the growth and proliferation of tumor cells.
For example, research by Chen et al (39) demonstrated that the
administration of water containing PS-NPs to mice resulted in
an increased growth rate of epithelial ovarian cancer tumors.
The analysis indicated that exposure to PS-NPs markedly
disrupted immune responses and pathways within the TME (39).
Similarly, research utilizing human colonic organoids and the
Caco-2 colonic cell line demonstrated that MPs could compro-
mise intestinal barrier function, thereby altering the cellular
microenvironment and affecting the proliferation and wound
healing of Caco-2 cancer cells (41). Upon colonization of host
tissues, tumor cells induce substantial molecular, cellular
and physical alterations that, to varying extents, promote the
development of the TME (42). Several researchers contend that
MPs have the potential to augment tumor cell proliferation,
modify metabolic processes and facilitate metastasis, thereby
impacting the dynamics of the TME (29,39,43). For instance, in
breast cancer cells, Park et al (44) demonstrated that exposure
to 16.4 ym fragment-type polypropylene (PP)-MPs in breast
cancer cells, specifically MDA-MB-231 and MCF-7 lines,
resulted in increased expression of genes associated with the
cell cycle and elevated secretion of interleukin (IL)-6, without
inducing cytotoxic effects. This exposure consequently
enhanced the metastatic potential of these cancer cells (44). A
separate study examined the effects of MPs on human breast
epithelial and breast cancer cells, reporting that 1.0 ym PS
particles increased the proliferation rate of MDA-MB-231
cells and facilitated tumor cell migration (45). Moreover,
experiments performed by Wang et al (43) demonstrated that
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Figure 1. Schematic representation of the proposed mechanism illustrating the regulation of MPs on cells in the TME, created using Figdraw2.0 (www.figdraw.
com). As plastic products degrade, they generate numerous MP particles, which can influence several components of the TME upon contact with the tumor.
MPs affect tumor cell proliferation and migration within tissues and blood vessels and alter immune cell states to enhance tumor activity, causing structural
damage to endothelial cells, promoting fibroblast activation and the expression of related proteins and directly impacting the ECM and inflammatory factors.
MP, microplastic; TME, tumor microenvironment; ECM, extracellular matrix; TLR4, toll-like receptor 4; ROS, reactive oxygen species; [CAM-1, intercellular
adhesion molecule 1; VCAM-1, vascular cell adhesion protein 1; NLRP3, NLR family pyrin domain containing 3; ATF6, activating transcription factor 6;
PAI-1, plasminogen activator inhibitor-1; p-EIF2a, phosphorylated eukaryotic translation initiation factor 20; IREla, inositol requiring enzyme 1; CTGF,

connective tissue growth factor.

MPs could be internalized by skin squamous cell carcinoma
lines in a time- and dose-dependent manner. This internaliza-
tion resulted in elevated mitochondrial ROS, activation of the
NLR family pyrin domain containing 3 (NLRP3) inflamma-
some and ultimately promoted the proliferation of skin cancer
cells (43).

Contrary to these findings, Goodman et al (46) observed that
the viability of cultured human alveolar A549 cells remained
relatively stable when exposed to 1 and 10 gm PS-MPs across
different concentrations. However, both metabolic activity and
proliferation rates exhibited marked reductions (46). Similarly,
Da Silva Brito et al (47) performed experiments on A549
cells under controlled conditions, simulating environmental
scenarios to generate secondary PP-MPs via laser ablation.
After exposing human alveolar A549 cells and HaCaT cells to
PP-MPs and a positive control group, amine-modified PS-MPs
(PS-NH,-MPs), it was observed that PP-MPs only enhanced
the metabolic activity of A549 cells at elevated concentra-
tions, whereas HaCaT cells remained unaffected. Conversely,
the PS-NH,-MPs control group exhibited reduced metabolic
activity and notably increased cell death (47). The study
concluded that laser-ablated PP-MPs did not exhibit cytotoxic

effects nor did they influence metabolic proliferation during
acute in vitro exposure.

