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Seasonal and diel acoustic presence 
of North Atlantic minke whales in 
the North Sea
Denise Risch1, Samuel C. Wilson1, Mathilde Hoogerwerf1, Nienke C. F. van Geel1,  
Ewan W. J. Edwards2 & Kate L. Brookes2

Despite frequent records from other parts of the North Atlantic, minke whales have never been 
acoustically recorded in the North Sea. This study investigated the detectability of pulse trains 
previously associated with this species in other regions, in acoustic data from ten sites along the 
east coast of Scotland. Since preliminary results confirmed pulse train presence, subsequently, an 
automated detector was applied to these data to record the seasonal and diel presence of minke whale 
pulse trains. Minke whales were detected from May to November, with most detections occurring in 
June, July and October. No acoustic detections were made in December, January or in the month of 
April, whilst no data were available for February and March. This pattern of acoustic presence supports 
available visual data and suggested an absence of minke whales from the study area during winter. 
Minke whale acoustic presence showed a statistically significant diel pattern, with a detection peak 
during night time. This study established the acoustic detectability of minke whales in the North Sea 
and highlights the potential of using passive acoustic monitoring to study the seasonal presence and 
spatial distribution of minke whales in the North Sea and wider Northeast Atlantic.

The effective management and conservation of marine species requires accurate knowledge of their year-round 
distribution patterns and abundance. This is especially important in a world where anthropogenic activities are 
increasingly encroaching on species habitats, and large-scale changes in habitat suitability due to climate change 
are leading to species shifting their distribution patterns to adapt to changing circumstances1,2. Large-scale sur-
veys for marine mammal abundance and distribution often use primarily visual methods, and are conducted in 
daylight and during summer months when weather conditions are favourable, leaving large data gaps about hab-
itat use at different times of day, seasonal movement and winter distribution for many species3. However, recent 
studies have shown the benefit of using long-term passive acoustic monitoring (PAM) to address this lack of data 
and document year-round distribution patterns and large-scale movements of baleen whales4–6.

The minke whale (Balaenoptera acutorostrata) is the smallest baleen whale species in the Northeast Atlantic, 
ranging from the Barents Sea to the west African continental shelf6,7. In UK coastal waters and the North Sea, 
minke whales have been visually observed mainly from April to October8–10, although sightings have been docu-
mented year-round11,12. As there is less survey effort in winter, it is unclear to what extent this occurrence pattern 
reflects observation effort. Off the coast of Scotland, minke whale visual sightings peak from July to August 
and have been shown to be related to meso-scale oceanographic features which likely link to increased foraging 
opportunities13,14. In the southern North Sea, minke whales are less common, while a seasonal aggregation has 
been described close to the Dogger Bank, in the central North Sea12,15. There is evidence that minke whales 
undertake large-scale seasonal migrations between feeding and breeding grounds4,16, and there may be two sep-
arate breeding populations in the North Atlantic17. However, due to a lack of winter survey effort, no discrete 
breeding grounds have been identified yet, and there is limited understanding of the winter distribution and 
occurrence of this species for the entire North Atlantic.

North Atlantic minke whales are currently listed as a species of Least Concern under the IUCN Red List7. 
Nonetheless, the species is still commercially hunted in areas of its summer range18. In addition, like most species 
of marine mammals, it is subject to indirect takes in fisheries19,20. Data from the UK stranding scheme suggest 
that entanglement in fishing gear might be a significant cause of death in baleen whales, including minke whales, 
in Scotland, with over 50% of examined cases between 1990 and 2010 having been documented as entanglement 
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cases21. In 2015, three out of four stranded minke whales investigated at post mortem in Scotland died as a con-
sequence of entanglement22. North Atlantic minke whales are also exposed to a variety of other anthropogenic 
threats, including ship-strike, which was determined as a cause of death in 10% of all recorded UK minke whale 
strandings from 1990–201023. Chemical and noise pollution, and associated degradation and loss of habitat are 
additional threats to minke whales throughout their range24.

