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Abstract

A central question in neuroscience is how context changes perception. In the olfactory sys-

tem, for example, experiments show that task demands can drive divergence and conver-

gence of cortical odor responses, likely underpinning olfactory discrimination and

generalization. Here, we propose a simple statistical mechanism for this effect based on

unstructured feedback from the central brain to the olfactory bulb, which represents the con-

text associated with an odor, and sufficiently selective cortical gating of sensory inputs.

Strikingly, the model predicts that both convergence and divergence of cortical odor patterns

should increase when odors are initially more similar, an effect reported in recent experi-

ments. The theory in turn predicts reversals of these trends following experimental manipu-

lations and in neurological conditions that increase cortical excitability.

Author summary

Contextual information can powerfully influence the neural representation and percep-

tion of sensory stimuli. Here, we propose a mechanism, based on unstructured feedback

from the central brain to the sensory periphery, by which similar and different contexts

lead to characteristic trends in convergence and divergence of cortical odor responses that

are critically dependent on threshold to firing of cortical cells. The analysis predicts spe-

cific deficits in context-driven olfactory perceptual discrimination in neurological condi-

tions of high cortical excitability, such as Alzheimer’s disease.

Introduction

Contextual information, which we define as the environmental information salient to a sen-

sory experience, has a powerful effect on perception across a range of sensory modalities [1–8].

In olfaction, experiments have demonstrated the influence of context and task demands on the
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neural representation of odors at different levels in the olfactory pathway. In the olfactory bulb

(OB), where odor information is first processed before passing to cortex, context-dependent

changes in both single-neuron and collective bulb activity have been observed during and fol-

lowing learning [9–18]. Context can also reshape representations of odors in the olfactory cor-

tex: when odors are associated with the same or different contexts, the corresponding cortical

activity undergoes pattern convergence (increased response similarity) or divergence

(decreased response similarity) respectively [19, 20]. The mechanisms underlying such con-

text-induced transformations are of great interest in sensory neuroscience.

The OB and cortex are notably coupled to one another. Mitral cells (MCs) and tufted cells

(TCs) from the bulb project to several higher brain regions [21, 22]. In particular, experiments

have highlighted that the piriform cortex (PC) is activated by convergent and synchronous

inputs from the bulb: coincident activation of several glomeruli within a short time window

[23] is required to induce spiking in cortical pyramidal neurons, a mechanism that is thought

to be important for decoding complex combinations of chemical features [24, 25]. In turn, the

bulb receives extensive feedback from multiple areas of the central brain, including the PC

[26–31]. Such feedback can arise directly as a response to odor input (i.e. in a traditional feed-

back loop), but may also independently encode the odor’s context, such as associated sensory

or reward information [12, 32]. At the cellular level, this feedback predominantly targets gran-

ule cells (GCs) and other OB interneurons, enhancing or suppressing their activity [26, 33–

37], but may also directly excite the MC/TCs [30, 38] or otherwise alter MC/TC activity via

neuromodulatory factors such as acetylcholine, serotonin, and norepinephrine [39, 40].

Experiments have demonstrated that this cortical feedback plays a critical role in OB func-

tion. Activation of feedback pathways can decorrelate MC output [33], enhancing odor dis-

crimination. Neuromodulation of the OB can also alter odor discrimination and, importantly,

adjust the influence of contextual information on activity in the bulb and odor perception [12,

15, 41, 42]. Consequently, disruption of these pathways impairs both associative [32, 41, 43]

and discriminatory abilities [15, 37, 41, 44]. Theoretical and computational studies have also

explored possible mechanisms by which feedback may impose these effects. Models of top-

down, direct cortical feedback to the bulb which include plasticity in the feedback and in cor-

tex have been able to reproduce odor association with visual context [12] and differences in

cortical reorganization during passive vs. active learning [45]; demonstrate adaptation to spe-

cific olfactory environments and odor tasks when guided by neurogenesis [46]; and explain

differential responses to the same odor under separate contexts [43]. Other models have dem-

onstrated further effects of neuromodulation on OB activity, such as normalization of output

neuron response [47], increasing spike synchrony [15, 48], and general enhancement of odor

discrimination [44, 47].

The potential role of such plastic feedback in driving contextual changes in odor discrimi-

nation and generalization is complicated by the apparently random projection of MC/TCs to

the cortex [24, 25, 49–51]. In particular, any changes induced by plasticity in feedback to the

bulb would appear to become scrambled in cortex, necessitating further plasticity at the synap-

ses between MC/TCs and cortical cells, and within the piriform cortex, to produce targeted

effects. Indeed, this dispersion of information from the bulb may underpin the distributed

character of the cortical representation of odors, with different odorants activating unique, but

completely dispersed groups of cortical neurons [25]. Likewise, cortical feedback fibers are dis-

tributed diffusely over the OB without any discernible spatial segregation [27, 31]. Conse-

quently, it is difficult to predict how different cortical feedback patterns affect overall OB

output and subsequent odor representation in cortex. Thus, global reorganization of the OB

network through synaptic plasticity to reflect the odor environment and its associated contexts
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may also require significant time. This raises the question of how animals are able to effectively

learn in the short term under these constraints [52].

Here, we postulate that diffuse feedback signals, carrying unstructured representations of

context, can nonetheless modulate odor responses in the OB, even without synaptic plasticity,

to provide a rapid trigger for effectively entraining robust convergence or divergence of odor

patterns in piriform cortex (PC) depending only on the relative similarity between feedback

patterns rather than the pattern identities themselves. These changes, which can be stabilized

by plasticity in the recurrent connectivity of cortex [53–55], can in turn underpin generaliza-

tion and discrimination in sensory behavior (Fig 1A). To test this hypothesis, we constructed a

statistical, analytically tractable model of the OB and its projections to the PC, which we later

extended by incorporating an anatomically-faithful network of interactions between OB excit-

atory and inhibitory cell types along with a realistic distribution of projections from the OB to

the PC. This model provided a number of advantages unavailable via experimental methods,

namely 1) the interrogation of a large number of neurons; and 2) precise control of the distri-

bution of odor and feedback inputs.

Fig 1. A statistical mechanism for context-induced pattern convergence and divergence in the olfactory system. (A) Context is information present

in the environment that is salient to perception and behavior, e.g. the location of a reward associated with an odor. Left: in two-alternative forced-choice

tasks, when distinct odors are associated with the same context (e.g. a left reward port), animals learn to generalize their choice (approaching the left

port) across odors; after training, the neuronal ensemble responses to the odors in the PC are more correlated (pattern convergence, [19]). Right: when

odors are associated with alternative contexts (e.g. opposite reward ports), animals learn to discriminate the stimuli and make different, odor-specific,

choices (approaching the left versus right port); after training, the cortical ensemble responses are less correlated (pattern divergence, [19]). (B) In the

statistical model, the olfactory bulb is represented as an ensemble of “modules” (black circles), with each module defined as the set of MCs (black dots)

that project to the same cortical neuron (triangle), and the activation probability of cortical cells is a threshold function of the modules’ responses. (C) A

geometrical interpretation of Eq 5. The square represents the space of module responses to two odors (A and B). The number of cortical cells activated

by odor A (CA in Eq (5)) is equal to the number of modules with responses higher than the cortical activation threshold θc (orange rectangle labeled CA);

likewise for CB (orange rectangle labeled CB) and CAB (red rectangle). (D) NA (orange rectangle labeled NA), NB (orange rectangle labeled NB), and NAB
(red rectangle) represent the number of modules responsive to odor A, odor B, or both odors, respectively. Because of the assumption of uniformity,

CA, CB, and CAB can be re-expressed in terms of these values (Eq 1). (E) Stochastic feedback representing contextual changes in the distribution of

module responses. Modules with responses to either odor within ΔR from the cortical activation threshold and targeted by positive/negative feedback

(with probabilities p+ and p−, respectively) are brought above/below the cortical threshold, changing similarity between the cortical odor

representations (Eq 7).

https://doi.org/10.1371/journal.pcbi.1009479.g001

PLOS COMPUTATIONAL BIOLOGY Contextual feedback to the olfactory bulb and odor representation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009479 October 11, 2021 3 / 35

https://doi.org/10.1371/journal.pcbi.1009479.g001
https://doi.org/10.1371/journal.pcbi.1009479


The model shows that changes in bulb firing rates driven by feedback lead to divergence or

convergence of cortical odor representations. We had expected that, for odor discrimination,

odors that were initially more similar would show greater divergence, while, for odor generali-

zation, odors that were initially more similar would show less convergence, in order to achieve

the same final degree of similarity. To our surprise, we found that, while the magnitude of pat-

tern divergence indeed increased with initial odor similarity, so too did the extent of pattern

convergence. These predictions of the model, which accord with results from recent experi-

ments [19, 20, 56], follow from the general statistics of unstructured contextual feedback to the

olfactory bulb, are compatible with the diffuse feedforward projections to cortex, and thus

hold for realistic odor input distributions and feedback patterns. Notably, our results require

that cortical units selectively gate coincident inputs, which PC pyramidal neurons are known

to do [23, 25]. The model also predicts that increases in cortical excitability, either by experi-

mental manipulation or in neurological conditions such as Alzheimer’s disease [57, 58], will

alter or even reverse these trends, and hence induce characteristic modifications of contextu-

ally-driven change in odor perception and behavior. Ultimately, our study provides a new

approach to understanding the role of feedback in olfaction as well as the relationship between

central and peripheral brain regions in sensation.

