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Abstract. Microplastics (MPs) are pervasive in several ecosys‑
tems and have the potential to infiltrate multiple aspects of 
human life through ingestion, inhalation and dermal exposure, 
thus eliciting substantial concerns regarding their potential 
implications for human health. Whilst initial research has docu‑
mented the effects of MPs on disease development across 
multiple physiological systems, MPs may also facilitate tumor 
progression by influencing the tumor microenvironment (TME). 
This evolving focus underscores the growing interest in the role 
of MPs in tumorigenesis and their interactions within the TME. 
In the present review, the relationship between MPs and the 
TME is comprehensively assessed, providing a detailed analysis 
of their interactions with tumor cells, stromal cells (including 
macrophages, fibroblasts and endothelial cells), the extracellular 
matrix and inflammatory processes. Recommendations for 
future research directions and strategies to address and reduce 
microplastic pollution are proposed.
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1. Introduction

The presence of substantial quantities of plastic debris in 
the environment has been documented since the 1960s (1). 

However, it was not until 2004 that the term ‘microplastic’ 
(MP) was introduced in a report to characterize microscopic 
plastic debris (2), signifying the commencement of research 
focused on MPs. The production of plastic has surged mark‑
edly in recent decades. As of 2015, ~4.9 billion tons of plastic 
waste had accumulated in landfills or the natural environment. 
Projections indicate that this figure could rise to ~12 billion 
tons by 2050 (3). The nature of global MP pollution is of 
notable concern.

Compared with other suspended particulate matter, MPs 
are distinguished by their extensive size distribution, diverse 
shapes, low densities‑often approximating that of water‑and 
high persistence (4). Plastics that accumulate in substantial 
quantities in the environment undergo degradation due to 
several environmental factors, including ultraviolet radiation 
from sunlight, precipitation, water flow, biological oxidation 
and mechanical weathering. The degradation products exhibit 
a wide range of forms such as fragments, fibers, spheres, pellets, 
lines, sheets, flakes and foams, with fragments being the most 
prevalent (5). These products can be further classified by size 
into nanoplastics (NPs; ≤0.1 µm), MPs (≤5 mm), medium 
plastics (0.5‑5 cm), megaplastics (5‑50 cm) and macroplastics 
(≥50 cm) (6). The densities of plastics vary markedly, ranging 
from 50 kg/m³ for extruded polystyrene foam to 1,400 kg/m³ for 
polyvinyl chloride (PVC); however, the densities of numerous 
plastics are similar to that of water (4). 

MPs can also be categorized into primary and secondary 
types based on their origin. Primary MPs are small plastic 
particles that are either intentionally manufactured or gener‑
ated as by‑products of industrial processes (7). They are 
commonly present in products such as exfoliating beads 
in facial cleansers (8). Secondary MPs originate from the 
fragmentation or degradation of larger plastic materials (9), 
with the majority of environmental MPs considered to 
be secondary in nature (10). Furthermore, the substantial 
persistence of MPs enables their prolonged presence in waste 
streams and environmental contexts. Research suggests that 
these particles can accumulate and persist in natural environ‑
ments for decades (11). These characteristics notably influence 
their environmental mobility, distribution patterns, modes of 
human exposure and potential hazard levels.

A particularly concerning facet of pervasive MP pollution 
is their potential implications for human health. Research 
indicates that MPs can enter the human body via ingestion, 
inhalation or dermal contact, thereby posing diverse health 
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risks (12). Among these, ingestion is identified as the predomi‑
nant exposure pathway, with frequent vectors including marine 
crustaceans, fish (13), sea salt, lake salt (14), tap water, spring 
water and bottled water (15). Schwabl et al (16) reported the 
presence of MPs in human feces, indicating that following 
ingestion, MPs can traverse the esophagus, stomach, small 
intestine and large intestine. This pathway may lead to their 
accumulation in specific target organs, thus posing potential 
health risks. Research performed on mice and zebrafish has 
reported that ingested MPs can accumulate in the intestines, 
potentially causing intestinal damage or dysbiosis of the gut 
microbiota (17,18). Furthermore, prolonged accumulation 
of MPs may contribute to carcinogenesis (19). MPs are also 
present in atmospheric deposition as well as in both indoor and 
outdoor environments (20). These particles may originate from 
urban dust, synthetic textiles, material abrasion (such car tires 
or buildings) and the resuspension of surface MPs (21). Plastic 
particles measuring <5 µm in length and <3 µm in diameter 
are readily inhalable (22), with certain particles accumulating 
in lung tissue due to their inherent durability. This accumula‑
tion has the potential to contribute to pulmonary inflammation, 
fibrosis or cancer (23,24). Moreover, occupational exposure, 
particularly amongst workers in the textile or mining indus‑
tries, has been associated with higher incidences of respiratory 
irritation (25). Previous studies have also highlighted dermal 
contact as a potential route for MPs to enter the body, with 
personal care products such as cosmetics, toothpaste and soaps 
being major sources (26,27). Wu et al (27) reported that the 
dermal barrier could be crossed by NPs (<100 nm), synthetic 
fibers (<25 µm), the monomers, as well as the additives due to 
the skin pores ranging from 40 to 8  µm. Furthermore, plastic 
particles may also gain entry through wounds, sweat glands or 
hair follicles (28).