Like all cetaceans in European waters, minke whales are protected through the EU Habitats Directive, and 
associated national legislation. Population estimates and assessments in relation to favourable conservation status 
are primarily based on decadal, large-scale visual surveys, such as SCANS I, II and III3. The latest abundance 
estimate for the North Sea is 8,900 animals (CV = 0.24), based on shipboard and aerial surveys undertaken in the 
summer of 20163. Information on minke whale abundance and distributions on finer spatial and time scales is 
relatively uncommon or very site specific.

In addition to light and weather constrains, visual detection of minke whales at sea can be difficult due to 
small group sizes and the species’ often shy and cryptic behaviour. Thus, alternative methods, such as PAM, may 
significantly improve studies of the ecology of this species, inform environmental impact assessments (EIAs) and 
help design and effectively monitor marine protected areas (MPAs).

The sounds that minke whales produce are known to vary across their geographic range. In the past, series of 
clicks in the 5–6 kHz range, as well as lower frequency downsweeps (118–80 Hz) have been attributed to the spe-
cies in the North Atlantic25,26. These call types have typically been described during short-term studies, in specific 
locations and not regularly been documented across habitats. Longer-term time series of these calls are to our 
knowledge currently not available. In contrast, low-frequency pulse trains (50–400 Hz) with varying inter-pulse 
interval structure were recorded in the presence of minke whales in the Caribbean, and subsequently also doc-
umented and further described from recordings made in Massachusetts Bay27,28. Based on these latter data, an 
automated pulse train detector was developed to investigate occurrence and large-scale movement and migration 
patterns of the species in the western North Atlantic4,28,29. However, when interpreting patterns of call occurrence 
it is important to keep in mind, that the behavioural significance of these vocalisations and whether they are spe-
cific to sex, age, recording site or season is currently unknown.

The main goal of the current study was to confirm the presence of minke whale pulse trains in a known sum-
mer feeding ground in the northern North Sea, and secondly to test the performance of the automated detector 
developed for minke whale pulse trains from the western North Atlantic, on long-term recordings from the North 
Sea. Finally, detection results were investigated to determine seasonal and diel occurrence patterns of minke 
whales and explore the possibility to improve, and spatio-temporally extend, current monitoring of this species in 
UK and adjacent Northeast Atlantic areas using PAM.

Results
Detector performance.  The manually reviewed truth dataset consisted of a total of 2,400 hours, containing 
322 candidate detection hours. For this subset of data from across the whole array, the detector recall and pre-
cision values were 74% and 20%, respectively. The false positive rate was 11%. Although not evaluated in detail 
here, the high number of false detections leading to the low precision values, mainly consisted of vessel noise and 
noise from seismic surveys.

Minke whale pulse train detection and spatial distribution.  A total of 32,830 hours of acoustic 
recordings were collected from May to November 2016 across all ten recording sites in the Moray Firth and along 
the East Coast of Scotland (Fig. 1), yielding 340 manually verified positive detection hours. Pulse train charac-
teristics were similar to those described in the Northwest Atlantic27,28, with peak frequencies between 50–150 Hz 
and pulse train durations ranging from 20–60 seconds (Fig. 2). Most pulse trains observed in this data set were 
slow-down pulse trains, showing a decrease in inter-pulse interval over time28.

Minke whale pulse trains were detected at seven of the ten recording sites. Most detection hours occurred in 
the central and northern Moray Firth, in particular at the Latheron, Helmsdale and Spey Bay sites (Table 1, Fig. 3). 
With the exception of the Arbroath site (17 detection hours), fewer or no detections were recorded along the 
Scottish east coast outwith the Moray Firth (Table 1, Fig. 3). In addition, most detections were made at locations 
with water depth equal to or greater than 23 m (Table 1).