In addition to the direct effects of MPs, certain compounds
adsorbed onto transported by MPs may also impact tumor
cells and the broader TME. Bockers et al (48,49) investigated
two typical plasticizers-bisphenol compounds and tri-o-cresyl
phosphate, commonly used in plastic products, and reported
that both compounds could interact with estrogen receptor
a in MCF-7 breast cancer cells. This interaction resulted in
14 upregulated genes (ADORAI, DDIT4, CELSR?2, etc.) and
three downregulated genes (BCAS3, PHF19, PRKCD), which
are associated with cell growth, invasion, migration, apoptosis
and cancer development. Consequently, the impact of MPs
on tumor cells is multifaceted and cannot be universally
characterized. Variables such as the type of tumor cells, the
surrounding microenvironment, the type, shape and size of
MPs, the duration of exposure and the presence of adsorbed
substances all potentially influence these interactions (Table I).

MPs and stromal cells
Immune cells. Tumor-associated macrophages, which are the
predominant infiltrating immune cells within the TME and
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have been extensively studied for their roles in promoting
tumor progression (50). Macrophages, as the principal phago-
cytic cells in mucosal environments such as the gastrointestinal
tract and pulmonary system, exhibit modified functionality
and viability upon exposure to MPs, a mechanism potentially
impacting the TME and tumor progression. In a study by
Yang et al (51), it was demonstrated using a murine model
that oral administration of polyethylene (PE)-NPs or PS-NPs
perturbed the gut microenvironment, thereby modulating the
adaptive immune response in a manner that promoted the
proliferation of pre-existing colorectal tumors. This phenom-
enon was attributed to the induction of IL-1p-producing
macrophages in the colon, instigated by NP-induced lysosomal
damage, which subsequently facilitated the differentiation of
Tregs and Th17 cells. This process is associated with T cell
exhaustion, thus fostering a pro-tumorigenic environment (51).

Moreover, MPs have been reported to exert pro-inflam-
matory effects on macrophages, which may contribute
to chronic inflammation that promotes tumor growth. A
study performed using RAW?264.7 mouse macrophage cells
demonstrated that the production of ROS and nitric oxide,
in conjunction with the secretion of inflammatory cytokines,
were key mechanisms through which PS-NPs and PS-MPs
elicited cytotoxicity and inflammation in macrophages (52).
Furthermore, Brammatti et al (53) investigated the effects
of NPs of different sizes (25, 50 and 100 nm) and concentra-
tions (25-500 pg/ml) on HT29 and U937 cell lines, utilizing
a Transwell system to assess macrophage activation and the
subsequent progression of the inflammatory response in intes-
tinal cells. The findings indicated that NPs of varying sizes
displayed differential permeability in intestinal cells, resulting
in alterations in macrophage infiltration and the activation of
HT?29 cells. This activation led to the upregulation of IL-1p
and inducible nitric oxide synthase levels, thereby fostering
an inflammatory milieu conducive to the development of a
tumor-supportive microenvironment (53).

In terms of cell viability, Merkley et al (54) demonstrated
that macrophages, upon phagocytosing MPs in a murine model,
underwent a metabolic shift towards glycolysis accompanied
by a concomitant reduction in mitochondrial respiration. This
metabolic alteration was associated with increased expression
of the co-stimulatory molecules, CD86 and CD80, on the
cell surface, as well as the upregulation of pro-inflammatory
cytokine genes (54). These findings are consistent with
those reported by Ling et al (41) and Collin-Faure et al (55).
Additionally, Koner et al (56) reported that exposure to PS-NPs
at concentrations of 50-500 pg/ml markedly reduced the
viability of human macrophages. This exposure also induced
oxidative stress, inhibited cellular proliferation, decreased
mitochondrial membrane potential and resulted in DNA
damage (56). Collectively, these findings suggest that MPs
disrupt the microenvironment, modulate macrophage infiltra-
tion, induce oxidative stress and impair both lysosomal and
mitochondrial functions, along with several surface markers
integral to immune responses. Consequently, this diminishes
macrophage efficiency and disrupts the equilibrium of the
innate immune system, thereby facilitating tumor develop-
ment and the formation of the TME.