In previous years, the relationship between MPs and 
tumorigenesis has emerged as a key focus in MP and human 
health research. Owing to their extensive surface area and 
high adsorption capacity, MPs serve as vectors for several 
environmental toxicants, including polycyclic aromatic 
hydrocarbons (29,30), heavy metals (31) and organochlorine 
pesticides (32), all of which are recognized as potent carcino‑
gens. These substances can enter the human body alongside 
MPs and, under certain conditions, may be either released or 
retained, thus increasing the risk of carcinogenesis. Moreover, 
research indicates that MPs with diameters ranging from 
0.25‑10 µm can penetrate cell membranes and accumulate 
within cells, indicating their potential for prolonged persis‑
tence within the body (33,34). MPs may interact with cellular 
components through mechanisms (35‑37) such as: i) Elevating 
intracellular reactive oxygen species (ROS) levels, which can 
lead to oxidative stress, lipid peroxidation, protein oxidation 
and DNA damage; ii) promoting cytokine release upon cellular 
contact, activating specific pathways and triggering inflam‑
matory responses; and iii) disrupting immune surveillance 
by interacting with immune cells, activating innate immune 
receptors [such as toll‑like receptors (TLR)] and perpetuating 
chronic inflammation. These mechanisms collectively create 
a conducive environment for tumor growth and influence the 
tumor microenvironment (TME).

The TME is a complex network consisting of tumor 
cells, several stromal cells (such as fibroblasts, lymphocytes, 

macrophages and endothelial cells) and extracellular compo‑
nents [such as cytokines, inflammatory cells, signaling 
molecules and extracellular matrix (ECM)] (38). It serves a 
crucial role in cancer development and progression. Recent 
in vitro experiments have demonstrated that exposure to 
polystyrene (PS)‑NPs can promote the progression of ovarian 
cancer in murine models by modifying the TME (39), thereby 
providing further evidence of the connection between MPs 
and the TME.

Given that direct research on the TME in the context of 
MPs remains in its nascent stages, the present review aimed to 
analyze the interactions between MPs and the TME. By evalu‑
ating previous studies on the interactions of MPs with tumor 
cells, macrophages, fibroblasts, endothelial cells and inflam‑
matory processes, the present study aimed to consolidate the 
latest evidence from research on both cancerous and normal 
tissue cells. Furthermore, the present study aimed to elucidate 
the potential links between MPs, the TME and tumorigenesis.

2. MPs and the TME

MPs can influence the TME by affecting several cell types. 
Fig. 1 illustrates a brief overview of the role of MPs in the 
TME.