Seasonal and multi-year presence.  Minke whale pulse trains were detected in all months for which data 
were available across all sites (May to November 2016) (Fig. 3). Most detections were made in June and July 
(95 and 109 detection hours, respectively), with a second peak in occurrence during the month of October (86 
detection hours). A total of 328 detection hours were recorded in multi-year data (May 2015–January 2018) from 
Helmsdale, the site with most detections in 2016 (Fig. 4, Table 2). The general pattern of seasonal presence from 
the end of May to early November was repeated in the three consecutive years. However, in part due to missing 
data, the bimodal distribution in occurrence observed in 2016, was not observed in 2015 or 2017/18 (Fig. 4). 
Whilst no data were available for February and March in any of the recording years, no detections were made 
during available winter months (December and January) (Fig. 4).

Diel pattern.  Minke whale pulse train occurrence showed a clear diel pattern especially during autumn 
(September to November, Fig. 4), with a majority of detections recorded during night time and nautical twilight. 
The GAM-GEE models run on the full data set corroborated this finding, revealing a significant relationship 
between minke whale presence and the diel cycle index (Wald test: df = 4, Χ2 = 17.1, p = 0.0018), with a peak in 
detections between sunset and sunrise (Fig. 5). When running models separately for the summer period with 
all-night twilight (May 20th–July 22nd) and the rest of the year, both models showed a significant relationship 
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of the diel cycle index with minke whale presence. However, the relationship during summer was considerably 
weaker (Wald test: df = 4, Χ2 = 9.7, p = 0.046), than during the rest of the year when the night-time peak of detec-
tion is more pronounced (Wald test: df = 4, Χ2 = 42.6, p < 0.0001, Fig. 5).

Figure 1.  Map of the study area in the Moray Firth and along the east coast of Scotland, with red circles 
marking recording locations. Map in upper right corner illustrates the location of the study area along the 
Scottish North Sea coast.

Figure 2.  Spectrogram of a slow-down pulse train recorded off Helmsdale. Spectrogram parameters: fast 
Fourier transform (FFT) size: 1024 points, overlap: 95%, sample rate: 2000, resolution: 2 Hz and 128 ms. 
Amplitude scale is relative.
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Discussion
The results of this study are to our knowledge the first confirmation of minke whale pulse train detection in 
the well studied Moray Firth summer feeding ground and adjacent North Sea waters9,13,14. Minke whale pulse 
trains were detected at several sites of this shallow, coastal PAM array. While minke whale pulse trains have been 
described on one occasion from the west coast of Scotland30, few other acoustic recordings of this species from 
UK coastal waters exist. However, these vocalisations have recently been described in detail from the Northwest 
Atlantic28 and have also been detected further north in the Northeast Atlantic31, and on several large-scale acous-
tic arrays in the central North Atlantic32,33. Low-frequency minke whale pulse trains recorded in the current study 
closely resemble those documented in the central and Northwest Atlantic28,33. A more detailed study is necessary 
to elucidate the potential for geographic variation in call types or call repertoire. However, notwithstanding the 
potential for such regional variability, the similarities between acoustic signals recorded in this study with calls 
recorded in other parts of the Atlantic, allowed the unequivocal identification of species-specific minke whale 
vocalisations and assessment of spatio-temporal distribution patterns based on these acoustic data.

The minke whale pulse train detector used in this study was originally developed for a data set from the west-
ern North Atlantic29. Given the paucity of minke whale vocalisation records from the eastern North Atlantic, it 
was unclear how the detector would perform on data from this region. Post-hoc data analysis revealed that the 
data set was characterised by many hours of seismic survey activity and shipping noise at some recording loca-
tions. Comparatively high levels of shipping noise in this region have also been documented in previous years34. 
These background noise conditions likely influenced detector performance and resulted in the low precision 
value (20%) observed. However, the false alarm rate of the detector was considerably higher than that observed 
in the Northwest Atlantic, despite those data also showing high levels of shipping noise35,36. Thus, the higher false 
alarm rate in the current study was most likely related to the presence of seismic pulse trains, which were often 
misclassified as minke whale pulse trains. In the future, the number of missed and false positive detections may be 
reduced and general performance improved, by using a dataset from Scottish waters, including call examples and 
realistic ambient noise conditions from this area, to train the detector. Nevertheless, despite average performance 
results, the existing detector in conjunction with false detection removal during post-processing, could be used to 
infer realistic broader scale spatio-temporal occurrence patterns. Due to missed calls the presented data could be 
an underestimate of actual presence, but this bias is somewhat accounted for by binning the data by hour.