Beyond macrophages, Wolff er al (57) performed isolation
and differentiation or activation of human T cells and dendritic
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cells, reporting that T lymphocytes exhibited minimal suscep-
tibility to cytotoxic effects induced by MPs. Conversely,
phagocytic dendritic cells and macrophages derived from
isolated monocytes demonstrated a high sensitivity to raw MPs.
Following 24-h MP exposure, marker expression indicated a
downregulation of the M2 macrophage-induced inflammatory
phenotype and an upregulation of M1 macrophage markers.
This shift may compromise the innate immune defense of
the host, potentially promoting tumorigenesis and the devel-
opment of the TME (57). In a related study, Weber et al (58)
primarily assessed the effects of NP exposure on primary
human monocytes and monocyte-derived dendritic cells,
reporting that NP exposure induced the secretion of both pro-
and anti-inflammatory cytokines in these cells (58). Notably,
the results of these two experiments exhibited certain incon-
sistencies, which may be attributed to Weber's utilization of
specific polymers, such as PVC and polymethyl methacrylate
or the employment of irregularly shaped particles.
Fibroblasts. Fibroblasts are integral to maintaining tissue
homeostasis, as they are involved in the synthesis, degrada-
tion and preservation of the ECM. They also serve a role
in leukocyte recruitment, angiogenesis and the promotion
of chronic inflammation within tissues (59). In the TME,
fibroblasts contribute to cancer progression through intricate
interactions with several cell types. They influence tumor
angiogenesis and metabolism by secreting factors and meta-
bolic products, processes frequently modulated by epigenetic
alterations (60). Research on the interaction between MPs
and fibroblasts frequently discusses inflammation and stress
responses. Wang et al (61) reported that fibroblasts are
capable of internalizing PS-MPs. When fibroblasts were
cultured in a medium conditioned with PS-MPs, there was
a notable increase in the production of ROS and proteins
associated with endoplasmic reticulum stress, such as acti-
vating transcription factor 6, phosphorylated eukaryotic
translation initiation factor 2a and inositol requiring enzyme
1. Additionally, there was an upregulation in the expres-
sion of proteins related to fibrosis, including plasminogen
activator inhibitor-1, collagen type I and connective tissue
growth factor (61). Martin et al (62) reported that dermal
fibroblasts co-cultured with NPs exhibited enhanced uptake
of these particles, alongside an upregulation of a-smooth
muscle actin and pro-collagen Ia. This suggests a notable
differentiation of fibroblasts into myofibroblasts, poten-
tially initiating inflammatory or immune responses (62).
Furthermore, several studies propose that MPs may disrupt
the homeostasis of the ECM by affecting fibroblast protein
expression, which could have a substantial impact on the
TME. Eom et al (63) elucidated that exposure to PS-MPs in
human dermal fibroblasts led to the upregulation of matrix
metalloproteinase-1 (64), a collagenase known for degrading
type I collagen, and several other ECM proteins. This process
of exposure to PS-MPs markedly diminished the expression
of adhesion and ECM-related genes (ELN, LAMA, LAMB,
LAMC, etc.), thereby weakening the mechanical linkages
between the intracellular and extracellular environments
and the ECM. Moreover, a downregulation of integrin f§
subunits (65) was also observed in Eom's study, which are
cell surface receptors that mediate cell-matrix adhesion,
along with downstream focal adhesion kinase expression.
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This downregulation subsequently activates the PI3K/AKT
signaling pathway, reducing cell migration and inducing
apoptosis (63).

Endothelial cells. Endothelial cells, which constitute
a thin layer of cells lining blood vessels, are integral to the
regulation of connective tissue cell growth and development,
as well as the facilitation of angiogenesis. The formation of
new blood vessels is vital for delivering nutrients and oxygen,
thus sustaining tumor growth and progression. Therefore,
angiogenesis mediated by endothelial cells is a fundamental
process in tumor development (66). The influence of MPs
on endothelial cells may represent a pivotal mechanism
connecting MPs to tumor progression and alterations in the
TME. Vlacil er al (67) assessed the effects of carboxylated
PS microparticles (1 ym) on murine endothelial cells and
reported that these PS particles had the capacity to acti-
vate endothelial cells, inducing the expression of adhesion
molecules. This activation subsequently enhanced leukocyte
adhesion and stimulated monocytes to secrete pro-inflam-
matory cytokines (67). Mobayen er al (68) evaluated the
effects of irregular PS-MPs, exposing human umbilical
vein endothelial cells to PS-MPs for a duration of 24 h. The
results demonstrated a marked upregulation in the expression
of intercellular cell adhesion molecule-1 and vascular cell
adhesion molecule-1, thereby corroborating the activating
influence of MPs on endothelial cells. Furthermore, it was
reported that MPs induced alterations in endothelial cell
phenotypes and shortened the lag time for fibrin formation,
consequently heightening the risk of vascular inflammation or
thrombosis (68). Mice models were used to assess the relation-
ship between MPs and vascular damage and inflammation.
According to a previous study, NP exposure caused structural
damage to vascular endothelial cells, triggered inflammatory
responses and weakened coagulation, resulting from the
activation of the Janus kinase 1/STAT3/tissue factor signaling
pathway and inflammatory mediators, such as IL-6 (69).