MPs and tumor cells. Tumor cells, which represent a substan‑
tial component of the TME, engage in a reciprocal relationship 
with their environment, mutually influencing their behaviors 
and progression. As articulated by Paget (40) in their ‘seed 
and soil’ hypothesis over a century ago, the TME serves a 
critical role in tumor development. Modifications in the TME 
can notably affect the growth and proliferation of tumor cells. 
For example, research by Chen et al (39) demonstrated that the 
administration of water containing PS‑NPs to mice resulted in 
an increased growth rate of epithelial ovarian cancer tumors. 
The analysis indicated that exposure to PS‑NPs markedly 
disrupted immune responses and pathways within the TME (39). 
Similarly, research utilizing human colonic organoids and the 
Caco‑2 colonic cell line demonstrated that MPs could compro‑
mise intestinal barrier function, thereby altering the cellular 
microenvironment and affecting the proliferation and wound 
healing of Caco‑2 cancer cells (41). Upon colonization of host 
tissues, tumor cells induce substantial molecular, cellular 
and physical alterations that, to varying extents, promote the 
development of the TME (42). Several researchers contend that 
MPs have the potential to augment tumor cell proliferation, 
modify metabolic processes and facilitate metastasis, thereby 
impacting the dynamics of the TME (29,39,43). For instance, in 
breast cancer cells, Park et al (44) demonstrated that exposure 
to 16.4 µm fragment‑type polypropylene (PP)‑MPs in breast 
cancer cells, specifically MDA‑MB‑231 and MCF‑7 lines, 
resulted in increased expression of genes associated with the 
cell cycle and elevated secretion of interleukin (IL)‑6, without 
inducing cytotoxic effects. This exposure consequently 
enhanced the metastatic potential of these cancer cells (44). A 
separate study examined the effects of MPs on human breast 
epithelial and breast cancer cells, reporting that 1.0 µm PS 
particles increased the proliferation rate of MDA‑MB‑231 
cells and facilitated tumor cell migration (45). Moreover, 
experiments performed by Wang et al (43) demonstrated that 
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MPs could be internalized by skin squamous cell carcinoma 
lines in a time‑ and dose‑dependent manner. This internaliza‑
tion resulted in elevated mitochondrial ROS, activation of the 
NLR family pyrin domain containing 3 (NLRP3) inflamma‑
some and ultimately promoted the proliferation of skin cancer 
cells (43).

Contrary to these findings, Goodman et al (46) observed that 
the viability of cultured human alveolar A549 cells remained 
relatively stable when exposed to 1 and 10 µm PS‑MPs across 
different concentrations. However, both metabolic activity and 
proliferation rates exhibited marked reductions (46). Similarly, 
Da Silva Brito et al (47) performed experiments on A549 
cells under controlled conditions, simulating environmental 
scenarios to generate secondary PP‑MPs via laser ablation. 
After exposing human alveolar A549 cells and HaCaT cells to 
PP‑MPs and a positive control group, amine‑modified PS‑MPs 
(PS‑NH2‑MPs), it was observed that PP‑MPs only enhanced 
the metabolic activity of A549 cells at elevated concentra‑
tions, whereas HaCaT cells remained unaffected. Conversely, 
the PS‑NH2‑MPs control group exhibited reduced metabolic 
activity and notably increased cell death (47). The study 
concluded that laser‑ablated PP‑MPs did not exhibit cytotoxic 

effects nor did they influence metabolic proliferation during 
acute in vitro exposure.

In addition to the direct effects of MPs, certain compounds 
adsorbed onto transported by MPs may also impact tumor 
cells and the broader TME. Böckers et al (48,49) investigated 
two typical plasticizers‑bisphenol compounds and tri‑o‑cresyl 
phosphate, commonly used in plastic products, and reported 
that both compounds could interact with estrogen receptor 
α in MCF‑7 breast cancer cells. This interaction resulted in 
14 upregulated genes (ADORA1, DDIT4, CELSR2, etc.) and 
three downregulated genes (BCAS3, PHF19, PRKCD), which 
are associated with cell growth, invasion, migration, apoptosis 
and cancer development. Consequently, the impact of MPs 
on tumor cells is multifaceted and cannot be universally 
characterized. Variables such as the type of tumor cells, the 
surrounding microenvironment, the type, shape and size of 
MPs, the duration of exposure and the presence of adsorbed 
substances all potentially influence these interactions (Table I).

MPs and stromal cells
Immune cells. Tumor‑associated macrophages, which are the 
predominant infiltrating immune cells within the TME and 

Figure 1. Schematic representation of the proposed mechanism illustrating the regulation of MPs on cells in the TME, created using Figdraw2.0 (www.figdraw.
com). As plastic products degrade, they generate numerous MP particles, which can influence several components of the TME upon contact with the tumor. 
MPs affect tumor cell proliferation and migration within tissues and blood vessels and alter immune cell states to enhance tumor activity, causing structural 
damage to endothelial cells, promoting fibroblast activation and the expression of related proteins and directly impacting the ECM and inflammatory factors. 
MP, microplastic; TME, tumor microenvironment; ECM, extracellular matrix; TLR4, toll‑like receptor 4; ROS, reactive oxygen species; ICAM‑1, intercellular 
adhesion molecule 1; VCAM‑1, vascular cell adhesion protein 1; NLRP3, NLR family pyrin domain containing 3; ATF6, activating transcription factor 6; 
PAI‑1, plasminogen activator inhibitor‑1; p‑EIF2α, phosphorylated eukaryotic translation initiation factor 2α; IRE1α, inositol requiring enzyme 1; CTGF, 
connective tissue growth factor.

