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Abstract

Live imaging of biological specimens using optical microscopy is limited by tradeoffs
between spatial and temporal resolution, depth into intact samples, and phototoxicity. Two-
photon laser scanning microscopy (2P-LSM), the gold standard for imaging turbid samples
in vivo, has conventionally constructed images with sufficient signal-to-noise ratio (SNR)
generated by sequential raster scans of the focal plane and temporal integration of the col-
lected signals. Here, we describe spatiotemporal rank filtering, a nonlinear alternative to
temporal integration, which makes more efficient use of collected photons by selectively
reducing noise in 2P-LSM images during acquisition. This results in much higher SNR while
preserving image edges and fine details. Practically, this allows for at least a four fold
decrease in collection times, a substantial improvement for time-course imaging in biologi-
cal systems.

Introduction

All modalities of fluorescence microscopy face a practical limit to the number of photons they
can collect from a given sample, and must make tradeoffs within this “photon budget” among
spatial and temporal resolution, photodamage, and depth of imaging. Two-photon laser scan-
ning microscopy (2P-LSM) [1] has enabled imaging of the behavior of mammalian cells in vivo
[2] and is the method of choice for live imaging deep into scattering tissues including lymph
nodes, lung, pancreas, and brain. The photon budget in 2P-LSM in vivo is an especially impor-
tant consideration since photodamage, which compromises viability and can alter cell behav-
ior, responds to increases in excitation power at higher order (i.e. supra-quadratic) rates
compared to fluorescence emission [3,4]. As a result, increasing excitation laser intensity is not
always a viable strategy for collecting enough photons to provide images with a sufficient signal
to noise ratio for visualization and analysis. Many experiments are instead forced to rely upon
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averaging (or equivalently, integrating) repeated scans of the same area; however, this leads to
a loss of temporal resolution and can introduce blur artifacts of dynamic processes [5]. Increas-
ing the speed of imaging without compromising viability is an essential challenge that must be
overcome to tap the full potential of 2P-LSM to observe the complex spatiotemporal behavior
of biological circuits. A number of strategies have been developed to address this problem,
including spatial or temporal multiplexing of excitation and intelligent spatial modulation of
laser intensity based on counts of collected photons, but each has its drawbacks [6]. Improve-
ments in the design of high numerical aperture objective lenses and high quantum yield fluo-
rescent proteins will also surely yield progress in this area. Still, maximizing the information
extracted from a finite number of photons in 2P-LSM remains an open challenge.

One promising area for addressing this challenge lies in image filtering and processing, and
in particular their use in combination at acquisition time [5]. Filtering methods already find
widespread use in 2P-LSM in two stages: frame averaging that takes place at acquisition time
(equivalent to a linear, low-pass filter) followed by post-acquisition Gaussian (linear, low-pass)
or median (nonlinear) filtering [7-9]. More complex de-noising algorithms have outperformed
temporal averaging for the specialized case of calcium fluxes in a single focal plane [10,11] but
rely on parametric models of signal and noise and have not been shown to be effective for de-
noising 3D volumes over which parameters may vary. Thus, filtering strategies that can make
similar improvements and can be applied over three-dimensional volumes have great promise
for improving performance in 2P-LSM.

Given that photons are the limited quantity in biological imaging, an approach to filtering
essentially relies on removing a portion of the noise in the SNR equation. Although the proba-
bility distributions of noise across the range of hardware implementations of 2-photon micro-
scopes is unknown, a few generalizations can be made about noise in 2P-LSM. Its sources can
be broadly grouped into two categories: First, the hardware of excitation and detection such as
photomultiplier tubes, the electronics of the analog to digital conversion process, and fluctua-
tions in modulation of excitation beam intensity; Second, the Poisson (shot) noise inherent in
photon emission from excited fluorophores. The former includes unwanted fluorescence from
regions closer to the sample surface when using high excitation power to image deep into intact
samples, stray photons from ambient light, thermally emitted electrons within photomultiplier
tubes, or noise in the analog to digital conversion process [12,13]. None of these processes are
spatially correlated with locations on the resulting image, giving them the characteristics of dig-
ital impulsive (a.k.a. “salt and pepper”) noise, with a duration in time or space of only one pixel
[14]. The other major source, shot noise from excited fluorophores, depends upon the strength
of the signal [13].