MPs and the ECM

The ECM functions as an essential scaffold that preserves
cellular homeostasis by facilitating cell-matrix adhesion
and mediating direct interactions between cells and their
extracellular milieu (70). Within the context of tumors, the
ECM constitutes a notable component, fulfilling crucial roles,
including the provision of mechanical support, the regula-
tion of the microenvironment and serving as a reservoir for
signaling molecules (71). Although specific research directly
demonstrating the impact of MPs on ECM modulation in
relation to tumor growth is currently lacking, Huang et al (72)
performed a Kyoto Encyclopedia of Genes and Genomes
analysis on differentially expressed genes in mice exposed to
MPs. The findings identified an enrichment of MPs in the cell
adhesion molecule pathway, indicating that MPs can directly
influence the ECM. The excessive accumulation of MPs may
not only interfere with cell signaling pathways and inhibit the
activation of immune responses, but also impact a range of
biological processes. These processes include the viability of
tissue stem cells, cell differentiation, the regulation of growth
factors and potentially the development of cancer (72). These
observations underscore important directions for future
exploration (Table II).

3. MPs and inflammation

Hanahan et al (73) proposed that inflammation notably contrib-
utes to the initiation and progression of tumors. Recognized as
a hallmark of cancer, inflammation is implicated in every phase
of tumorigenesis, encompassing development, malignancy,
invasion and metastasis, whilst also interacting intricately
with the TME. MPs intensify inflammatory responses by
releasing cytokines, triggering inflammatory signaling
pathways, inducing oxidative stress and establishing a micro-
environment conducive to cancer initiation and progression
(Table III) (37,74).

Inflammatory factors are critical in modulating inflam-
matory and immune responses and notably impact tumor
progression within the TME through several mechanisms.
These factors establish signaling pathways that mediate the
pro-inflammatory effects of MPs and modify the microen-
vironment. Recent research has demonstrated that PS-NPs
exacerbate lipopolysaccharide-induced duodenal inflamma-
tion in murine models via ROS-driven activation of NF-xB
and NLRP3 (75). NF-«B is a pivotal regulator of pro-inflam-
matory mediator expression and serves a central role in the
pathogenesis of inflammatory diseases. Notably, NF-xB
operates in a cell-type-specific manner, facilitating the activa-
tion of genes that promote inflammation within the TME (76).
The NLRP3 inflammasome contributes to the regulation of
inflammatory responses by activating caspase-1, which in
turn promotes the secretion of pro-inflammatory cytokines,
IL-18 and IL-1p and induces pyroptosis (77). In vitro experi-
ments have demonstrated that PS-MPs suppress cell viability
via a mitochondria-dependent pathway, leading to increased
production of ROS (78). Excessive ROS not only activates
NF-«B but also serves as a critical mechanism for the activa-
tion of the NLRP3 inflammasome in response to exogenous
stimuli (77,79,80). Consequently, the ROS-NF-«B-NLRP3
signaling pathway has emerged as a central focus in research
concerning MPs and inflammation. Despite ethical consider-
ations, a notable number of these experiments are performed
using animal models. Wen er al (81) evaluated the relationship
between exposure to PS-NPs and liver inflammation in mice,
and reported that PS-NPs exposure markedly increased the
expression levels of NLRP3, IL-1§ and caspase-1, in addition
to activating NF-kB. These results further corroborate the
hypothesis that the ROS-NF-kB-NLRP3 signaling pathway
is a mechanism through which PS-NPs induce inflamma-
tory damage (81). Similarly, in a study by Zhang et al (82),
the effects of varying concentrations of PS-MPs on chicken
hearts and primary cardiomyocytes were assessed. The find-
ings indicated that PS-MPs induced myocardial pyroptosis,
inflammatory cell infiltration and mitochondrial damage via
the NF-kB-NLRP3-gasdermin D signaling pathway. This
process resulted in the upregulation of factors such as NLRP3,
caspase-1,1L-1f,1L-18 and IL-6, thereby exacerbating myocar-
dial inflammation (82). A comparable conclusion was drawn in
a previous study evaluating the effects of PS-MPs on thymic
inflammation in chickens (83). The study reported that PS-MPs
induced oxidative stress in the thymus and activated the nuclear
factor erythroid 2-related factor 2/NF-«xB, Bcl-2/Bax and AKT
signaling pathways. This activation subsequently enhanced the
expression of downstream molecules such as IL-1p3, caspase-3
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Table III. Continued.