https://www.spandidos-publications.com/10.3892/ol.2025.14939
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have been extensively studied for their roles in promoting 
tumor progression (50). Macrophages, as the principal phago‑
cytic cells in mucosal environments such as the gastrointestinal 
tract and pulmonary system, exhibit modified functionality 
and viability upon exposure to MPs, a mechanism potentially 
impacting the TME and tumor progression. In a study by 
Yang et al (51), it was demonstrated using a murine model 
that oral administration of polyethylene (PE)‑NPs or PS‑NPs 
perturbed the gut microenvironment, thereby modulating the 
adaptive immune response in a manner that promoted the 
proliferation of pre‑existing colorectal tumors. This phenom‑
enon was attributed to the induction of IL‑1β‑producing 
macrophages in the colon, instigated by NP‑induced lysosomal 
damage, which subsequently facilitated the differentiation of 
Tregs and Th17 cells. This process is associated with T cell 
exhaustion, thus fostering a pro‑tumorigenic environment (51).

Moreover, MPs have been reported to exert pro‑inflam‑
matory effects on macrophages, which may contribute 
to chronic inflammation that promotes tumor growth. A 
study performed using RAW264.7 mouse macrophage cells 
demonstrated that the production of ROS and nitric oxide, 
in conjunction with the secretion of inflammatory cytokines, 
were key mechanisms through which PS‑NPs and PS‑MPs 
elicited cytotoxicity and inflammation in macrophages (52). 
Furthermore, Brammatti et al (53) investigated the effects 
of NPs of different sizes (25, 50 and 100 nm) and concentra‑
tions (25‑500 µg/ml) on HT29 and U937 cell lines, utilizing 
a Transwell system to assess macrophage activation and the 
subsequent progression of the inflammatory response in intes‑
tinal cells. The findings indicated that NPs of varying sizes 
displayed differential permeability in intestinal cells, resulting 
in alterations in macrophage infiltration and the activation of 
HT29 cells. This activation led to the upregulation of IL‑1β 
and inducible nitric oxide synthase levels, thereby fostering 
an inflammatory milieu conducive to the development of a 
tumor‑supportive microenvironment (53).

In terms of cell viability, Merkley et al (54) demonstrated 
that macrophages, upon phagocytosing MPs in a murine model, 
underwent a metabolic shift towards glycolysis accompanied 
by a concomitant reduction in mitochondrial respiration. This 
metabolic alteration was associated with increased expression 
of the co‑stimulatory molecules, CD86 and CD80, on the 
cell surface, as well as the upregulation of pro‑inflammatory 
cytokine genes (54). These findings are consistent with 
those reported by Ling et al (41) and Collin‑Faure et al (55). 
Additionally, Koner et al (56) reported that exposure to PS‑NPs 
at concentrations of 50‑500 µg/ml markedly reduced the 
viability of human macrophages. This exposure also induced 
oxidative stress, inhibited cellular proliferation, decreased 
mitochondrial membrane potential and resulted in DNA 
damage (56). Collectively, these findings suggest that MPs 
disrupt the microenvironment, modulate macrophage infiltra‑
tion, induce oxidative stress and impair both lysosomal and 
mitochondrial functions, along with several surface markers 
integral to immune responses. Consequently, this diminishes 
macrophage efficiency and disrupts the equilibrium of the 
innate immune system, thereby facilitating tumor develop‑
ment and the formation of the TME.