Data analysed in this study were collected from May to November 2016 across ten sites and from May 2015 
to January 2018 at the Helmsdale recording site. Across the whole array and all years for the Helmsdale site, 
minke whale pulse trains were first detected in late May and detections generally declined at the end of October 
(Figs 3 and 4). This occurrence pattern supports records from visual sighting surveys, which also recorded minke 
whale presence from June to October in the Moray Firth37. It is thought that minke whales in the Moray Firth 
are primarily foraging on sandeel (Ammodytes spp.) during this period13,38. In 2016, detections declined during 
the month of August. During July and September minke whales were detected in 109 and 42 hours, respectively 
across the whole array, while only four hours with pulse train detections were recorded in August (Figs 3 and 4b). 
Additional data from Helmsdale for the years 2015 and 2017/18, also showed a reduction in detections in August 
and September. The cause of this seasonal reduction in acoustic detections could have been an absence of animals 
from the study area, suggesting seasonal movement in and out of the Moray Firth during mid- and late summer. 
Alternative explanations for the observed detection patterns include a switch in vocal behaviour or changes in 
local ambient noise or propagation conditions at this time of year.

During autumn and spring minke whale pulse train detections showed strong diel periodicity, with calling 
rates being lowest during light and highest during dark periods (Figs 4 and 5). Similarly strong diel patterns 
have been observed in Massachusetts Bay28. Without more knowledge on individual calling rates, the reason for 
the observed pattern cannot be conclusively resolved. It may be the result of higher individual calling rates, an 

Location Lat Lon
Depth 
(m) Start End

Hours 
analysed

Detection 
Hours

Latheron 58.27 −3.32 31 07/05/2016 31/07/2016 1,986 37

Helmsdale 57.97 −3.54 45 07/05/2016 11/13/2016 4,434 226

Cromarty 57.71 −3.81 24 07/05/2016 23/10/2016 4,054 6

Spey Bay 57.74 −3.04 23 07/05/2016
31/07/2016

22/07/2016
09/11/2016 4,275 52

Fraserburgh 57.71 −2.13 10 07/05/2016 23/07/2016 1,858 1

Cruden Bay 57.38 −1.83 29 07/05/2016
28/07/2016

26/07/2016
22/10/2016 3,999 0

Stonehaven 56.95 −2.18 26 07/05/2016
28/07/2016

14/07/2016
11/09/2016 2,740 1

Arbroath 56.49 −2.38 37 07/05/2016
28/07/2016

17/07/2016
22/10/2016 3,783 17

St Andrews 56.26 −2.49 45 07/05/2016 13/10/2016 3,818 0

St Abbs 55.93 −2.18 10 07/05/2016 29/07/2016 1,883 0

Total 32,830 340

Table 1.  Summary of recording locations, water depth, recording times, detection hours and hours analysed in 
2016 across the whole passive acoustic array.
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increase of the overall number of vocalising individuals at night or a change of animal abundance from day to 
night time. Diel variation in baleen whale vocalisations has also been attributed to prey distribution, with reduced 
vocalisation rates during active feeding and an increase in vocalisations in a social context at hours of lowest prey 
availability39,40. Visual observations in the Moray Firth during day time frequently show feeding behaviour13,14, 
which might suggest that minke whales vocalise more at night, when feeding efficiency may be lower. As men-
tioned earlier, minke whales around Scotland, including the Moray Firth, have been shown to primarily feed on 
sandeel which constitutes 70% their diet38. Sandeel species show a strong diurnal pattern and are generally less 
available in the water column during night time41. The observed lesser diel pattern (Figs 4 and 5) during summer 
might then relate to differences in diel light patterns and its effect on sandeel and other prey availability, and hence 
minke whale feeding (and vocal) behaviour.