(Refs.)

Conclusion

Aim

Cell/animal model

Size

Particle type

First author/s, year

oD

PS-MPs cause intestinal inflammation and

To investigate the molecular

PS-MPs 0.1,1 and Human colorectal

Zeng et al, 2024

barrier dysfunction through the ROS-dependent
NF-kB/NLRP3/IL-1p/MLCK signaling pathway.

mechanisms contributing to

adenocarcinoma Caco-2

cells and 6-week-old
male C57BL/6 mice

Sum
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MP-induced intestinal barrier

dysfunction.

MPs, microplastics; NPs, nanoplastics; PS, polystyrene; PE, polyethylene; PP, polypropylene; IL, interleukin; NLRP3, NLR family pyrin domain containing 3; MLCK, myosin light chain kinase; ROS,

reactive oxygen species; toll-like receptor 4; NRF2, nuclear factor erythroid 2-related factor 2.

and Beclinl, culminating in thymic inflammation, apoptosis
and autophagy (83).

In addition to the ROS-NF-«B-NLRP3 signaling
pathway, other studies have suggested that toll-like receptor
4 (TLR4), p38 and p50 may also serve a role in mediating
the pro-inflammatory effects of MPs. Antunes et al (84)
performed an experiment in which the human colorectal
cancer HT?29 cell line was exposed to PS-NPs. The results
demonstrated that HT29 cells exhibited an upregulation of
p50 and p38 expression, along with an increase in TLR4
expression. Notably, p38, a member of the MAPK family,
is implicated in several signaling cascades, including
those related to inflammatory responses, and is respon-
sive to environmental stressors (85). TLR4 functions as a
membrane protein in the pattern recognition receptor (PRR)
family. The activation of TLR4 can lead to the synthesis of
pro-inflammatory cytokines and chemokines (86), as well
as the activation of the classical NF-kB pathway and p38,
thereby promoting inflammatory responses (87). Consistent
results were reported in a study by Woo et al (88), where
exposure of mouse lungs and A549 cells to PP-NPs resulted
in a marked increase in the number of inflammatory cells,
ROS production and levels of inflammatory cytokines and
chemokines both in vivo and in vitro. This was accompanied
by elevated levels of phosphorylated p38 and NF-«B proteins.
In A549 cells, the inflammation induced by PP exposure was
regulated by inhibitors targeting p38 and ROS. These results
suggest that PP-NPs can promote inflammation through
p38-mediated NF-«xB signaling pathways (88). Additionally,
Danso et al (89) administered 5 mg/kg MP fragments
intratracheally to mice over a period of 14 days to assess
the pulmonary toxicity and inflammatory effects associated
with MPs. Compared with the control group, the lung tissues
of mice administered with PS-MP fragments exhibited an
increased presence of inflammasome components, including
NLRP3, apoptosis-associated speck-like protein containing a
caspase recruitment domain and caspase-1. This observation
supports the conclusion that lung inflammation induced by
PS microplastic fragments is mediated via TLR4 activation
of the NF-xB and NLRP3 inflammasome pathways (89).

Although the pro-inflammatory pathways triggered by
MPs in numerous experimental studies exhibit variability,
they consistently implicate the NLRP3 inflammasome,
underscoring its critical role in MP-induced inflammation.
Contrarily, in the study by Han ef al (90) on nano-sized MPs
and their induction of inflammatory responses in skin cells,
activation of the NLRP3 inflammasome was not detected.
Instead, the study reported that nano-MPs upregulated the
‘absent in melanoma 2’ PRR in a concentration-dependent
manner, thereby promoting the release of IL-1f and initi-
ating the inflammatory response (90). This enhances the
comprehension of inflammation induced by MPs.