Neither of these types of noise follows a Gaussian distribution, for which linear filters are
optimal, and the performance of linear filters is degraded by a single outlier, preventing them
from effectively filtering out background noise in 2P-LSM images [15]. When applied spatially,
they blur edges and fine details, which can lead to loss of resolution and allow the persistence
of the low spatial frequency components of noise [16,17]. Given these shortcomings, nonlinear
filters, which have been shown to outperform averaging in medical imaging applications such
as ultrasound [18], may be a better choice. Nonlinear filters come in diverse forms with varying
complexity [19]. Here we focus on the rank filter (a.k.a. the percentile filter), a relatively simple
nonlinear filter implementation with a history of use in processing digital images from other
imaging modalities [20-26].

Rank filters take a set of n input values, sort them, and take the output value as the k™ value.
Rank filters have a single parameter between 0 and 1 that determines the value of k for a given
n. For example, a rank of 1 takes the maximum of the set of input values. A rank of 0.5 repre-
sents a median filter. Rank filters can effectively eliminate the impulsive noise seen in 2P-LSM
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since they limit the effect of single input values on signal estimation [14,25]. Furthermore, they
do not universally remove high spatial frequencies, allowing them to preserve sharp edges and
other details important to human perception and automated object detection [15,27].

The performance of rank filters can be further improved by combining the temporal filter-
ing that occurs at acquisition time and the post-acquisition spatial filtering into a single step (a
spatiotemporal rank filter). This filter takes advantage of a reduction in variance that occurs
when combining sequential rank filters into a single step and obviates the need for post acquisi-
tion processing to improve image quality [15]. Here, we demonstrate the superiority of spatio-
temporal rank filtering to frame averaging and characterize its performance so as to provide
practical recommendations for its implementation. Given the need to minimize excitation
power doses in 2P-LSM and the overall low photon yield, we focus on images with low levels of
fluorescence signal.

Results

To demonstrate the utility of spatiotemporal rank filtering for 3D imaging of living biological
tissue, we collected a z-stack extending 200 pm down from the cortex of a mouse lymph node
containing T cells labeled with VPD-450, a typical chemical dye used in imaging studies. We
initially collected 30 frames at each slice, saved individually, so that we could compare on the
same data 5-frame averaging (5-FA), 5-frame averaging followed by spatial rank filtering
(5-FA-SR), 5-frame spatiotemporal rank filtering (5-FSTR), which performs the rank on an n
by n array of adjacent pixels taken from all 5 frames, and a higher quality frame averaging
image with 6x as many frames (i.e. 30) representing an outermost practical limit of frame-aver-
aging (30-FA) (Fig 1A). Individual cells were difficult to distinguish in 5-FA images due to
high background (Fig 1B). 5-FA-SR improved the quality of the image compared to 5-FA, but
was unable to eliminate impulsive noise and introduced artifacts in the form of protrusions
from the cell that were not present in the 30-FA image. In contrast, the 5-FSTR image was
brighter, free of impulsive background noise, and possessed steep gradients delineating the cell
edge, even compared to the 30-FA image (Fig 1C). However, parts of the cell border in the
5-FSTR image appear to have shrunk compared to the 30-FA image. Although the 5-FSTR was
able to recover a high quality image from a much smaller number of frames compared to frame
averaging, the small sample of frames in the approach increased the probability of stochastic
fluctuations in signal that dip below a level distinguishable from noise.

In order to verify the suitability of rank filtering on the basis of the empirical distributions of
pixel intensity values in a typical photon-limited biological image, we took a 1000 time point
image of 175 nm PS-Speck beads with excitation power low enough that individual beads were
indistinguishable from noise unless 5-10 frames were averaged together. We background sub-
tracted these images using the 50™ percentile value of a dark image with no excitation power. We
then averaged all 1000 frames, and placed masks for pixels of different average intensities or non-
bead pixels and assessed histograms of pixel intensity counts (Fig 2). We found that background
pixels, pixels on parts of beads with low average intensity, and pixels of high average intensity
shared a similar empirical distribution function, with a large portion of intensity values indistin-
guishable from background and tails that decayed close to, but slightly faster than, exponential
distributions. These findings provide empirical justification for the use of rank filters, since
heavier tailed distributions, such as exponential, have been found to represent best use cases [25].