It is currently unclear what role minke whale pulse trains may play in the species’ ecology. However, there is 
circumstantial evidence to suggest that they might serve in male advertisement28. If minke whale pulse trains are 
produced in a reproductive context, another potential explanation for the observed diel distribution could be 
that visual displays of fitness are replaced by vocal signalling during hours of darkness42,43. Further investigations 
of minke whale vocalisations concurrent with visual observations, might help elucidate additional behavioural 
functions of these calls and help explain observed temporal patterns of occurrence.

Spatially, most detections were made and were of longer duration in the northern Moray Firth, while fewer 
and temporally more spaced detections were recorded along the east coast of Scotland (Fig. 3). These data indicate 
that while minke whales appear to occur along the Scottish east coast, they show a more continuous presence in 

Figure 3.  Seasonal distribution of minke whale pulse trains in 2016, expressed as the proportion of hours per 
day with detections for each recording location (ordered from north to south; see Fig. 1). Missing data indicated 
by grey lines, and distance to shore and depth given for each recording location.
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Figure 4.  Number of total identified detections of minke whales (ncalls) at the Helmsdale recording site, 
aggregated by week (y-axis, tick marks indicate start of month) and hour of day (x-axis, tick marks indicate 
mid-hour), for (a) 2015, (b) 2016, (c) 2017. Black and grey lines indicate dawn/dusk and sunrise/sunset times, 
respectively. This high latitude recording area experiences all-night nautical twilight from May to August as 
indicated by the broken black dawn/dusk lines. The ‘sun-methods’ function of the R46 maptools library47 was 
used to determine times for sunrise, sunset, dawn and dusk based on nautical twilight (defined as sun altitude 
between 0 and 12°) for each day. Light grey shaded areas indicate periods of missing data. Data for January 2018 
were omitted from this graph for ease of presentation and since no detections were made during this month.

Year Start End
Hours 
analysed

Detection 
Hours

2015 01/05/2015 05/10/2015 3,735 60

2016 07/05/2016 31/12/2016 5,431 226

2017/18
01/01/201730/03/2017
28/07/2017
21/11/2017

09/01/2017 11/06/2017
16/09/2017
28/01/2018

4,824 42

Total 13,990 328

Table 2.  Summary of detection hours and hours analysed from May 2015 to January 2018 for the Helmsdale 
recording site.
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the Moray Firth during summer. In 2016, the site at Helmsdale in the northern part of the Moray Firth recorded 
the greatest number of detections; this site was also one of the deepest recording locations and the one furthest 
offshore (Fig. 1, Table 1). The presence of minke whales in the deeper waters of the central and northern Moray 
Firth, was also demonstrated by fairly high numbers of detection hours at Latheron (Fig. 3). In contrast, the 
relatively low number of detection hours at Fraserburgh in the southern Moray Firth, where minke whales are 
frequently observed visually13,14 was surprising. However, these results may be partly due to the acoustic recorder 
being placed in very shallow waters at this site. Low frequencies (peak frequencies of minke whale pulse trains 
are between 150–200 Hz28; Fig. 2) propagate poorly in shallow waters, as these effectively act as high-pass filters44. 
The true presence at this location, and potentially also at other sites, might not be accurately reflected using the 
available data recorded with an array originally designed to study coastal bottlenose dolphin distribution. This 
result highlights the importance of taking recorder location and local environmental conditions into account 
when interpreting results from passive acoustic recordings.

When using PAM for future monitoring of minke whales (e.g., in the Southern Trench MPA proposal area 
in the southern Moray Firth), care should be taken to place the PAM system in waters deep enough to ensure 
effective detection of the low frequency vocalisations produced by minke whales. Previous surveys of minke 
whales are largely based upon visual observations, be they from land, ship or from aircraft. These surveys suffer 
from low encounter rates and the case for future MPA proposals could be greatly strengthened though the more 
widespread use of PAM for monitoring minke whales. The long periods of observation by multiple acoustic 
recorders could greatly improve the confidence in minke whale distribution, and provide a cost-effective method 
for long-term monitoring of MPAs for minke whales. Similarly, PAM offers a contribution to the recurrent need 
to undertake risk assessments of offshore developments in relation to impacts on marine mammal populations. 
PAM should enable clarification of the relative importance of different potential development sites to minke 
whale populations, and give guidance to possible spatially-based impact mitigation strategies. The data from the 
current project were largely confined to recording sites within 15 km of the shore. However, our results do suggest 
that deeper waters in the central Moray Firth, might be more important for minke whales than previously thought 
based on visual data alone.