Beyond macrophages, Wolff et al (57) performed isolation 
and differentiation or activation of human T cells and dendritic 

cells, reporting that T lymphocytes exhibited minimal suscep‑
tibility to cytotoxic effects induced by MPs. Conversely, 
phagocytic dendritic cells and macrophages derived from 
isolated monocytes demonstrated a high sensitivity to raw MPs. 
Following 24‑h MP exposure, marker expression indicated a 
downregulation of the M2 macrophage‑induced inflammatory 
phenotype and an upregulation of M1 macrophage markers. 
This shift may compromise the innate immune defense of 
the host, potentially promoting tumorigenesis and the devel‑
opment of the TME (57). In a related study, Weber et al (58) 
primarily assessed the effects of NP exposure on primary 
human monocytes and monocyte‑derived dendritic cells, 
reporting that NP exposure induced the secretion of both pro‑ 
and anti‑inflammatory cytokines in these cells (58). Notably, 
the results of these two experiments exhibited certain incon‑
sistencies, which may be attributed to Weber's utilization of 
specific polymers, such as PVC and polymethyl methacrylate 
or the employment of irregularly shaped particles.

Fibroblasts. Fibroblasts are integral to maintaining tissue 
homeostasis, as they are involved in the synthesis, degrada‑
tion and preservation of the ECM. They also serve a role 
in leukocyte recruitment, angiogenesis and the promotion 
of chronic inflammation within tissues (59). In the TME, 
fibroblasts contribute to cancer progression through intricate 
interactions with several cell types. They influence tumor 
angiogenesis and metabolism by secreting factors and meta‑
bolic products, processes frequently modulated by epigenetic 
alterations (60). Research on the interaction between MPs 
and fibroblasts frequently discusses inflammation and stress 
responses. Wang et al (61) reported that fibroblasts are 
capable of internalizing PS‑MPs. When fibroblasts were 
cultured in a medium conditioned with PS‑MPs, there was 
a notable increase in the production of ROS and proteins 
associated with endoplasmic reticulum stress, such as acti‑
vating transcription factor 6, phosphorylated eukaryotic 
translation initiation factor 2α and inositol requiring enzyme 
1. Additionally, there was an upregulation in the expres‑
sion of proteins related to fibrosis, including plasminogen 
activator inhibitor‑1, collagen type I and connective tissue 
growth factor (61). Martin et al (62) reported that dermal 
fibroblasts co‑cultured with NPs exhibited enhanced uptake 
of these particles, alongside an upregulation of α‑smooth 
muscle actin and pro‑collagen Iα. This suggests a notable 
differentiation of fibroblasts into myofibroblasts, poten‑
tially initiating inflammatory or immune responses (62). 
Furthermore, several studies propose that MPs may disrupt 
the homeostasis of the ECM by affecting fibroblast protein 
expression, which could have a substantial impact on the 
TME. Eom et al (63) elucidated that exposure to PS‑MPs in 
human dermal fibroblasts led to the upregulation of matrix 
metalloproteinase‑1 (64), a collagenase known for degrading 
type I collagen, and several other ECM proteins. This process 
of exposure to PS‑MPs markedly diminished the expression 
of adhesion and ECM‑related genes (ELN, LAMA, LAMB, 
LAMC, etc.), thereby weakening the mechanical linkages 
between the intracellular and extracellular environments 
and the ECM. Moreover, a downregulation of integrin β 
subunits (65) was also observed in Eom's study, which are 
cell surface receptors that mediate cell‑matrix adhesion, 
along with downstream focal adhesion kinase expression. 
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This downregulation subsequently activates the PI3K/AKT 
signaling pathway, reducing cell migration and inducing 
apoptosis (63).

Endothelial cells. Endothelial cells, which constitute 
a thin layer of cells lining blood vessels, are integral to the 
regulation of connective tissue cell growth and development, 
as well as the facilitation of angiogenesis. The formation of 
new blood vessels is vital for delivering nutrients and oxygen, 
thus sustaining tumor growth and progression. Therefore, 
angiogenesis mediated by endothelial cells is a fundamental 
process in tumor development (66). The influence of MPs 
on endothelial cells may represent a pivotal mechanism 
connecting MPs to tumor progression and alterations in the 
TME. Vlacil et al (67) assessed the effects of carboxylated 
PS microparticles (1 µm) on murine endothelial cells and 
reported that these PS particles had the capacity to acti‑
vate endothelial cells, inducing the expression of adhesion 
molecules. This activation subsequently enhanced leukocyte 
adhesion and stimulated monocytes to secrete pro‑inflam‑
matory cytokines (67). Mobayen et al (68) evaluated the 
effects of irregular PS‑MPs, exposing human umbilical 
vein endothelial cells to PS‑MPs for a duration of 24 h. The 
results demonstrated a marked upregulation in the expression 
of intercellular cell adhesion molecule‑1 and vascular cell 
adhesion molecule‑1, thereby corroborating the activating 
influence of MPs on endothelial cells. Furthermore, it was 
reported that MPs induced alterations in endothelial cell 
phenotypes and shortened the lag time for fibrin formation, 
consequently heightening the risk of vascular inflammation or 
thrombosis (68). Mice models were used to assess the relation‑
ship between MPs and vascular damage and inflammation. 
According to a previous study, NP exposure caused structural 
damage to vascular endothelial cells, triggered inflammatory 
responses and weakened coagulation, resulting from the 
activation of the Janus kinase 1/STAT3/tissue factor signaling 
pathway and inflammatory mediators, such as IL‑6 (69).