Results

A statistical mechanism for associating contexts to odors

Our model contains a sensory layer and a cortical layer, the olfactory bulb (OB) and the piri-

form cortex (PC) respectively, consistent with the basic anatomical features of the olfactory

system (Fig 1B). The sensory (OB) layer consists of N “modules”, where each module repre-

sents the set of mitral cells (MCs) in the OB that project to the same pyramidal neuron in the

cortical (PC) layer. Consequently, the cortical (PC) layer consists of N units as well, with each

unit representing a pyramidal neuron receiving direct inputs from its corresponding module

in the sensory layer.

Modeling odor inputs. We summarized the response of the ith OB module to an odor

input by the change in the total firing Ri of its constituent MCs compared to baseline, where 0

< Ri< Rmax. Thus the response for the bulb as a whole was described by the module firing rate

vector

R ¼ ðR1;R2; . . . ;RNÞ ð1Þ

These responses were then transformed into a cortical response vector K via an element-

wise nonlinear activation function f(R), such that:

K ¼ ðK1;K2; . . . ;KNÞ ¼ ðf ðR1Þ; f ðR2Þ; . . . ; f ðRNÞÞ ð2Þ

Modeling context-induced feedback inputs. We modeled context as the effect produced

by cortical feedback inputs to the OB. In the OB, such feedback can lead to increases or

decreases in MC firing and consequently in the strength of inputs to PC, represented in our

model by the module firing rates. Cortical excitation of interneurons such as GCs and periglo-

merular cells reduces MC firing [26–31, 38], while other modes of feedback, such as direct

excitation of MCs [30, 31], neuromodulation of MC excitability [42, 59–62], and excitation of

deep short axon cells (which drives feedforward inhibition of GCs) [26, 33, 37] can enhance

MC activity. As a result, we represented the effect of feedback as a change in module firing
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rates:

DR ¼ ðDR1;DR2; . . . ;DRNÞ ð3Þ

Where ΔRi< 0 and ΔRi> 0 respectively represent decreases and increases in the overall firing

rate of the ith module.

Additionally, we assumed that the similarity between changes in module responses induced

by any two given feedback inputs, which we quantify using the cosine similarity between the

respective ΔRs, reflects the correlation between the contexts that elicit those feedback inputs.

(The cosine similarity between vectors v and w is defined as v � w/kvk kwk where � is the inner

product and kvk is the norm of v). In the most extreme case, feedback inputs that induce iden-

tical changes in the modules’ responses represent identical contexts, e.g. two odors being asso-

ciated with a reward at the same location (Fig 1A, left). Conversely, those that induce

uncorrelated or anticorrelated changes represent different contexts, e.g. two odors being asso-

ciated with a reward at different locations (Fig 1A, right).

Defining cortical similarity. The overlap ρi between cortical responses to two odors A

and B before feedback was quantified by the cosine similarity between the K vectors for the

two odors. Then, the overlap ρf between cortical responses for those two odors after feedback

was simply the cosine similarity between the new K0 vectors, where K0= f(R + ΔR).

Change in similarity between odor representations following feedback

varies linearly with the initial similarity

To capture the overall features of the system while maintaining analytical tractability, we made

the following simplifications. Firstly, since experiments have indicated that piriform neurons

only respond if the amount of input they receive within a short window is above a certain

threshold [23, 24], we approximated f(R) as a step function:

Ki ¼ f ðRiÞ ¼

(
0 if Ri < yc

1 if Ri � yc

ð4Þ

where θc quantifies the threshold for cortical activation. Thus, in our model, the ith cortical

neuron receiving input from its module was said to be “active” (i.e. Ki = 1) only when Ri� θc.
Because f(R) is a step function, we can express the cortical similarity as:

r ¼
CABffiffiffiffiffiffiffiffiffiffiffi
CACB

p ð5Þ

where, before feedback, CAB is the number of PC neurons active for both odors, and CA and

CB are the numbers of PC neurons active for odors A or B respectively (Fig 1C).

As a second approximation, we set the module firing rate distribution to be roughly uni-

form above and below a value θm, which we denote the “response threshold”. Modules with

responses above this threshold are considered significantly “responsive” to that odor, but since

θm� θc [23, 24], a responsive module may not necessarily be cortically active, as described

above. With this approximation of uniformity, we can interpret the problem geometrically

(Fig 1D). If we define NAB as the number of modules responsive to both odors A and B, and

NA and NB as the numbers of modules responsive to odor A or odor B respectively, then CAB,

CA, and CB are just rescaled versions of NAB, NA, and NB respectively, and can be re-expressed
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accordingly:

CA ¼
Rmax � yc
Rmax � ym

NA ð6aÞ

CB ¼
Rmax � yc
Rmax � ym

NB ð6bÞ

CAB ¼
Rmax � yc
Rmax � ym

� �2

NAB ð6cÞ

As a third approximation, for modules that receive non-zero feedback, we set the magni-

tude of the change in the module firing rate due to feedback to be the same for all modules.

These approximations allowed us to derive analytical results. All our conclusions remain valid

after relaxing these assumptions in numerical simulations of the model (S1 Fig, S1 Text).

General patterns of feedback, which vary in the number of modules they reach as well as in

their ratio of excitation to inhibition, require an examination of many alternative cases. In the

Methods, we carry out this examination and show analytically that for a pair of odors associ-

ated to specific contexts, each of which produces unstructured cortical feedback, the general

relationship between the initial similarity ρi of their cortical representations and the change in

that similarity following feedback Δρ is linear:

Dr ¼ Q2 ri þ Q1 ð7Þ

with Q1 and Q2 being complicated functions of the parameters of the feedback and the

response thresholds defined above (full derivation in Methods). The linear relationship can be

understood intuitively as follows: feedback changes odor similarity by pushing some modules

above or below the cortical threshold (depending on the feedback sign); these activated/deacti-

vated modules are typically close to the cortical threshold and thus odor-responsive before

feedback (Fig 1E); thus, they can be expressed as a fraction of the number of odor-responsive

modules. Since the response similarity ρi can also be re-expressed in terms of the number of

odor-responsive modules (Eqs 5 and 6), one component of Δρ will be proportional to ρi, hence

the Q2 ρi term in Eq 7. If feedback is sufficiently strong compared to the difference between the

cortical and response thresholds, it may also activate for both odors some modules that are not

odor responsive. This effect gives rise to the constant term Q1. Note that the effects we are

reporting are not a simple result of similar and different feedback producing corresponding

changes in firing rates. Indeed, because we are considering unstructured feedback to the olfac-

tory bulb, which then projects to cortex, we will see that the effects can be partially reversed by

increasing cortical excitability, an observation that may serve as a potential experimental test.

To illustrate the general results, we can examine special cases. For example, suppose all

modules receive the same excitatory feedback of strength ΔR for both odors, so all modules

with responses to odor A or B that are close enough to the cortical threshold (θc − ΔR< Ri<
θc) are brought above threshold by the feedback; as a result, the cortical neurons to which they

project are activated by the feedback. These context-induced changes are equivalent to an

effective decrease of the cortical activation threshold by ΔR for both odors (Fig 2A). Thus, by

computing the similarity via Eq 5 before and after replacing θc with θc − ΔR in Eq 6, the result-

ing change in similarity can be expressed:

Dr ¼
DR

Rmax � yc
ri ð8Þ
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which demonstrates pattern convergence that increases linearly in magnitude with initial odor

similarity.

Similarly, we can consider a simple situation where all modules receive excitatory feedback

for the first odor and inhibitory feedback for the second odor, both with uniform strength ΔR.

By an argument similar to the one above for the case of identical feedback, these effects are

equivalent to an effective decrease and increase of θc by ΔR for the first and second odors

respectively (Fig 2B). By then computing the similarity before and after replacing θc with θc −
ΔR for the first odor and θc + ΔR for the second in Eq 6, the change in similarity can be

Fig 2. Purely correlated or anticorrelated feedback induces proportionally increasing pattern convergence or

divergence, respectively. (A) Left: When feedback is identical and positive to all bulb modules for both odors,

increasing their responses by ΔR, its effect on the cortical activity is equivalent to a decrease of the cortical activation

threshold by ΔR. This results in a positive change in similarity between the cortical odor representations (i.e. pattern

convergence). Right: The amplitude of this effect increases linearly with initial odor similarity. (B) Left: When the

feedback is positive to all bulb modules for odor A and negative for odor B, the change in cortical activity is equivalent

to that induced by a decrease/increase of the cortical activation threshold by ΔR for odor A/B respectively. This results

in a decrease in similarity between cortical odor representations, i.e. pattern divergence. Right: The amplitude of this

effect increases linearly with initial odor similarity.

https://doi.org/10.1371/journal.pcbi.1009479.g002
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expressed:

Dr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðRmax � ycÞ
2
� DR2

q

Rmax � yc
� 1

0

@

1

Ari : ð9Þ

which demonstrates pattern divergence that again increases linearly in magnitude with initial

odor similarity.

The general scenario, with different ratios of excitatory and inhibitory feedback, different

numbers of modules affected by the feedback, and different correlations between feedback pat-

terns has an intricate parameter dependence in the linear coefficients of Eq (7) (see Methods).

To illustrate these general results, we computed the slope Q2 under a general feedback pattern

in which *50% of the modules were affected by feedback, with the majority of that feedback

(*75%) being negative (i.e., suppressing firing rates), and whose feedback strength ΔR was

*20% of the maximum firing rate Rmax. Fig 3A shows that under these conditions, when the

cortical threshold θc was high (so that about 10% of the cortical units were activated by each

odor, as is typical experimentally [25]), highly correlated contexts induced pattern conver-

gence, while uncorrelated or anticorrelated contexts led to pattern divergence. Moreover, this

pattern convergence and divergence both increased linearly with the degree of initial similarity

in the odor responses, just as in the special cases described previously. These results held

across: (i) different feedback strengths, and over larger ranges of cortical thresholds for stron-

ger feedback, (ii) different fractions of modules targeted by feedback, (iii) different fractions of

negative versus positive feedback, and (iv) different overlaps between the sets of modules tar-

geted by feedback for the two odors (Fig 3B–3E) (although if the fraction of negative feedback

was low, the transition between pattern divergence and pattern convergence could occur at an

intermediate value of the feedback correlation even for low cortical thresholds (Fig 3D, left)).