The use of a rank besides 50% (the median) is an important part of this approach and allows
for the filter to adapt to a high noise/low signal environment typical of photon-limited biologi-
cal imaging. We thus sought to characterize how much the choice of the rank parameter
affected detection of signal. For this, we used similar samples as Fig 2 and applied pixel masks
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Fig 1. Comparison of frame averaging and rank filtering on VPD-450 labeled T cells within a lymph node. (A) Schematic of various filtering methods.
(B) 200 pm z-stacks created by (left-right) frame averaging (5-FA), frame averaging followed by spatial rank filtering with 0.7 um (2 pixel) radius (5-FA-SR),
spatiotemporal rank filtering with 0.7 pm (2 pixel) radius (5-FSTR), frame averaging with 6x as many frames (30-FA). Maximum contrast is set to 0.5 x the
maximum pixel value in each image to show cells clearly against background. (C) 2D image of a single T cell 100 ym below the lymph node capsule

doi:10.1371/journal.pone.0150430.g001

‘i
}
’e

e

()
:o
b
)

)

Y
{

-«

to areas without beads and pixel masks for beads with low levels of signal. We then randomly
selected sets of 10 consecutive frames to which we applied temporal rank filters (i.e. a rank filter
with no spatial component) with varying ranks. We then calculated a signal-to-background
ratio (SBR) as the average value of pixels lying within the weak signal mask divided by the aver-
age value of pixels within the non-bead mask (Fig 3A). This indicates that for 10 serial scans (a
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Fig 2. Pixel intensity value distributions at high, low, and no signal regions of bead images. High, low, and no signal regions of fluorescent beads
masked to generate empirical distributions of intensity values. Red line indicates exponential fit to distribution tail.

doi:10.1371/journal.pone.0150430.9002

typical value for recovering weak signals on our system), temporal rank filtering is capable of
outperforming frame averaging by a factor of 3-4.

The use of higher rank values produces increasingly bright and sharp images, especially in
areas corresponding to weaker signals, up to a certain point at which image quality rapidly
degrades. This drop-off coincides with the point at which the rank filter fails to eliminate high
background pixels (Fig 3B). However, the increases in average signal seen with increasing rank
are not uniform across all signal values. Using the measurements of the proportion of pixels
that are indistinguishable from background in Fig 2, we calculated the probability of false posi-
tives (i.e. noise that the rank filter fails to eliminate) and false negatives (i.e. signal that the rank
filter attenuates) for a set of samples of fixed size. The probability of false positives increased
with rank, while the probability of false negatives decreased with rank and strength of signal
(Fig 3C). Thus, the selection of a rank that is low (such as the median filter) results in the atten-
uation of weak signals, while picking a rank that is too high fails to eliminate background.

Next, we sought to determine the relationship between intensity values generated from rank
filter versus those from frame averaging. When using the optimal rank from Fig 3A, we again
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doi:10.1371/journal.pone.0150430.g003
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doi:10.1371/journal.pone.0150430.g004

found that rank filtering tends to suppress weaker pixels values—including background and
pixels corresponding to signal levels just above background (Fig 3D). For medium to strong
levels of signal, rank filtered values and frame-averaged values had an approximately linear
relationship, though it is worth noting that the slope of this relationship is greater than 1,
reflecting the fact that the frame average and the rank filter are estimators of the intensity dis-
tribution mean and characteristics of the distribution tail, respectively [15,25]. However, the
relationship between the two is monotonic across all intensity values, indicating that, like
frame averaged pixel values, higher rank filtered values correspond to higher fluorescence
intensity. Unlike the case of frame averaging, these values cannot be assumed to be propor-
tional to the concentration of fluorescent molecules [28]. The images of rank filtered beads
(Fig 3E) demonstrated that selecting a rank (0.9) that is too high enhanced impulsive back-
ground noise, while selecting a rank that is too low (0.6) led the loss of dimmer pixels on the
edges of the bead point spread function (PSF). However, with an appropriate choice of rank
(0.8), the central peak of the system’s PSF as seen in the 150x frame averaged image was cap-
tured while background noise was still suppressed.