MPs and the ECM
The ECM functions as an essential scaffold that preserves 
cellular homeostasis by facilitating cell‑matrix adhesion 
and mediating direct interactions between cells and their 
extracellular milieu (70). Within the context of tumors, the 
ECM constitutes a notable component, fulfilling crucial roles, 
including the provision of mechanical support, the regula‑
tion of the microenvironment and serving as a reservoir for 
signaling molecules (71). Although specific research directly 
demonstrating the impact of MPs on ECM modulation in 
relation to tumor growth is currently lacking, Huang et al (72) 
performed a Kyoto Encyclopedia of Genes and Genomes 
analysis on differentially expressed genes in mice exposed to 
MPs. The findings identified an enrichment of MPs in the cell 
adhesion molecule pathway, indicating that MPs can directly 
influence the ECM. The excessive accumulation of MPs may 
not only interfere with cell signaling pathways and inhibit the 
activation of immune responses, but also impact a range of 
biological processes. These processes include the viability of 
tissue stem cells, cell differentiation, the regulation of growth 
factors and potentially the development of cancer (72). These 
observations underscore important directions for future 
exploration (Table II).

3. MPs and inflammation

Hanahan et al (73) proposed that inflammation notably contrib‑
utes to the initiation and progression of tumors. Recognized as 
a hallmark of cancer, inflammation is implicated in every phase 
of tumorigenesis, encompassing development, malignancy, 
invasion and metastasis, whilst also interacting intricately 
with the TME. MPs intensify inflammatory responses by 
releasing cytokines, triggering inflammatory signaling 
pathways, inducing oxidative stress and establishing a micro‑
environment conducive to cancer initiation and progression 
(Table III) (37,74).

Inflammatory factors are critical in modulating inflam‑
matory and immune responses and notably impact tumor 
progression within the TME through several mechanisms. 
These factors establish signaling pathways that mediate the 
pro‑inflammatory effects of MPs and modify the microen‑
vironment. Recent research has demonstrated that PS‑NPs 
exacerbate lipopolysaccharide‑induced duodenal inflamma‑
tion in murine models via ROS‑driven activation of NF‑κB 
and NLRP3 (75). NF‑κB is a pivotal regulator of pro‑inflam‑
matory mediator expression and serves a central role in the 
pathogenesis of inflammatory diseases. Notably, NF‑κB 
operates in a cell‑type‑specific manner, facilitating the activa‑
tion of genes that promote inflammation within the TME (76). 
The NLRP3 inflammasome contributes to the regulation of 
inflammatory responses by activating caspase‑1, which in 
turn promotes the secretion of pro‑inflammatory cytokines, 
IL‑18 and IL‑1β and induces pyroptosis (77). In vitro experi‑
ments have demonstrated that PS‑MPs suppress cell viability 
via a mitochondria‑dependent pathway, leading to increased 
production of ROS (78). Excessive ROS not only activates 
NF‑κB but also serves as a critical mechanism for the activa‑
tion of the NLRP3 inflammasome in response to exogenous 
stimuli (77,79,80). Consequently, the ROS‑NF‑κB‑NLRP3 
signaling pathway has emerged as a central focus in research 
concerning MPs and inflammation. Despite ethical consider‑
ations, a notable number of these experiments are performed 
using animal models. Wen et al (81) evaluated the relationship 
between exposure to PS‑NPs and liver inflammation in mice, 
and reported that PS‑NPs exposure markedly increased the 
expression levels of NLRP3, IL‑1β and caspase‑1, in addition 
to activating NF‑κB. These results further corroborate the 
hypothesis that the ROS‑NF‑κB‑NLRP3 signaling pathway 
is a mechanism through which PS‑NPs induce inflamma‑
tory damage (81). Similarly, in a study by Zhang et al (82), 
the effects of varying concentrations of PS‑MPs on chicken 
hearts and primary cardiomyocytes were assessed. The find‑
ings indicated that PS‑MPs induced myocardial pyroptosis, 
inflammatory cell infiltration and mitochondrial damage via 
the NF‑κB‑NLRP3‑gasdermin D signaling pathway. This 
process resulted in the upregulation of factors such as NLRP3, 
caspase‑1, IL‑1β, IL‑18 and IL‑6, thereby exacerbating myocar‑
dial inflammation (82). A comparable conclusion was drawn in 
a previous study evaluating the effects of PS‑MPs on thymic 
inflammation in chickens (83). The study reported that PS‑MPs 
induced oxidative stress in the thymus and activated the nuclear 
factor erythroid 2‑related factor 2/NF‑κB, Bcl‑2/Bax and AKT 
signaling pathways. This activation subsequently enhanced the 
expression of downstream molecules such as IL‑1β, caspase‑3 
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and Beclin1, culminating in thymic inflammation, apoptosis 
and autophagy (83).