These results also persisted when the module firing rate distribution was Gaussian and the

nonlinearity was changed from a step function to a sigmoid function (S1 Fig, S1 Text), but

they changed dramatically if the cortical layer and its associated nonlinearity were removed

(i.e. for module i, f(Ri) = Ri) (S2 Fig, S2 Text).

Mechanistic model

Above, to facilitate mathematical analysis, we described activity in the OB and the effects of

feedback in terms of independent firing rates (and changes in firing rates) of OB modules.

However, anatomically, these modules comprise overlapping groups of MCs, and feedback tar-

gets individual MCs along with the GCs that inhibit them [26, 30]. Moreover, these MCs and

GCs are highly interconnected in a network. Consequently, the precise effect that feedback has

on MC output during combined odor driven and feedback activation is difficult to anticipate.

To account for these considerations, we refined our approach with a detailed mechanistic

model employing a biophysically realistic network of the OB (Fig 4A and 4B).

Briefly, to create this network, we modeled each cell in terms of its dendritic tree, since

interactions between MCs and GCs are dendrodendritic [65–69]. Roughly mimicking the

anatomy, MC trees were laid out in laminar discs and GC trees projected up in inverted cones

[70–73]. These cells were embedded in a 3-dimensional space representing the layers of the

OB. The x-y location of the center of a MC dendritic disc depended on the location of its

respective glomerulus (which was in turn placed randomly) [74, 75], while its z-position

depended on whether it was a Type I or Type II MC [70–72]. The GCs in our model were

deep-type (since MCs primarily interact with deep GCs) [73], so while the x-y location of the

vertex of a GC tree was random, the z-position of the vertex of its tree was confined to roughly
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Fig 3. Pattern convergence and divergence for general feedback. (A) We computed the slope in Eq 7 as a function of

the cortical threshold θc and the feedback similarity ρFB for the following set of plausible feedback conditions: 1)

feedback strength ΔR = Rmax/5; 2) feedback coverage p+ + p− = 0.5 for both odors; 3) fraction of feedback-affected

modules that receive inhibitory feedback for one of the odors p−/(p+ + p−) = 0.75 (the inhibitory fraction for the other

odor varies with the feedback correlation along the y-axis); overlap between the subsets of modules affected by the

feedback for the two odors pboth = 0.5. Pattern convergence and divergence increasing with initial odor similarity arise

at values of the cortical threshold overlapping with the realistic range, with correlated and anticorrelated feedback,

respectively. (B–E) Results generalize to a range of feedback conditions. Panels show effects of changing one feedback

parameter, while maintaining others as in (A). Color maps represent values of slope coefficient Q2 from Eq 7, with

darker shades corresponding to higher |Q2|, as a function of cortical activation threshold θc and feedback similarity ρFB.
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the lower half of the model space. The probability of a connection between any given MC and

GC was then a function of the geometric overlap between their dendritic trees (Fig 4A, details

in Methods).

To simulate network dynamics, MCs and GCs were modeled as Izhikevich neurons [63],

with parameters selected to match known electrophysiological data [72, 73, 76]. Odor input

was represented as an oscillatory current into the MCs, while positive and negative feedback to

the system were represented as pulses of constant excitatory current to a random subset of the

Red: pattern convergence increasing with odor similarity (Q2 > 0 and Q1 = 0). Blue: pattern divergence increasing

with odor similarity (Q2 < 0 and Q1 = 0). Green: mixed effects, i.e. pattern convergence decreasing with odor

similarity and potentially turning into pattern divergence at high similarity (Q2 < 0 and Q1 > 0). Gray dotted lines:

realistic range for the cortical threshold, activating 15%, 10% and 3% of cortex respectively in response to odor input

[25]. Black dashed line: a threshold θc = θm + ΔR approximating the transition between pattern divergence/

convergence and mixed effects. All panels: θm = 0.3, Rmax = 2, podor = 0.6 (probability that a given module has a

significant response to an odor input).

https://doi.org/10.1371/journal.pcbi.1009479.g003

Fig 4. A mechanistic model produces trends in pattern convergence and divergence similar to those predicted by the statistical framework. (A)

The probability of connection is a function of the overlap of the mitral cell and granule cell dendritic trees, here represented as a disc and cone,

respectively. Different parameters in the mean-field distributions of these dendritic trees produce different probability curves for any given MC-GC

pair. (B) The algorithm in (A) is used to generate a network of MCs interconnected by GCs. Network dynamics are simulated via the Izhikevich model

[63, 64], with each neuron in the network receiving external inputs in the form of odor or feedback as well as reciprocal inputs resulting from the

connectivity of the network. Odor input is modeled as an oscillatory current to mimic the respiratory cycle while external feedback is modeled via a

constant current input pulse. (C) For high cortical thresholds, the cosine similarity between odor representations increases (pattern convergence) or

decreases (pattern divergence) linearly in the initial similarity, according to the correlation in the feedback inputs. In (C), we simulated 10,000 MCs

grouped into 500 glomeruli and 100,000 cortical cells, each sampling 7% of the MCs, with odor targeting 12% of the glomeruli, positive feedback

targeting 8% of the MCs, and negative feedback targeting all MCs.

https://doi.org/10.1371/journal.pcbi.1009479.g004
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MCs and GCs respectively (Fig 4B). We determined that a sufficiently large number of MCs

(>8000) was required to achieve statistically stable results (S3 Fig). The large size (especially

given that there are around an order of magnitude more GCs than MCs [77]) meant that

computational limitations precluded us from directly performing the spiking simulation for all

the different odor and feedback tests. We circumvented this limitation by using the spiking

model to extrapolate distributions of firing rates in MCs following odor input and reciprocal

feedback from GCs, both with and without external feedback to MCs and GCs (see Methods,

S4 Fig). This allowed us to simulate the detailed dynamics of larger numbers of MCs efficiently

by summarizing the effects of the granule cell network in terms of the distribution of effects on

MC firing.

To simulate cortical responses, we allowed K cells to sample randomly from a fraction q of

the M MCs, with q* 0.07, consistent with experimental measurements [49]. Each group of

sampled MCs thus constituted a module in the terminology used above. MCs were also parti-

tioned into G glomerular, non-overlapping sets, each representing the set of MCs associated to

the same glomerulus. We modeled the response to an odor as the evoked firing rate over a sin-

gle sniff (a length of time sufficient for a rodent to distinguish between odors [78]) in a fraction

fodor of the glomeruli. Thus, the MCs in fodorG glomeruli had a non-zero probability of having a

firing rate greater than 0, while the remaining MCs had vanishing firing rates, after subtracting

baseline responses. For the fraction of MCs that were selected to receive odor input, the firing

rate for each MC was drawn from a distribution fitted to data from the detailed spiking model

of the bulb (S4 Fig).

We determined the input to each cortical unit from the sum of the firing rates of MCs that

projected to it. To account for the effects of cortical balancing [79], we subtracted the mean

cortical input from the input to each unit, and then passed the result through a nonlinear acti-

vation function (a sigmoid). This ensured that the strongly activated cortical units tended to

receive the highest rate, and hence most coincident, inputs. This sequence of steps yielded a

vector of odor-induced firing rates over a sniff as the cortical representation of the odor.

Finally, we modeled feedback as a vector of firing rate changes in a fraction fFB of randomly

selected mitral cells. These changes could be induced either by direct feedback to the mitral

cells [30, 38] or indirect inhibitory feedback through the granule cells [26, 28, 30, 31, 33, 80],

all of which have the net effect of modifying MC firing rates. The specific pattern of feedback

(i.e. the affected MCs and the net change in firing rate of each MC) effectively defined the con-

text associated to the odor presentation.

An in silico experiment on pattern convergence vs. pattern divergence. We tested how

similarities and differences in feedback affected the cortical representation of odors in our

mechanistic model. To this end, we generated pairs of odors, with each odor targeting fodorG
glomeruli, where the two odors shared different fractions of targeted glomeruli. We then com-

puted the cosine similarity ρ between cortical responses to pairs of odors before and after addi-

tion of feedback for different feedback regimes.

We first considered the situation where the threshold of the sigmoidal activation function is

high, leading to sparse firing in the cortex as seen in experiments [25, 81–83]. We presented

pairs of odor inputs, which had varying degrees of initial similarity, and excitatory feedback to

subsets of MCs and GCs, where the feedback patterns for each odor also varied in their similar-

ity. We found that strongly correlated feedback led to pattern convergence (increased overlap

in cortical responses), while uncorrelated feedback led to pattern divergence (decreased over-

lap in cortical responses) for higher initial odor similarity. Notably the pattern convergence

and divergence both increased linearly with the initial overlap of cortical responses (Fig 4C, S6

Fig).
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Additionally, simulations in the spiking network showed that inhibitory feedback patterns

in the MCs arising indirectly via excitatory feedback to the GCs were necessarily diffuse and

unstructured. Specifically, targeting non-overlapping sets of about the same number of GCs in

the same network nonetheless produced highly correlated changes in MC firing rates; how-

ever, when we compared changes in MC firing rates following feedback between two networks

with the same MC arrangement but a different spatial configuration of GCs, this correlation

decreased [84]. Thus, in our mechanistic model, the identity of the MCs which are affected by

inhibitory feedback through the GCs depends less on the particular GCs targeted, and more

on the overall network connectivity within the bulb; additionally, the degree to which the firing

rate of individual MCs is affected depends primarily on the fraction of GCs targeted and the

strength of the feedback current, rather than the particular GCs targeted. In our reduced net-

work then, under the assumption that the network remained the same for both odors and that

feedback patterns were of roughly similar strength and extent, inhibitory feedback was neces-

sarily highly correlated for both odor patterns. Interestingly, presentation of odors with highly

correlated inhibitory feedback produced pattern divergence, unlike in the case with highly cor-

related MC feedback (S5 Fig, green line). Additionally, presentation of excitatory feedback for

one odor and inhibitory feedback for the other produced strong pattern divergence (S5 Fig,

purple line).