Although rank filtering is clearly capable of producing images with better signal to back-
ground ratios, the higher standard deviation of this measurement for rank filtering compared to
frame averaging (Fig 3A) suggests that pixel intensity estimates for rank filtering might exhibit
greater variation. To examine this more closely and discern the effect of sample size on the nor-
malized mean squared error (NMSE) of these estimators, we employed the bootstrap method.
Resampling from the distribution of pixel values at spatial locations corresponding to weak signal
on the 150x frame averaged image, we generated the mean, variance, and normalized mean
squared error of sampling distributions. This analysis showed a slight bias for rank filter estimates
with small n (Fig 4A), corresponding to a higher value of NMSE compared to frame averaging
(Fig 4B). These results indicate that for dim signals, temporal rank filters produce a broader
range of estimates of pixel intensity than frame averaging, even when accounting for the higher
pixel intensity values produced by the rank filter. However, the boost in sample size associated
with switching from a temporal (1x1xn) rank filter to a spatiotemporal (3x3xn) mitigates this
variation and produces estimates with less fluctuation than frame averaging.
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Fig 5. Comparison of spatiotemporal rank filter with frame averaging and frame averaging followed by Gaussian filtering. Dendritic cell within the
lymph node of an XCR1-Venus transgenic mouse. Digitally zoomed region shows that spatiotemporal rank filtering enables high-contrast visualization of a
dendritic process without blurring its edges.

doi:10.1371/journal.pone.0150430.g005

Finally, we sought to verify the utility of spatiotemporal rank filters to preserve fine image
details. We collected a series of images of fluorescently labeled dendritic cells within the lymph
node of an XCR1-Venus transgenic mouse. Spatiotemporal rank filtering was able to generate
a clean image of dendritic processes while preserving the sharp edges that could clearly be seen
from an image averaged from 4x as many frames, unlike frame averaging followed by Gaussian
filtering, which blurred these details (Fig 5).

These images also demonstrate a potential pitfall of spatiotemporal rank filtering compared
to frame averaging: the introduction of artifacts on the order of the size/shape of the spatial
component of the filter. The spatial component of the filter used in Fig 5 was approximately
circular with a radius of 3 pixels, and the spatiotemporally rank filtered images show many
local regions where groups of pixels with the same size and shape as the filter are homogenized
in value. Thus, while increasing the spatial size of spatiotemporal rank filters produces pixel
intensity estimates with lower error on average, image details comprised of spatial frequencies
higher than the filter size should be interpreted with caution.
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Discussion

In addition to the popular median filter, the utility of the more general class of rank filters in
image processing applications has been demonstrated extensively [15,16,20,21,25,29]. Here, we
have described the spatiotemporal rank filter as an alternative method to frame averaging widely
used in 2P-LSM that is better suited to filtering out the noise present in this modality of imaging.
In practice, spatiotemporal rank filtering allows for improvements in temporal and/or spatial res-
olution, the generation of signal that is easier to detect and analyze, reduced excitation power, or
some combination of these. We have shown here that this method can be used on images at mul-
tiple levels of depth, a crucial characteristic for its use in imaging 3D volumes. Applying the spa-
tiotemporal rank filter rather than frame averaging in our experience has consistently yielded at
least 4x improvements in speed of acquisition. The rank filter is well characterized in the signal
processing literature, simple, and requires no special hardware to implement on existing instru-
ments. Fast algorithms have already been described for its implementation [25,30].