At a broad scale, the detection of minke whale pulse trains in the Moray Firth and North Sea supports visual 
distribution patterns for this region and confirms the feasibility of using PAM to monitor this species in Scottish, 

Figure 5.  Results of binary GAM with GEE models for the presence/absence of minke whale pulse trains in 
each hour of recording, estimating the relationship between the response variable and a diel cycle index value, 
based on sunrise/sunset data and calculated for each hour (see Methods). Models were run for all multi-year 
data (2015–2018) collected at the Helmsdale recording site (c), and separately for autumn-spring (a) and 
summer (b) data. Summer was defined as the period between May 20th and July 22nd, when the study area 
experiences all-night nautical twilight. The light grey shaded areas represent 95% confidence intervals.
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wider UK and Northeast Atlantic waters. Future work should include the improvement of the performance of 
the automated detector, using regional pulse train examples and distinguishing these against local ambient noise 
data. More work is also needed on the description of the full vocal repertoire for the species in UK coastal waters, 
as well as the behavioural context of minke whale vocalisations in general, including caller identity, source level 
and calling rates. With such additional knowledge, PAM may then significantly improve current conservation, 
monitoring and management efforts for minke whales in UK waters.

Methods
Acoustic data collection.  The East Coast Marine Mammal Acoustic Study (ECOMMAS) has been moni-
toring acoustic presence of cetaceans and ambient noise in the Moray Firth and along the east coast of Scotland 
(http://marine.gov.scot/information/east-coast-marine-mammal-acoustic-study-ecommas). As part of this effort, 
acoustic broadband data have been collected at ten different recording sites since 2013. The original aim for this 
long-term study was to better understand coastal bottlenose dolphin movement, which informed the placement 
of recorders at varying distances (up to ~15 km) from the low tide line and at depths ranging from approximately 
10–45 m (Fig. 1, Table 1). Acoustic recorders (SM2M, Wildlife Acoustics) were typically moored 3–5 m above the 
sea floor and programmed to record at a sample rate of 96 kHz, with 12 dB gain and a 10/20 minutes on/off duty 
cycle. Each recorder was equipped with a HTI-94 hydrophone (sensitivity: -168 dB re 1 V/μPa, flat (+/-1 dB) 
frequency response from 2 Hz to 40 kHz).

Minke whale acoustic presence and spatial distribution was investigated by analysing available recordings 
from all 10 recording sites for the period from May to November 2016 (total across all sites: 32,827 hours, 
Table 1). Since most detections in 2016 were collected at the Helmsdale recording site (Fig. 1, Table 1), 
multi-year data (2015–2018), including additional data for December 2016, were analysed for this site to 
extend recordings into winter months and investigate inter-annual variability, as well as diel patterns (total: 
13,990 hours, Table 2).

Analysis.  Data preparation and initial acoustic analysis.  To focus the analysis on low frequencies for detec-
tion of minke whale pulse train presence, all data were initially downsampled to a sample rate of 2 kHz using the 
Decimator module in PAMGuard45 and applying a low-pass 4th order Butterworth filter. A random subsample of 
100 days, 10 days from each site, collected in 2016, was then reviewed visually and aurally, using spectrograms 
(fast Fourier transformation [FFT] size: 2048 points, 75% overlap, Hanning window) created in XBAT46.

Automated detection process.  After confirmation of minke whale pulse train presence at several recording sites, 
an automated detection algorithm, originally developed for pulse trains from the western North Atlantic, was 
used to analyse data from the whole ECOMMAS array. The detector was run in a batch process on sound files 
loaded in XBAT. The automatic detection consisted of a multi-stage process based on spectrogram intensity bina-
risation, energy projection, feature extraction and finally pulse train detection and classification29. The detector 
design and performance for data from the western Atlantic is described in more detail in Popescu et al.29.