All told, these results recapitulated the predictions of the statistical model in a detailed

mechanistic setting. One difference from the abstract analysis is that in this mechanistic model

the only form of direct negative feedback goes through the GC network and is thus non-spe-

cific to particular MCs. As a result, strongly anticorrelated feedback is hard to achieve, but

may be possible in the brain through targeted neuromodulatory effects or through feedback

that suppresses GCs. In addition, because the MCs are embedded in a GC network, excitatory

feedback to MCs necessarily induces some inhibitory feedback disynaptically through the

granule cells. Thus, in this realistic mechanistic model there are constraints on the achievable

forms of net excitatory and inhibitory feedback. Stronger feedback antisimilarity would further

enhance pattern divergence.

A prediction: Partial reversal of effects when cortical excitability is

increased

In the normal brain, pyramidal cells in the PC have a high threshold for activation and respond

only when there is coincident input from multiple MCs [23, 25, 85]. However, both experi-

mental manipulation and neurological conditions such as Alzheimer’s disease can cause

increases in cortical excitability, or, equivalently, lower the cortical activation threshold [57,

58]. Our model makes striking predictions for these conditions that can be tested

experimentally.

First, Fig 3 shows that pattern convergence only arises by our proposed mechanism within

a range of cortical activation thresholds that are high, and these thresholds include the typical

values expected for pyramidal neurons to achieve realistic levels of cortical activation [25].

Thus we predict that increased excitability in the PC (or, equivalently, reduced activation

thresholds) will impair pattern convergence and thus the behavioral ability to generalize. Spe-

cifically, if cortical excitability increases moderately, our model predicts that any feedback

inputs (anticorrelated as well as correlated) will induce a weak pattern divergence effect,

increasing with initial odor similarity (light blue regions in between the black and gray dashed

lines in Fig 3). If the increase in cortical excitability is sufficiently large, our model predicts

more complex effects (green regions in Fig 3), as explained below. Qualitatively, in the high-

threshold regime, only modules that already have a significant response to an odor input (Ri>
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θc − ΔR> θm) can exceed the cortical threshold due to feedback, whereas if the threshold is suf-

ficiently low (θc≲ θm + ΔR), feedback can push some modules that were not initially odor

responsive to be above the cortical threshold. This can influence the final cortical similarity

and change results qualitatively (Fig 5).

Fig 5A shows analytical results from our statistical model at a low cortical threshold with

identical (top) and opposite (bottom) feedback. We see that some of the effects at high thresh-

old are reversed: (a) when the initial cortical similarity is high, similar contextual feedback to

the bulb can lead to cortical pattern divergence instead of pattern convergence (Δρ becomes

negative in Fig 5A, top right), (b) when the initial cortical similarity is low, dissimilar contex-

tual feedback to the bulb can lead to cortical pattern convergence instead of pattern divergence

(Δρ becomes positive in Fig 5A, bottom right), and (c) while pattern divergence for dissimilar

contexts increases with increasing initial odor similarity (Fig 5A, bottom right), pattern con-

vergence for similar contexts decreases with increasing odor similarity (negative slope in Fig

5A, top right), reversing the trend at high threshold. These reversals at low threshold are

Fig 5. The mechanism for pattern convergence and divergence requires a high-threshold transfer function. Predicted trends in pattern

convergence and divergence for increased cortical excitability, obtained from the statistical model and the mechanistic model with low activation

thresholds. Low cortical activation thresholds yield effects that are qualitatively different from the realistic high-threshold case. (A) Analytical results

obtained for θc = 0.35 and the feedback scenarios of Fig 2A and 2B: red indicates 100% excitatory feedback for both odors; blue indicates 100%

excitatory/inhibitory feedback for the first/second odor, respectively. Since θc is low, some modules that are not odor-responsive (R< θm) are pushed by

feedback above θc (sketches to left) changing similarity between cortical odor representations (right) differently from Fig 2A and 2B: correlated

feedback inputs (red) yield pattern convergence decreasing with increasing odor similarity, and for high odor similarity, pattern convergence can turn

into pattern divergence. Anticorrelated feedback inputs (blue) yield pattern convergence/divergence for low/high initial odor similarity, respectively.

(B) Similar results are obtained from the mechanistic model (same simulation conditions as in Fig 4C).

https://doi.org/10.1371/journal.pcbi.1009479.g005

PLOS COMPUTATIONAL BIOLOGY Contextual feedback to the olfactory bulb and odor representation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009479 October 11, 2021 13 / 35

https://doi.org/10.1371/journal.pcbi.1009479.g005
https://doi.org/10.1371/journal.pcbi.1009479


confirmed by analysis of more general feedback conditions and response distributions (Fig 3,

S2 Fig).

To confirm the predictions in the mechanistic model, we considered a situation where the

threshold of the sigmoidal activation function is low, leading to greater cortical excitability,

and hence broad activity in the cortical units. In this case we saw the same striking reversal:

pattern convergence following strongly correlated feedback decreases with initial odor overlap

(Fig 5B).

Discussion

Context profoundly shapes odor perception [10, 14, 19, 45, 86–88], and previous studies have

demonstrated the critical role of cortical feedback to the OB in the formation of odor-context

associations [12, 32]. Cortical feedback can also enhance odor discrimination [33, 41, 42, 46,

47] and generalization [43]. Some studies have implicated feedback in the generation of beta

oscillations, thought to be associated with olfactory learning [89–93]. Consequently, under-

standing the effect of cortical feedback on the OB is necessary to decode the broader relation-

ship between context and perception in the olfactory system.

Our study contributes to this understanding by showing that diffuse feedback signals, carry-

ing unstructured context representations, can modulate OB responses without synaptic plas-

ticity to effectively entrain convergence and divergence of odor patterns in cortex despite the

apparently random afferent projections from the OB. The model predicts that the resulting

enhancement in generalization or discrimination should increase linearly with the initial odor

similarity. This is especially surprising in the case of odor generalization, since we had

expected that more dissimilar odors would show greater convergence in the presence of like

contexts, in order to achieve an equal similarity in final cortical representation; in fact, initially

similar odors converged more than dissimilar ones, suggesting that the cortex’s “first impres-

sion” of similarity between a given odor pair plays a strong role in determining the influence

of context. Moreover, our results also predict that these linear trends are critically dependent

on the strong gating of the OB’s projections to cortex. In fact, if the gating were weaker (i.e., if

the threshold for cortical activation were lower, leading to less sparse activity), some of these

effects would reverse. Our results are robust to broad changes in the statistics of odor inputs

and feedback patterns, and are realized in a detailed mechanistic model of the circuit architec-

ture of the olfactory bulb. We phrased our analysis in terms of responses to single odorants,

but the model generalizes immediately to odor mixtures which are generally encountered by

animals [94]. This is because we focus directly on the induced bulbar and cortical responses,

rather than on the response of olfactory sensory neurons to specific odorants. Thus, the

responses we study could equally well represent a single odor input or a mixture of odorants.

Future work could extend our analysis all the way to the odor input by incorporating recent

models of the nonlinear response of olfactory sensory neurons to mixtures of molecules [95,

96].

Generality of the proposed mechanism across modalities

Our work focused on the olfactory system, as its known structure neatly delineates a simple

circuit with few information-processing layers (the OB and the piriform cortex) and a clearly

defined relationship between these layers, which can be individually adjusted and analysed in a

model. However, similar mechanisms to the one we have proposed here could be implemented

in other areas of the brain, and thereby support pattern convergence/divergence for other sen-

sory modalities, especially given the importance of contextual information across the senses

[1–8]. Indeed, all sensory cortices satisfy the key structural requirements of our statistical
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model: (1) convergent projections from one layer to the next; (2) increasingly selective gating

of the sensory inputs (as demonstrated by a reduction in neural activation levels across the sen-

sory hierarchy [97]); and (3) feedback carrying information about the context of sensory sti-

muli towards the lower sensory layers. We showed that pattern convergence and divergence

effects that emerge in neuronal networks with these features rely only on the statistics of feed-

back signals that are unrelated to the specific neuronal activation patterns induced by the sen-

sory inputs: that is, feedback is not designed to target specific sensory neurons (e.g. based on

their tuning properties), and does not require synaptic plasticity. Effective forms of pattern

convergence/divergence arise statistically via a mechanism that simply adjusts the level of simi-

larity in otherwise unstructured feedback patterns to reflect the similarity between contexts.

Feedback signals with these simple properties can be implemented in many ways and in

diverse sensory areas of the brain, making this mechanism applicable across modalities. Pre-

suming this to be the case, the brain may also be able to forge relationships between different

sensory systems simply by invoking randomly structured, but mutually correlated, feedback

patterns to multiple sensory regions at the same time. This, for example, may facilitate strong

correlations in the effects of context on the olfactory system and other sensory modalities

including the gustatory system [98–102].