In addition to the ROS‑NF‑κB‑NLRP3 signaling 
pathway, other studies have suggested that toll‑like receptor 
4 (TLR4), p38 and p50 may also serve a role in mediating 
the pro‑inflammatory effects of MPs. Antunes et al (84) 
performed an experiment in which the human colorectal 
cancer HT29 cell line was exposed to PS‑NPs. The results 
demonstrated that HT29 cells exhibited an upregulation of 
p50 and p38 expression, along with an increase in TLR4 
expression. Notably, p38, a member of the MAPK family, 
is implicated in several signaling cascades, including 
those related to inflammatory responses, and is respon‑
sive to environmental stressors (85). TLR4 functions as a 
membrane protein in the pattern recognition receptor (PRR) 
family. The activation of TLR4 can lead to the synthesis of 
pro‑inflammatory cytokines and chemokines (86), as well 
as the activation of the classical NF‑κB pathway and p38, 
thereby promoting inflammatory responses (87). Consistent 
results were reported in a study by Woo et al (88), where 
exposure of mouse lungs and A549 cells to PP‑NPs resulted 
in a marked increase in the number of inflammatory cells, 
ROS production and levels of inflammatory cytokines and 
chemokines both in vivo and in vitro. This was accompanied 
by elevated levels of phosphorylated p38 and NF‑κB proteins. 
In A549 cells, the inflammation induced by PP exposure was 
regulated by inhibitors targeting p38 and ROS. These results 
suggest that PP‑NPs can promote inflammation through 
p38‑mediated NF‑κB signaling pathways (88). Additionally, 
Danso et al (89) administered 5 mg/kg MP fragments 
intratracheally to mice over a period of 14 days to assess 
the pulmonary toxicity and inflammatory effects associated 
with MPs. Compared with the control group, the lung tissues 
of mice administered with PS‑MP fragments exhibited an 
increased presence of inflammasome components, including 
NLRP3, apoptosis‑associated speck‑like protein containing a 
caspase recruitment domain and caspase‑1. This observation 
supports the conclusion that lung inflammation induced by 
PS microplastic fragments is mediated via TLR4 activation 
of the NF‑ĸB and NLRP3 inflammasome pathways (89).

Although the pro‑inflammatory pathways triggered by 
MPs in numerous experimental studies exhibit variability, 
they consistently implicate the NLRP3 inflammasome, 
underscoring its critical role in MP‑induced inflammation. 
Contrarily, in the study by Han et al (90) on nano‑sized MPs 
and their induction of inflammatory responses in skin cells, 
activation of the NLRP3 inflammasome was not detected. 
Instead, the study reported that nano‑MPs upregulated the 
‘absent in melanoma 2’ PRR in a concentration‑dependent 
manner, thereby promoting the release of IL‑1β and initi‑
ating the inflammatory response (90). This enhances the 
comprehension of inflammation induced by MPs. 