On the other hand, beyond their pro-inflammatory
effects, inflammatory factors have the potential to disrupt
cellular junctions, alter the microenvironment and poten-
tially contribute to malignant transformation. Zeng et al (91)
reported that exposure of the human colorectal cancer
Caco-2 cell line to PS-MPs resulted in increased perme-
ability of tight junction proteins within the cultured Caco-2
monolayer. This effect is likely attributable to the induction
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of oxidative stress and the activation of NF-kB and the
NLRP3 inflammasome by PS-MPs in Caco-2 cells, which
subsequently elevated the expression of inflammatory
factors, such as IL-6, IL-8, TNF-a and IL-1§ (91). Notably,
IL-1B is known to activate the NF-xB/myosin light chain
kinase (MLCK) signaling pathway (92), whereas TNF-a
stimulates IL-8 secretion, thereby promoting intestinal
inflammation and MLCK expression (93). Consequently,
PS-MPs elicit inflammatory responses and compromise
colonic epithelial tight junctions through the ROS-dependent
NF-«B/NLRP3/IL-13/MLCK signaling pathway. This
process enhances mucosal barrier permeability and perturbs
the intestinal microenvironment (91).

4. Conclusions

MPs have become deeply embedded within human society,
establishing themselves as a major global pollutant. Their
persistence, mobility, high production volume and wide range
of applications have led to their ubiquitous presence in the
natural environment. Consequently, MPs are increasingly
encountered by the human body, posing potential health
risks and potentially elevating the likelihood of disease and
cancer (94). Research has reported that under conditions
characterized by high concentration, extended exposure and
heightened individual susceptibility, MPs may exert cytotoxic
effects through mechanisms such as chronic inflamma-
tion, oxidative stress, DNA damage, immunotoxicity and
the delivery of toxic substances. It potentially culminates
in malignant transformation (95). Furthermore, previous
studies have broadened the scope of understanding regarding
the effects of MPs, demonstrating their influence not only
on tumor initiation but also on tumor progression by modu-
lating the TME (39). Despite the nascent stage of research
in this field and the limited scope of existing literature, the
present review offers a systematic analysis of contemporary
studies examining the interactions between MPs and several
components of the TME. These elements include tumor cells,
immune cells (with a focus on macrophages), endothelial cells,
fibroblasts, ECM and inflammatory factors. The primary
conclusion is that MPs within the TME markedly contribute
to the proliferation and metastasis of tumor cells. They achieve
this by modulating the immune cell status to enhance tumor
activity, inducing structural changes in vascular endothelial
cells, facilitating the activation of fibroblasts and the expres-
sion of associated proteins and directly influencing the ECM
and inflammatory mediators. We hypothesize that these
theoretical foundations will enhance the comprehension of the
role of MPs in carcinogenesis and offer novel research trajec-
tories for future scholars. Furthermore, they may identify new
diagnostic and therapeutic targets for individuals whose health
is compromised by MPs, including patients with cancer.
Similarly, carbon nanomaterials (CNMs) exhibit distinc-
tive physical and chemical properties due to their nanoscale
dimensions. CNMs present novel opportunities for cancer
therapy by specifically targeting cancer cells and components
of the TME (96). The present review serves as an impetus for
the investigation into the application of MPs within the context
of the TME. Nonetheless, the current understanding of the
interaction between MPs and the TME represents merely the
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tip of the iceberg. Consequently, further research is imperative
to elucidate the intricate relationship between MPs and cancer
development, establishing it as a crucial area of study.

It is important to recognize that the present review revealed
considerable variability in experimental outcomes, attributable
to disparities in research methodologies, sample types, the
physical properties of samples as well as exposure concentra-
tions and durations. These inconsistencies present challenges in
comparing and categorizing study findings. Therefore, future
research on MPs and the TME should incorporate several MP
types, concentrations and exposure durations, in both in vitro
and in vivo settings, alongside rigorously designed control
groups. Whilst this approach may increase the complexity of
experiments, it will enhance the reliability and accuracy of the
data and conclusions.

In summary, the study of MPs, tumors and the TME
necessitates sustained research investment and the adoption
of multidisciplinary methodologies. As the present review
progressively unravels the complex web of interactions among
these elements, the resulting insights will contribute to the
development of more efficacious preventive measures, facili-
tate earlier detection and enhance therapeutic strategies for
individuals affected by MPs.
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