Role of feedback to the olfactory bulb

Our results demonstrated that feedback to the OB could yield cortical pattern convergence or

divergence varying linearly with the initial similarity between the two odor patterns. Because

this effect is only dependent on the relationship between feedback patterns induced by differ-

ent contexts, rather than on the activation of particular MCs or GCs in the bulb, the cortex has

much more flexibility in producing pattern convergence and divergence via this mechanism.

Moreover, this feedback will automatically induce a predictable level of pattern convergence or

divergence, which can presumably be further adjusted by the cortex’s native ability to mold

odor representations in accordance with the animal’s needs [53, 55, 103–105]. For example,

piriform cortex could utilize feedback to induce broad initial changes to odor representation

which are then solidified via the PC’s inherent recurrent circuitry, which is necessary more

generally to stabilize cortical odor representations [54]. Altogether, with these advantages, it is

clear that the cortex, by targeting an upstream neural structure, can efficiently induce robust

odor discrimination and generalization in its own odor representations, thereby suggesting

one etiology for the extensive cortical feedback to the OB.

Model predictions and experimental tests

Key behavioral predictions of our theory follow from the assumption that similarities and dif-

ferences in the perception of an odor are directly related to the similarities and differences in

their cortical representation. Thus, our theory suggests that perceptual learning should be

strongly affected by cortical excitability, or, equivalently, the response threshold of cortical

neurons. At low excitability (or high threshold), which is the normal state of sensory cortex,

odors presented in related contexts should be perceived as more similar than they originally

are, and the extent of this perceptual change should increase with the initial similarity. There-

fore, the more similar the odors smell initially, the more similar they should seem after presen-

tation in the same context. By contrast, if excitability is high (or threshold is low), the

perceptual change in response to presentation in related contexts should be greatest for odors

that were initially dissimilar. As a result, if the cortex of an animal performing a generalization

task is highly excitable, stimuli that are very different should be disproportionately perceived

as similar and potentially confused with one another, while perceptual association of initially
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similar stimuli would be less effective or not achieved at all. Conversely, we predict that, at

both low and high thresholds, the ability to discriminate odors associated with different con-

texts will increase with initial odor similarity.

Some of these predictions are already supported by experimental evidence from studies

conducted in rodents. In particular, both [19] and [20] found that association of odor mixtures

with different contexts decorrelated the cortical neural responses to the mixtures (pattern

divergence) only in difficult discrimination tasks, i.e. when the odor mixtures were perceptu-

ally similar. This experimental finding is consistent with our prediction of a positive gain for

pattern divergence as a function of the initial odor similarity. Furthermore, both studies

reported an increase in cortical response similarity (pattern convergence) when odors were

associated with the same context (the same reward port in [19], the same positive valence in

[20]). In support of our model predictions, the perceptual effects measured in [19] also

strongly suggest a positive gain for pattern convergence.

Our model also makes predictions about the different effects produced by different patterns

of feedback. Interestingly, we show that the overall transition as a function of cortical threshold

and feedback correlation from pattern divergence to convergence is generally invariant to

changes in feedback parameters (Fig 3). Two additional statistical effects that our model identi-

fies are that pattern divergence and pattern convergence can be achieved for low and high

feedback correlation (1) over a larger range of cortical thresholds for stronger feedback (Fig

3B) and (2) even in the presence of relatively low cortical thresholds if the fraction of inhibitory

to excitatory feedback is low (Fig 3D, left). Experimentally, these predictions could be tested by

first engineering similar or different contexts for a pair of odors. Then, after training animals

to associate each odor with its given context, one could measure the statistics of the consequent

changes in OB and PC neural activity (e.g. via electrophysiology or calcium imaging), under

the hypothesis that these changes reflect the influence of cortical feedback encoding context.

Overall, the predictions following from our proposed mechanism are readily falsifiable.

Their rejection or further validation requires measurements of the similarity in cortical

responses to odor pairs before and after odor discrimination/association training in two sets of

conditions: a control set, in which the response properties of cortical neurons are not altered,

and an experimental set, with heightened piriform cortical excitability (i.e. lower activation

thresholds). An increase in excitability could be facilitated in a number of ways, for example

via stimulation of other brain regions [106], or application of a GABA-A antagonist [107].

Our predictions could also be probed in patients showing neurological conditions of

increased cortical excitability such as Alzheimer’s disease [57, 58]. A clinical investigation

could involve two participant groups, one with similar stage Alzheimer’s disease and a healthy

control. Both groups would experience a set of odors and rate the similarity of odor pairs. The

participants would re-experience these odors with concurrent audio or visual stimulus as “con-

text” (for example, monocolor images whose RGB values can be used to determine feedback

similarity). Then they would be asked to again reassess the similarity between the different

odor pairs. According to our model, we expect both the healthy controls and the disease group

to report a decrease in similarity for initially similar odors that have been associated with dif-

ferent contexts, with the magnitude of this change increasing with initial odor similarity. How-

ever, the way in which each group perceives odors associated to similar contexts should differ

markedly. In the case of the healthy group, odors that are initially perceived to be more similar

should preferentially increase their similarity after presentation in the same context. Of course

highly similar odors will have little room to increase their similarity before they are perceived

to be identical. However, in the disease group, due to the decrease in cortical threshold associ-

ated with Alzheimer’s disease, odors which are perceived to be initially most dissimilar should

experience the greatest increase in perceived similarity following association to the same
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context. To further explore our model’s predictions in relation to neurodegeneration, we

could also study how these trends in pattern convergence and divergence evolve with age.

Under the same experimental paradigm, we expect the slope of the relationship between initial

similarity and context-induced change in similarity to generally decrease with age, although

this decrease may be nonlinear and any individual age bracket would demonstrate a variety of

slope values (and hence phenotypes) [108].

Methods

The statistical model

Parameters and assumptions. We derive the results of the statistical model in terms of

the parameters and assumptions in Table 1. Parameters pboth, pflip, and the distribution of ΔR
together control ρFB, defined as the cosine similarity in the response changes induced by feed-

backs FA and FB for odors A and B. Assuming constant feedback strength ΔR, ρFB is simply:

rFB ¼
DRA � DRB

kDRA kkDRB k
¼ pboth � 2 pflip ð10Þ

where pboth is the probability that a module receives feedback for odor B given that it receives

feedback for odor A, and pflip is the probability that the feedback for odor B increases/decreases

a module’s firing rate given that the feedback for odor A decreases/increases it, respectively.

The probability pB
�

, that feedback FB increases/decreases the firing rate of a module, can be

related to pA
�

, the probability that feedback FA increases/decreases the firing rate, in terms of

pboth and pflip:

pB
þ
¼

psame pAþ þ pflip pA�
pboth

pB
�
¼

psame pA� þ pflip pAþ
pboth

ð11Þ

with psame = pboth − pflip. Similarly we can use Bayes’ rule Pr(FA< 0|FB> 0) Pr(FB> 0) = Pr(FB
> 0|FA< 0) Pr(FA< 0) written as pAflip p

B
þ
¼ pflip pA� to write the probability that the feedback

for A is negative given that the feedback for B is positive:

pAflip ¼
pflip pA�
pB
þ

ð12Þ

We will use the expressions in (11) and (12) in our analyses.

Analytical calculation of the cortical similarity. The assumption of a uniform response

distribution (see Table 1 and Fig 1C and 1D) allows us to write the number of modules

responding over the cortical threshold θc as a proportion of the number of modules that are

odor responsive (response higher than θm):

CA ¼
DRc

DRm
NA CB ¼

DRc

DRm
NB CAB ¼

DRc

DRm

� �2

NAB ð13Þ

Hence, the initial similarity between the cortical responses to odors A and B is a fraction of the

initial similarity in the odor-responsive OB modules (Eq (5)):

ri ¼
CABffiffiffiffiffiffiffiffiffiffiffi
CACB

p ¼ Q0

NABffiffiffiffiffiffiffiffiffiffiffi
NANB
p with Q0 ¼

DRc

DRm
ð14Þ
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Table 1. Parameters and assumptions of the statistical model.

Parameters

Thresholds

θm module response threshold

θc cortical response threshold (θc> θm)

Δθ = θc − θm difference in thresholds

Module responses

Rmax maximum module response

ΔRc = Rmax − θc range of responses above the cortical threshold

ΔRm = Rmax − θm range of responses above the response threshold

N total number of modules

Nμ (μ = A, B, AB) number of modules with response greater than θm for odor A, odor B, or

both (μ = AB)

Cμ (μ = A, B, AB) number of modules above the cortical threshold θc for odor A, odor B, or

both (μ = AB)

ΔR magnitude of change in firing rate for modules affected by feedback

Module densities in response space (derived in terms of the parameters above)

ρ(μ) = Nμ/ΔRm (μ = A, B) density of modules (modules/response range) responsive to odor A or B

rð�mÞ ¼ ðN � NmÞ=ym (μ = A, B) density of modules (modules/response range) not responsive to odor A or

to B

ρ(AB) = NAB/(ΔRm)2 density of modules in response space (modules/area in response space)

that are responsive to both A and B

rð�A�BÞ ¼ ðN � NA � NB þ NABÞ=y
2

m
density of modules in response space (modules/area in response space)

that are responsive to neither A and B

rðA�BÞ ¼ ðNA � NABÞ=ðDRm � ymÞ density of modules in response space (modules/area in response space)

that are responsive to A but not to B

rð�ABÞ ¼ ðNB � NABÞ=ðDRm � ymÞ density of modules in response space (modules/area in response space)

that are responsive to B but not to A

Feedback

Fμ (μ = A, B) feedback associated to odor A or B

pm�ðm ¼ A;BÞ fraction of modules that increase (subscript +) or decrease (subscript −)

their response due to feedback Fμ
pboth conditional probability that a module is affected by feedback for B given

that it is also affected by feedback for A

pflip conditional probability that the feedback for B increases/decreases a

module’s firing rate given that the feedback for A decreases/increases it,

respectively

psame = pboth − pflip conditional probability that the feedback for B increases/decreases a

module’s firing rate given that the feedback for A also increases/decreases

it

Assumptions

response distribution (analytical

model)

marginal and joint distributions of responses to odors A and B are

separately uniform below and above θm
supplemental numerical analysis in S1

Fig

odor-response distribution and response change after feedback (ΔR) are

taken to be Gaussian

feedback coverage both feedbacks target the same number of modules pA
þ
þ pA

�
¼ pB

þ
þ pB

�

feedback independence 1 the probability that one feedback increases/decreases a module’s firing rate

is independent of whether the other feedback affects the module

feedback independence 2 the probability that one feedback has no effect on a module given that the

second feedback does affect it is the same regardless of whether the latter

increases or decreases the firing rate

https://doi.org/10.1371/journal.pcbi.1009479.t001
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We want to derive an analogous expression for the similarity between cortical responses

after receiving feedbacks FA,B associated to odors A and B (Fig 1E). To do so we have to ask

how FA and FB affect the numbers of modules CA, CB and CAB that produce cortical responses

to odors A, B, and both.