The choice of parameters is a crucial consideration for the implementation of spatiotempo-
ral rank filters. The optimal rank parameter depends on the relative levels of signal and noise.
As signals grow stronger, the tails of their pixel distributions grow longer and the optimal rank
tends more towards 0.5 (a median filter) [29]. For a weaker signal, a smaller proportion of pix-
els will contain signal and higher ranks must be used to avoid erasing signals. We have found a
good rule of thumb is to find the rank value at the filter begins to fail to attenuate background
pixels, and use a value slightly lower than this. This choice will eliminate noise while preserving
the weakest fluorescent signals that are distinguishable above background. Importantly, the
optimal rank parameter will likely drop with increased depth of imaging over large volumes, as
out of focus fluorescence grows stronger relative to dim signals [12]. The nonlinear relationship
of rank filtered intensity values compared to frame averaged values indicates that the former
cannot be considered proportional to the concentration of fluorescent molecules. However,
measuring fluorescence intensity in 3D 2P-LSM images is usually an intractable problem
because of the lack of reliable methods to quantify the relative effects of scattering of the excita-
tion beam and absorption of emitted fluorescence at different depths of imaging, both of which
contribute to a loss of signal. So while rank filtering does distort the linearity of the relationship
between fluorophore concentration and measured intensity, in practice this relationship does
not hold across 3D volumes anyway. Still, rank filtering with the appropriate parameter can
produce images that are much better suited for the typical uses of multiphoton images: visually
identifying and computationally localizing objects such as cells within tissues.

While rank filtering is capable of recovering high quality images from a much smaller num-
ber of input frames compared to averaging, there are several important considerations in its
implementation. As the edges of the bead PSFs under rank filtering compared to averaging
show (Fig 3E), the former has the potential to attenuate weaker signals, depending on the
choice of rank parameter. In this case of a single fluorescent bead, attenuation of the PSF edges
yield an image that more closely resembles the underlying object (a point source 1 pixel in
diameter). However, unlike a linear filter, for the nonlinear rank filter this outcome cannot be
extrapolated to collections of overlapping PSFs that would occur in a biological sample. Indeed,
owing to the reliance of nonlinear filters on the probability distributions of their inputs, it is
challenging to generalize the behavior of the rank filter across all situations. For example, while
rank filters are excellent at preserving sharp edges essential for human perception and compu-
tational analysis (as shown in Fig 1C, Fig 3E, Fig 5), the exact shape of these edges is a complex
function of the image shape and SNR, as well as the size and shape of the filter [31,32].

In general, there is an implicit tradeoff in choosing the size of the spatial component of rank
filters: larger spatial windows reduce the normalized mean squared error of pixel intensity
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estimates, but have the potential for introducing spatial artifacts or the loss of details smaller
than the window size. On the other hand, smaller spatial windows require compensatory
increases in the number of frames used, or they will increase stochastic fluctuations in input
values below the threshold that enables recovery of signal from background noise. In the latter
case, even with an appropriately chosen rank value, weaker parts of signals may be stochasti-
cally attenuated (such as parts of the cell edges in the 5 frame spatiotemporal rank filtered
image compared to the 30 frame averaged image in Fig 1C). For applications in which the min-
imization of the potential for spatial artifacts is important, filters with smaller spatial windows
should be utilized. In addition, more complex extensions of rank filters can be designed to pre-
serve specific types of morphological features [25,33].

In spite of these limitations and tradeoffs, we have demonstrated here that spatiotemporal rank
filtering can significantly improve the performance of 2P-LSM in its common application of in vivo
observation of dynamic biological systems on the cellular and subcellular level. In spite of their
potential for inducing changes in the shape of edges, they nonetheless produce brighter and higher
contrast images of T-cells over a large 3D volume (Fig 1) suitable for tracking of cell movements
over time. Similarly, the essential features of dendritic process can be captured with a much reduced
use of photons using rank filtering (Fig 5). The sharpened edges of this process may even better
reflect the shape of the underlying object before its convolution by the imaging system. However,
without knowledge of shape of the PSF at the particular depth of imaging, quantitative measure-
ments of morphology or intensity of these features must be interpreted cautiously, if at all.

In spite of these considerations, with a filter neighborhood no larger than the highest spatial
frequencies our system was able to collect according to its optical resolution, spatiotemporal
rank filtering still significantly outperformed frame averaging in a mean squared error sense
for the recovery of dim signals. For experiments that do not require the system’s full optical res-
olution (such as cell tracking), larger spatial neighborhoods can be used to further improve the
quality of the lower resolution portion of images.