On the other hand, beyond their pro‑inflammatory 
effects, inflammatory factors have the potential to disrupt 
cellular junctions, alter the microenvironment and poten‑
tially contribute to malignant transformation. Zeng et al (91) 
reported that exposure of the human colorectal cancer 
Caco‑2 cell line to PS‑MPs resulted in increased perme‑
ability of tight junction proteins within the cultured Caco‑2 
monolayer. This effect is likely attributable to the induction 
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of oxidative stress and the activation of NF‑κB and the 
NLRP3 inflammasome by PS‑MPs in Caco‑2 cells, which 
subsequently elevated the expression of inf lammatory 
factors, such as IL‑6, IL‑8, TNF‑α and IL‑1β (91). Notably, 
IL‑1β is known to activate the NF‑κB/myosin light chain 
kinase (MLCK) signaling pathway (92), whereas TNF‑α 
stimulates IL‑8 secretion, thereby promoting intestinal 
inflammation and MLCK expression (93). Consequently, 
PS‑MPs elicit inflammatory responses and compromise 
colonic epithelial tight junctions through the ROS‑dependent 
NF‑κB/NLRP3/IL‑1β/MLCK signaling pathway. This 
process enhances mucosal barrier permeability and perturbs 
the intestinal microenvironment (91).

4. Conclusions

MPs have become deeply embedded within human society, 
establishing themselves as a major global pollutant. Their 
persistence, mobility, high production volume and wide range 
of applications have led to their ubiquitous presence in the 
natural environment. Consequently, MPs are increasingly 
encountered by the human body, posing potential health 
risks and potentially elevating the likelihood of disease and 
cancer (94). Research has reported that under conditions 
characterized by high concentration, extended exposure and 
heightened individual susceptibility, MPs may exert cytotoxic 
effects through mechanisms such as chronic inflamma‑
tion, oxidative stress, DNA damage, immunotoxicity and 
the delivery of toxic substances. It potentially culminates 
in malignant transformation (95). Furthermore, previous 
studies have broadened the scope of understanding regarding 
the effects of MPs, demonstrating their influence not only 
on tumor initiation but also on tumor progression by modu‑
lating the TME (39). Despite the nascent stage of research 
in this field and the limited scope of existing literature, the 
present review offers a systematic analysis of contemporary 
studies examining the interactions between MPs and several 
components of the TME. These elements include tumor cells, 
immune cells (with a focus on macrophages), endothelial cells, 
fibroblasts, ECM and inflammatory factors. The primary 
conclusion is that MPs within the TME markedly contribute 
to the proliferation and metastasis of tumor cells. They achieve 
this by modulating the immune cell status to enhance tumor 
activity, inducing structural changes in vascular endothelial 
cells, facilitating the activation of fibroblasts and the expres‑
sion of associated proteins and directly influencing the ECM 
and inflammatory mediators. We hypothesize that these 
theoretical foundations will enhance the comprehension of the 
role of MPs in carcinogenesis and offer novel research trajec‑
tories for future scholars. Furthermore, they may identify new 
diagnostic and therapeutic targets for individuals whose health 
is compromised by MPs, including patients with cancer.

Similarly, carbon nanomaterials (CNMs) exhibit distinc‑
tive physical and chemical properties due to their nanoscale 
dimensions. CNMs present novel opportunities for cancer 
therapy by specifically targeting cancer cells and components 
of the TME (96). The present review serves as an impetus for 
the investigation into the application of MPs within the context 
of the TME. Nonetheless, the current understanding of the 
interaction between MPs and the TME represents merely the 

tip of the iceberg. Consequently, further research is imperative 
to elucidate the intricate relationship between MPs and cancer 
development, establishing it as a crucial area of study.

It is important to recognize that the present review revealed 
considerable variability in experimental outcomes, attributable 
to disparities in research methodologies, sample types, the 
physical properties of samples as well as exposure concentra‑
tions and durations. These inconsistencies present challenges in 
comparing and categorizing study findings. Therefore, future 
research on MPs and the TME should incorporate several MP 
types, concentrations and exposure durations, in both in vitro 
and in vivo settings, alongside rigorously designed control 
groups. Whilst this approach may increase the complexity of 
experiments, it will enhance the reliability and accuracy of the 
data and conclusions. 

In summary, the study of MPs, tumors and the TME 
necessitates sustained research investment and the adoption 
of multidisciplinary methodologies. As the present review 
progressively unravels the complex web of interactions among 
these elements, the resulting insights will contribute to the 
development of more efficacious preventive measures, facili‑
tate earlier detection and enhance therapeutic strategies for 
individuals affected by MPs.
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