Feedback-driven changes in modules responding to odor A or to odor B. Let us start

with the CA modules producing cortical responses to A. (The modules responding to B can be

treated similarly). We have to consider two cases: (i) modules whose responses increase due to

feedback, and (ii) modules whose responses decrease due to feedback. CA is increased by mod-

ules whose responses increase if their initial firing rate R is less than, but within ΔR of, the cor-

tical threshold (θc − ΔR� R� θc). CA is reduced by modules whose responses decrease if their

initial firing rate R is greater than, but within ΔR of, the cortical threshold (θc + ΔR� R� θc).
For simplicity, we have assumed an initially uniform distributions of the NA module responses

above θm, and of the N − NA module responses below θm. This means that we can write the

change in the number of cortically responsive modules in terms of the proportions of modules

within the two ranges indicated above. If the change in the module firing rates after feedback

ΔR is smaller than the difference between the cortical activation and module response thresh-

olds Δθ, then only the NA modules with initial firing rate greater than θm matter for the analy-

sis. This gives the change in the number of modules with cortical responses to A as:

dCA ¼ ½pAþ minðDR;DyÞ � pA
�
minðDR;DRcÞ� rðAÞ ð15Þ

Here pA
�

is the probability that a given module increases or decreases its firing rate, ρA = NA/

(Rmax − θm) is the density of responsive modules (modules/firing rate range), min(ΔR, Δθ) is

the size of the interval of rates that can contribute to increasing CA, and min(ΔR, Rmax − θc) is

the size of the interval of rates that can contribute to decreasing CA. If ΔR> Δθ, some modules

that were previously unresponsive (below threshold θm) can contribute to the cortical response

after feedback, and we have to add this contribution to get:

dCtotal
A ¼ dCA þ pA

þ
minðDR � Dy; ymÞ rð�AÞHðDR � DyÞ

HðxÞ ¼ 0 if x < 0 and equals 1 otherwise
ð16Þ

where rð�AÞ ¼ ðN� NAÞ
ym

is the density of modules below the response threshold, and min(ΔR −
Δθ, θm) = min(θm − (θc − ΔR), θm) is the size of the interval below θm from which modules

could become cortically activated after feedback. We included the step function H(ΔR − Δθ) to

indicate that the second term is only present if the effect of feedback is larger than the differ-

ence between thresholds. Through similar reasoning

dCtotal
B ¼ dCB þ pB

þ
minðDR � Dy; ymÞrð�BÞHðDR � DyÞ ð17Þ

is the change in cortical responses to B after feedback.

Feedback-driven changes in modules responding to both odors. A module may increase

or decrease its firing rate after feedback following one or both odors, and this feedback may be

correlated. To calculate the resulting change in the number of modules reaching the cortical

threshold for both odors, δCAB, we must consider different possibilities for the initial firing

rates as in the analysis of responses to single odors above. For example, if the response to odor

A is just below the cortical threshold θc, while odor B lies just above, then positive feedback

after A combined with the absence of negative feedback after B triggers a cortical response for

both odors. By contrast, if the odor B response lies just below θc and the response to A lies just

above, then the pattern of feedback must be reversed to get cortical responses after both odors.

Reasoning in this manner we can distinguish the 15 cases enumerated in Table 2.
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The first four columns in Table 2 list the various relevant ranges for the initial firing rates of

a module responding to odors A and B in which increase or decrease of firing by an amount

ΔR after feedback can move a module above or below the cortical threshold θc. The results for

the contribution to δCAB presented in the last column all have the same general form:

Prðmodule increases=decreases response for one odorÞ�

Prðsame or opposite for the other odorÞ�

ðArea of the region in the response spaceÞ�

Density of modules in this regionð Þ:

The results are written in terms of the probability that both feedbacks affect the module

(pboth), the probability that the two feedbacks have same sign effects (psame), and the probability

that the two feedbacks have opposite sign effects (pflip). See Table 1 for definitions of other

parameters.

For example, in Row 1 of Table 2, we start initially with a module whose responses to both

odors lie above the response threshold and below the cortical threshold (θm� R� θc). We

then multiply the probability that feedback causes the response to both odors to increase

(pA
þ
� psame) with the number of modules that lie close enough to the cortical threshold such

that feedback will take them over this threshold. This latter is evaluated by multiplying by the

density of modules in the joint A-B response space (ρ(AB) = NAB/(ΔRm)2) (modules per unit

Table 2. All fifteen cases for feedback-driven changes in modules responding to both odors.

δCtotal
AB ¼

P15
i¼1 δC

ðiÞ
AB

(i) (θc − ΔR, θm) (θm, θc) (θc, θc + ΔR) (θc + ΔR, Rmax) Contribution δC(i) to δCAB

1 A,B pA
þ
psame½minðDR;DyÞ�2rðABÞ

2 A B pA
þ

1 � pflip

� �
minðDR;DyÞminðDR;DRcÞ½ �rðABÞ

3 B A pB
þ

1 � pAflip
� �

minðDR;DyÞminðDR;DRcÞ½ �rðABÞ

4 A B pA
þ
½minðDR;DyÞmaxð0;DRc � DRÞ�rðABÞ

5 B A pB
þ
½minðDR;DyÞmaxð0;DRc � DRÞ�rðABÞ

6 A,B � pA
�
þ pB

�
� pA

�
psame

� �
minðDR;DRcÞ½ �

2
rðABÞ

7 A B � pA
�
½minðDR;DRcÞmaxð0;DRc � DRÞ�rðABÞ

8 B A � pB
�
½minðDR;DRcÞmaxð0;DRc � DRÞ�rðABÞ

9 A,B pA
þ
psame½minðDR � Dy; ymÞ�

2
rð�A�BÞHðDR � DyÞ

10 A B pA
þ
psame minðDR � Dy; ymÞ � Dy½ �rð�ABÞHðDR � DyÞ

11 B A pA
þ
psame½minðDR � Dy; ymÞ � Dy�rðA�BÞHðDR � DyÞ

12 A B pA
þ

1 � pflip

� �
minðDR � Dy; ymÞminðDR;DRcÞ½ �rð�ABÞHðDR � DyÞ

13 B A pB
þ
ð1 � pAflipÞ½minðDR � Dy; ymÞminðDR;DRcÞ�rðA�BÞHðDR � DyÞ

14 A B pA
þ
½minðDR � Dy; ymÞmaxð0;DRc � DRÞ�rð�ABÞHðDR � DyÞ

15 B A pB
þ
½minðDR � Dy; ymÞmaxð0;DRc � DRÞ�rðA�BÞHðDR � DyÞ

The first four columns are indexed by ranges for the initial response rates of the modules before feedback. For example, (θm, θc) indicates that the initial response lies

between the response threshold θm and the cortical threshold θc. Likewise (θc − ΔR, θm) indicates that the initial response lies below the response threshold θm but is

sufficiently high that a feedback-driven addition of ΔR to the response rate would push the module above the cortical threshold. This case is only possible if the cortical

threshold is sufficiently low and the strength of the feedback is sufficiently high. The letters in each row indicate the range in which the response lies for each of the two

odors. The results in rows 9–15 include the step function H(x) which is defined as H(x) = 0 if x < 0 and H(x) = 1 if x� 0.

https://doi.org/10.1371/journal.pcbi.1009479.t002
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response space area) times the area of the region that lies close enough to the cortical threshold

to cross over after feedback. Since the feedback is taken to have magnitude ΔR, the latter area

is the square of the minimum of ΔR and the interval between the thresholds Δθ = θc − θm.

In Row 2 of Table 2 we consider a module which initially responds below the cortical

threshold to odor A, but above the threshold for odor B. Thus, before feedback, this module

does not contribute to CAB, the count of modules with cortical responses to both odors. After

feedback the module will contribute to this count if the response to odor A increases, and the

response to odor B does not decrease. The probability of this happening is pA
þ
ð1 � pflipÞ,

accounting for the first two factors in the result. To count the number of modules that experi-

ence this situation, as with the Row 1 result, we have to multiply by the density of modules in

response space by the area in response space which lies close enough to the cortical threshold.

This accounts for the last two factors in the result.

Proceeding similarly, we arrive at the results in each row of Table 2. Note that the results in

some rows (e.g. rows 6, 7, and 8) are negative, and contain factors of pA
�

or pB
�

because they rep-

resent the effects of negative feedback that cause modules which are initially above the cortical

threshold for both odors to cease to be so.