Ground truth and detector evaluation.  The 100 day data set from 2016, yielded 2,400 analysis hours (analysis 
hour referring to the 20 minutes of recording in each hour) that were manually reviewed by experienced data ana-
lysts (DR, MH, SW). Analysts recorded the presence of all true positive (TP), false negative (missed) (FN), and 
false positive (FP) detection hours. The results of this analysis were used to assess overall detector performance 
under varying noise conditions. The recall or true positive rate (TPR) of the detector is the percentage of manu-
ally identified detection hours which were also detected automatically, i.e. the number of true detection hours by 
the detector divided by the total number of true detection hours as identified by data analysts (TP/(TP + FN)). 
The precision of the detector is the percentage of correct automatic detections, i.e. the number of true detection 
hours divided by the total number of detection hours by the detector (TP/(TP + FP)). Finally, the false positive 
rate (FPR) was calculated as the number of false positive detection hours, as classified by the automated detector, 
divided by the total number of true negative detection hours identified by data analysts (FP/(TP + FP). While 
a high recall rate indicates a high detection efficiency and few missed calls, a high precision value and low false 
positive rate indicate a low false alarm rate.

Spatial and seasonal distribution patterns in 2016.  After manual review of all detection hours recorded from 
May to November 2016, all false positive detection hours were removed from the final dataset, resulting in a 
time-series of minke whale pulse train presence at a 1-hour resolution for each of the ten recording sites. These 
data were then corrected for recording effort by dividing the total number of detection hours by the total number 
of effort hours for each day.

Multi-year seasonal and diel detection patterns.  Analysis of data collected from May to November 2016, found 
most minke whale detections at the Helmsdale recording site (Table 1, Fig. 3). To explore diel and seasonal pat-
terns across years, an extended data series from April 2015 to January 2018 was analysed only for this location. 
The automated detector was run as described above, acoustic detection hours were manually reviewed and pulse 
train counts for each hour with true positive detections enumerated, while false positive detections were removed. 
The number of true pulse train detections were then grouped by hour of day (using GMT), aggregated by record-
ing week and plotted against time of day, dawn, sunrise, sunset and dusk to investigate seasonal and diel patterns 
in pulse train occurrence (Fig. 4). The ‘sun-methods’ function of the R47 maptools library48 was used to determine 
times for sunrise, sunset, as well as dawn and dusk based on nautical twilight (defined as sun altitude between 0 
and 12°) for each day.
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Diel trends in minke whale detections from the multi-year Helmsdale data set were further investigated by 
modelling the hourly presence/absence of minke whale pulse trains in relation to diel cycle index values, scaled 
to account for seasonal variation in day length. The model was run on the whole data set, as well as separately for 
the period of all-night twilight during summer (May 20th–July 22nd) and the rest of the year (autumn to spring) 
when full darkness did occur. For each hour, the diel cycle index was calculated based on sunrise/sunset data, 
where index values of 0 and 1 corresponded to the hour of sunrise and 0.5 represented the hour in which sunset 
occurred. A binomial generalised additive model (GAM) was fitted with the diel cycle index as explanatory var-
iable, an independent correlation structure and a logit link function, and using generalised estimating equations 
(GEEs) to account for temporal autocorrelation in the model residuals, following Pirotta et al.49. While GAMs 
assume independence among model residuals, the GEE method models the correlation within specified ‘blocks’ 
of data, assuming independence between blocks49,50. A block size of 24 hour was chosen based on examination of 
autocorrelation function (ACF) plots of the model residuals. The significance of the diel cycle was assessed using a 
Wald chi-squared test and the relationship between diel cycle and the probability of minke whale hourly presence 
visualised using a partial residual plot (Fig. 5). Models were built using the R geepack and splines libraries51, and 
the nlme and mgcv packages52,53.

Data Availability
The datasets generated during and/or analysed during the current study can be made available upon reasonable 
request.
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