In addition to replacing the relatively inefficient linear filtering operation used in frame averag-
ing, a second advantage of the spatiotemporal rank filter used here is its combination of the in-
acquisition and post-acquisition filtering operations into a single step. While spatial rank filters (i.e.
without a temporal component) are useful in processing standard frame-averaged images, the loss
of information about pixel distributions that occurs when they are averaged into a single value is
detrimental to the performance of the filter. As the ease of storing 2-photon microscopy data con-
tinues to increase, it may be advantageous to save each individual frame at acquisition time, and
adjust filter parameters after acquisition, much like contrast can be adjusted when viewing data.

Conclusions

Overall, the spatiotemporal rank filter is a simple yet robust method of dramatically improving
image quality, increasing acquisition speed, and decreasing phototoxicity when using 2P-LSM
to image dynamic biological processes. It can be implemented without any additional hardware
to enable new types of imaging experiments. In spite of its utility, we emphasize that there is
ample room for future improvement, both as variants of the spatiotemporal rank filter itself
and in the application of other types of nonlinear filters to raw 2P-LSM data.

Materials and Methods
Two-photon microscopy

Bead and lymph node data were collected on either a custom built resonant scanning two-pho-
ton or Nikon A1R resonant scanning two-photon microscope using a 20X water immersion
1.05NA or 60x water immersion 1.20NA (Fig 5) objective, respectively, at 30fps.
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Biological samples

All mice were bred and housed in specific pathogen-free housing and in strict accordance with
the guidelines of the Laboratory Animal Resource Center of the University of California, San
Francisco (UCSF). Experiments were approved by the UCSF Institutional Animal Care and
Use Committee (Approval #AN106779-02B). CD8+ T cells were isolated from lymph nodes of
a C57BL/6 mouse using a negative CD8+ Isolation kit (Stemcell Technologies). Isolated cells
were then labeled with Violet Proliferation Dye 450 (VPD-450) (BD Biosciences) according to
the manufacturer’s protocol. 2x10° labeled cells were adoptively transferred intravenously into
a wild type C57 B6 mouse. After waiting 24 hours to allow cells to home to lymphoid organs,
the mouse was euthanized by CO, inhalation followed by cervical dislocation, and an inguinal
lymph node was explanted. 200 pm Z-stacks were collected extending from the lymph node
cortex, with 30 individual scans at each Z-slice for later processing into frame averaged or rank
filtered images. The excitation laser was tuned to 810 nm, and its power was automatically
increased with depth in order to compensate for scattering. XCR1-Venus dendritic cells were
imaged in an explanted inguinal lymph node just below the cortex at the node’s center.

Bead images

175 nm diameter PS-SPECK yellow-green beads were diluted 1:1000 and mounted on L-Lysine
treated slides to prevent the beads from drifting. 1000 consecutive images were taken at 860
nm at a laser power low enough that 5-10 frames needed to be averaged to visually distinguish
individual beads. The yellow emission channel (568LP dichroic with 542/27 emission filer) was
used for all subsequent analysis. A dark image was taken with detectors turned on but the exci-
tation laser turned off, and the 50™ percentile of the pixels in this image was subtracted from
all bead images prior to analysis in Matlab. Signal to background ratio was calculated as the
mean value of pixels lying within a mask for signal versus those lying within a mask for back-
ground. These masks were thresholded from the 1000-frame averaged images, with spatial fre-
quencies higher than the Abbe limit of the system filtered out. Each bootstrapping sampling
distribution was composed of 10°> samples. Normalized mean square error was defined as:

1 Z (estimate — population value)
all estimates

n estimates (population value)”

Spatiotemporal rank filtering

All spatiotemporal rank filter images were created with pixelated approximations of circular
windows. After being spatiotemporally rank filtered, the resulting images were filtered again
with the same spatial window and rank parameter of (1 —initial rank parameter) to reverse the
extension of edges as described in [25].
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