Overall equation. As described in Results, the cortical similarity is given by

r ¼ CAB=
ffiffiffiffiffiffiffiffiffiffiffi
CACB

p
, which is the ratio of the number of modules with cortical responses to both

odors to the geometric mean of the numbers of modules with cortical responses to each of A
and B. Thus the similarity after feedback is:

rf ¼
CAB þ dCtotal

ABffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCA þ dCtotal

A ÞðCB þ dCtotal
B Þ

p ¼ Q3

NABffiffiffiffiffiffiffiffiffiffiffi
NANB
p þ Q1 ð18Þ

where in the second equation we are separating out all terms proportional to NAB, having not-

ing that, from (13), CAB is proportional to NAB, and that, from the expressions for dCtotal
AB in

Table 2 and for the densities ρ(AB), rð�ABÞ, rðA�BÞ, and rð�A�BÞ in Table 1, every term in dCtotal
AB

also contains one piece proportional to NAB. Upon including the explicit expressions for

dCtotal
A , dCtotal

B , and dCtotal
AB all factors of NA, NB and NAB except those explicitly displayed in (18)

cancel out, so that Q3 and Q1 only depend on the remaining model parameters such as the

thresholds and the probabilities of positive and negative feedback. Recalling from (14) that the

initial cortical similarity before feedback is ri ¼ Q0NAB=
ffiffiffiffiffiffiffiffiffiffiffi
NANB
p

, we can express the change in

similarity as

Dr ¼ Q2 ri þ Q1 with Q2 ¼
Q3

Q0

� 1 ð19Þ

This is the main result of our analysis.

Pattern convergence and divergence: Analytical model. Fig 3 illustrates these general

results for a wide variety of feedback parameters. The general finding is that if the cortical acti-

vation threshold is sufficiently high, then Q1 = 0 and Q2 > 0 when the feedback similarity is

high, while Q2 < 0 when the feedback similarity is low. Thus high and low feedback similarity

give rise to, respectively, pattern convergence and divergence increasing with initial odor simi-

larity. On the contrary, if the cortical threshold is low, so that θc< θm + ΔR, then Q1 6¼ 0 and

Q2 < 0 for both low and high feedback similarities (partial reversal of effects, Fig 5 and green

regions in Fig 3). Here, we discuss in more detail the intercept Q1 and the sign of the slope Q2

in high and low cortical-threshold regimes.

Intercept Q1 and slope Q2 in the high-threshold regime. The coefficient Q2 in (19) arises from

the terms in dCtotal
AB that are proportional to NAB, the number of modules that are responsive to
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both odors. Every contribution δC(i) to dCtotal
AB that is listed in Table 2 contains such a term via

the expressions in Table 1 for the densities of modules that are responsive/unresponsive to the

two odors, ρ(AB), rð�ABÞ, rðA�BÞ, and rð�A�BÞ. By contrast, the intercept Q1 comes only from

the contributions 9–15 in Table 2 that arise from situations where modules are non-responsive

before feedback for at least one of the two odors (R< θm). These contributions only matter if

the effect of feedback, ΔR, is larger than the difference between the cortical and response

thresholds, Δθ (hence the step function H(ΔR − Δθ) in each of these contributions). Thus all of

these contributions vanish if the cortical activation threshold is sufficiently high, i.e. θc> θm +

ΔR, so that Q1 = 0 in these cases (Fig 2). In Results, we have also provided explanations for the

sign of Q2 in the high cortical-threshold regime, in the simple situations of identical (Q2 > 0)

and opposite (Q2 < 0) feedback. The only exception to these situations is the case of *100%

inhibitory feedback for both odors (i.e. p−/(p+ + p−)*1). In this singular case, identical feed-

back yields pattern divergence increasing with odor similarity (Q2 < 0). As a simple illustra-

tion, consider the special case that the inhibitory feedback targets all the modules

(pA
�
¼ pB

�
¼ 1): the effect of such feedback on the cortical similarity is equivalent to an increase

in the cortical activation threshold for both odors, which corresponds to flipping the sign of

ΔR in Eq (8). Thus Q2 = −ΔR/(Rmax − θc)< 0. As another special case, the slope is also negative

when feedback does not target all the modules and affects disjoint subsets for the two odors.

Intercept Q1 and slope Q2 in the low-threshold regime. Now consider a situation where cortex

has increased excitability and thus has a low threshold relative to the strength of feedback: θc<
θm + ΔR. Then, from Eq (19) we can derive exact expressions for Q1 and Q2 in the special case

pA
þ
¼ 1, pboth = 1, pflip = 0, i.e., when feedback targets all the modules and is positive for both

odors (Fig 5A, top). In this case, pB
þ
¼ 1 as well and pA

�
¼ pB

�
¼ 0. Because of this, only the pA

þ

and pB
þ

terms in Eqs (15), (16) and (17) contribute to the shifts in the number of cortically

responsive modules dCtotal
A and dCtotal

B that appear in the denominator of the cortical similarity

after feedback (18).

Every contribution to dCtotal
AB ¼

P15

i¼1
dCðiÞ in the numerator of the similarity Eq (18) con-

tains a term that is proportional to NAB because there is such a term in all module densities

ρ listed in Table 1; we will call these terms δC(i,p). Meanwhile the contributions δC(i) with

i = 9, ⋯15 also contain terms that are not proportional to NAB; we will call these δC(i,n). In

terms of these quantities, after some algebra we can write the intercept Q1 and slope Q2 in (19)

as:

Q1 ¼

P15

9
dCði;nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCA þ dCtotal

A ÞðCB þ dCtotal
B Þ

p

Q2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
NANB
p

Q0NAB

ðCAB þ
P15

1
dCði;pÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCA þ dCtotal

A ÞðCB þ dCtotal
B Þ

p � 1

ð20Þ

Notice that the intercept Q1 only takes contributions from modules that do not respond to

at least one odor before feedback (cases i = 9⋯15 in Table 2), and thus requires a low cortical

threshold with Δθ< ΔR. Explicit computation shows that Q1 > 0. Meanwhile, in the expres-

sion for Q2 there are three qualitatively different sets of terms:

• The part of the sum for Q2 from i = 1 to i = 8 represents modules that initially respond to

both odors (see Table 2), and these give positive contributions of Q2, just like they do in the

high cortical threshold regime.

• The term in Q2 with i = 9 comes from modules that do not respond to either odor before

feedback (see Table 2), and therefore only makes a contribution to Q2 in the low threshold
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regime where the difference in thresholds is smaller than the effect of feedback, i.e., Δθ<
ΔR. This term is positive because the number of modules in this set increases as odor similar-

ity increases.

• The part of the sum in Q2 from i = 10 to i = 15 arises from modules that respond to only one

of the two odors before feedback (see Table 2). Therefore it also only makes a contribution

to Q2 when the cortical threshold is low, i.e., Δθ< ΔR. This contribution is negative because

the number of modules in this set increases as the odor similarity decreases.

Overall, the third contribution dominates so that the slope is negative (Q2 < 0) when θc�
max(θm, ΔR), regardless of the other parameter values. This is a sufficient condition to have Q2

< 0, but for most values of the model parameters, higher θc can also yield negative slopes, as

long as θc< θm + ΔR.

A similar argument can be applied to the case pA
þ
¼ 1, pboth ¼ 1, pflip = 1, i.e. when feedback

targets all the modules and is positive for odor A, and negative for odor B (Fig 5A, bottom). In

this case the analysis shows that in this feedback condition Q2 < 0 for any θc< θm + ΔR and

Q1 > 0 for any θc< min(θm + ΔR, Rmax − ΔR).

The anatomically detailed network

Connectivity. Each cell was modeled by its distribution of lateral dendrites (for the MCs)

or its dendritic spines (for the GCs), since the interface between these two cell types occurs at

the junction of these neuronal processes. To determine the average number of synapses

between a specific GC and MC then, we wished to calculate the average number of spines from

that GC that would be present at a sufficiently close space to the MC lateral dendrites, under

the assumption that spines which are sufficiently close to the dendrites will form synapses.

Thus, in geometric terms, we wished to calculate, for a given MC-GC pair, 1) the amount of

lateral dendrite present in the overlap between the MC lateral dendritic and GC spine spatial

distributions and then 2) the number of spines sufficiently close to those lateral dendrites in

the overlap.

To treat this mathematically, we first developed mean-field distributions of MC lateral den-

dritic length density (in μm of lateral dendrite per unit area) and GC spine density (number of

spines per unit volume) based on the experimental literature. Since the MC lateral dendritic

distribution was defined on a disk and assumed to be radially symmetric, it was simply depen-

dent on the distance away from the center of the cell, with the specific shape of this distribution

determined from data from [70–72]. Meanwhile, the GC spine distribution was defined on an

inverted cone. The spine density at a given height was expressed as the number of spines per

unit height Ns divided by the area of the circular cross-section of the cone at that height. We

assumed no radial dependency, since the dendrites carrying the spines pass roughly perpendic-

ular to the MC dendrites, but Ns was height-dependent: this height dependence was modeled

based on results from [70] and [73]. Thus, the MC and GC distributions could be expressed as

ρm(r) and ρg(z), respectively, where r is the distance away from the center of the MC and z is

the height along the GC cone (Fig 4A).

With these distributions, we could then calculate the number of expected synapses between

a given MC-GC pair. First, we determined how much length of lateral dendrite (in μm) existed

in the overlap between the dendritic distributions of the two cells via the integral:

l ¼
R

Aoverlap
rmðrÞdA ð21Þ

To calculate the number of spines apposed to these dendrites (and therefore synapses), we

needed to account for the 3-dimensional nature of potential synapses between MC and GC by
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determining the total volume of MC-GC interaction around these dendrites. To do this, we

first converted the total dendritic length in the overlap to an equivalent volume of lateral den-

drite by assuming the lateral dendrites to be cylinders with diameter 1 μm. Then the volume is

simply the area of the cross-section multiplied by the total length in the overlap calculated in

21, pr2
dendrite � l. We then defined the volume of interaction as a cylindrical shell surrounding

the lateral dendrite with a thickness dshell equal to 1.02 μm, about the effective diameter of a

spine [109] (S4A Fig). To calculate this volume, we simply subtracted the lateral dendrite vol-

ume from the combined volume of the shell and lateral dendrite as follows:

V ¼ pððdshell þ rdendriteÞ
2
� r2

dendriteÞl ¼ qpl ð22Þ

Where q = 2.32 μm2 [72]. The density of GC spines in this volume was determined by the

height where the MC disk intersects the GC cone, under the simplifying assumption that this

density is roughly constant across the height of the volume of interest. Finally, we can multiply

this spine density by the previous volume V to find the average number of spines and thus syn-

apses present between MC and GC:

l ¼ rgðzintersectÞV ¼ rgðzintersectÞðqp
Z

Aoverlap

rmðrÞdAÞ ð23Þ

Since a given MC-GC pair generally has only one synapse [109], we used a Poisson distribu-

tion to calculate the probability that at least one synapse was formed, with the assumption that

if more than one synapse was formed, it would still be counted as a single synapse. Thus:

PðsynapseÞ ¼ PðNsynapses 6¼ 0Þ ¼ 1 � expð� l Þ ð24Þ

From this algorithm, we were able to generate a network of 3,550 MCs and 53,250 GCs for

simulation.

Neuronal and network dynamics. The internal dynamics of individual neurons were

modeled via the Izhikevich equations [63, 64]:

C
dv
dt
¼ kðv � vrÞðv � vtÞ � uþ I ;

du
dt
¼ aðbðv � vrÞ � uÞ ;

with spike reset:

If v � vc; then

( v c

u uþ d
;

where v is the voltage, u is a recovery current, vr is the resting potential, vt is the threshold

potential, vc is the cutoff voltage, and I is external current; a, b, c, d, and k are parameters to be

chosen.

For mitral cells, the parameters were selected to account for their class II behavior [110]

and to establish a realistic f − I curve [72]. Granule cells were assumed to be class I neurons; in

that case, in the Izhikevich model, b and k could be calculated as follows for b< 0 [64]:

b ¼
vr � vt þ 4Rr

4R2r
; k ¼

1

4R2r
;

where R is input resistance and ρ is the rheobase. The remaining parameters were chosen to

match a realistic f − I curve [73]. The mean parameter values are given in Table 3. Parameter

values were drawn from a normal distribution with standard deviation equal to 1/10 of the

given mean, except for b and k for granule cells, which were drawn from normal distributions
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with standard deviations equal to 2/3 of the mean and constrained such that 1) b< 0, 2) the

resulting rheobase was between 10 and 70 pA, and 3) the input resistance was between 0.25

and 1.5 GO.

The dendrodendritic synapses were modeled as NMDA and AMPA receptors on GCs and

GABA receptors on MCs. The synaptic current was modeled as the following for AMPA recep-

tors:

IAMPAðtÞ ¼ sðtÞgAMPAðVðtÞ � EÞ ;

where, for a particular receptor, g is the conductance, s is a gating variable representing the

fraction of open channels at the synapse, V(t) is the voltage of the recipient cell, and Ee = 0 mV

is the reversal potential.

For GABA receptors, the current was modeled as:

IGABAðtÞ ¼ sðtÞgGABAexp �
L
l

� �

ðVðtÞ � EiÞ ;

where Ei = −70 mV is the inhibitory reversal potential, L is the distance between the center of

the MC and the synapse location, and λ is a length constant. Since inhibitory signals from the

cell periphery degrade as they propagate to the soma [111], we modeled this degradation as a

simple exponential decay.

Additionally, for NMDA receptors [112]:

INMDAðtÞ ¼ sðtÞ
gðVðtÞ � EÞ

1þ
½Mg2þ�expð� 0:062VðtÞÞ

3:57

;

where the additional term describes the magnesium block, with [Mg2+] assumed to be 1 mM.

The time evolution of the gating variables for each receptor was modeled following [113]:

dsAMPA

dt
¼
� sAMPA

tAMPA
;

dsGABA

dt
¼
� sGABA

tGABA

dsNMDA

dt
¼
� sNMDA

tNMDAdecay

þ anðtÞð1 � sNMDAðtÞÞ ;
dn
dt
¼
� n

tNMDArise

Table 3. Mean values of the neuronal parameters in the anatomically detailed model.

Neuronal parameters (mean values)

Variable Mitral cell Granule cell

k (nS(mV)−1) 2.5 0.067

a (ms−1) 0.02 0.01

b (nS) 12 -0.133

c (mV) -70 -75

d (pA) 13 2

vr (mV) -58 -71

vt (mV) -49 -39

vc (mV) 30 25

C (pF) 191 48

https://doi.org/10.1371/journal.pcbi.1009479.t003
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When a MC spikes, the gating variables of NMDA and AMPA receptors at its synapses

(which provide NMDA and AMPA current to the connected GCs) are updated as follows:

sAMPA  sAMPA þWð1 � sAMPAÞ ; n nþWð1 � nÞ ;

where W = 0.5.

Additionally, the gating variables of all MCs indirectly connected to the spiking MC via

GCs have the gating variables of their GABA receptors at their synapses with those GCs

updated as follows to account for spike-independent GC spiking [114]:

sGABA  sGABA þ kWð1 � sGABAÞ ;

where 0< κ< 1.

When a GC spikes, the gating variables of GABA receptors at its synapses (providing

GABA current to all connected MC) are updated as follows:

sGABA  sGABA þWð1 � sGABAÞ

The values of the time constants τ and α were taken or derived from [85], while the synaptic

conductances and κ were tuned in a specialized network, whose dimensions were meant to

mimic (within computational constraints), the length and width of a brain slice, in order to

reproduce as faithfully as possible lateral inhibition results from [76]. The length constant λ
was calculated from the formula in [111] for a 1.26 μm diameter dendrite. The mean parame-

ter values are given in Table 4. Parameter values were drawn from a normal distribution with

standard deviation equal to 1/10 of the given mean. Simulations were performed via a forward

Euler method with a time step of 0.1 ms.

Firing rate distributions. Firing rate distributions were acquired by simulating a network

of 3,550 mitral cells and 53,250 granule cells for one sniff cycle (1

6
of a second assuming a 6 Hz

sniffing rate) for a set of 8 different odors each targeting 20 of 178 glomeruli, with the strength

of the odor being drawn from a uniform distribution between 300 and 500 pA. The resulting

firing rates were fit with a generalized Pareto distribution with parameters k = −0.281, σ =

3.331, and θ = −0.4 (S4(B) Fig). Excitatory feedback current was randomly added to a different

subset of the MCs for each odor (in each case, feedback targeted 1

5
of all MCs with current

drawn from between 0 and 300 pA), and the simulations were rerun. The resulting changes in

firing rates due to feedback were fit by a zero-elevated skew normal distribution (S4(C) Fig),

with the probability of being drawn from the distribution equal to 0.31 and the consequent

Table 4. Mean values of the synaptic parameters in the anatomically detailed model.

Synaptic parameters (mean values)

Variable Value

gAMPA (nS) 0.73

gNMDA (nS) 0.84

gGABA (nS) 0.13

κ 0.006

τAMPA (ms) 5.5

tNMDArise
(ms) 10

tNMDAdecay
(ms) 80

τGABA (ms) 18

λ (μm) 675

α (ms−1) 0.1

https://doi.org/10.1371/journal.pcbi.1009479.t004
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skew normal distribution having the parameters α = 4.232, ω = 2.687, and ξ = 0.7785 (S4(C)

Fig, inset). For excitatory feedback to GCs, a simulation was done for a set of 8 odors each tar-

geting 20 glomeruli, with a different feedback pattern for each odor (targeting 1

8
of all GCs with

current drawn from between 0 and 200 pA); the change in firing among the odor-receiving

cells was then determined. Note that the distribution was determined among MCs with spike

count greater than or equal 2, as the maximum number of spikes lost due to GC feedback was

found to be 2. The resulting changes in firing rate were fit with a lognormal distribution with

parameters μ = 0.7957, σ = 0.2548, which was then appropriately shifted and flipped to produce

values with the desired range and shape (S4(D) Fig).

Supporting information

S1 Fig. The trends in pattern convergence and divergence generalize to realistic normal

distributions of module responses to odor and feedback inputs. (A) Results obtained from

the statistical model with mean and variance of the normal distributions: μ1 = 1.15, s2
1
¼ 0:42

for odor inputs, and μ2 = 0.57, s2
2
¼ 0:28 for feedback inputs. The cortical threshold is set to θc

= 1.6 to give cortical activation of 10% [25]. Datapoint obtained by averaging the results for 10

randomly generated pairs of odor inputs with close similarity values. Different markers indi-

cate different feedback conditions. Filled red/blue circles: the two feedback scenarios of Fig 2,

corresponding to ρFB = 0.8 and ρFB = −0.8, respectively. Note that |ρFB 6¼ 1| due to variability in

the amplitude of the feedback strength ΔR. Empty red/blue circles: two intermediate condi-

tions, corresponding to 50% of modules receiving feedback, of which 75% are shared between

the two odors. Of the feedback-targeted modules, 75% receive inhibitory feedback for both

odors in the first case (red, ρFB = 0.6), and 75% / 12.5% receive inhibitory feedback for the

first/second odor in the second case (blue, ρFB = −0.6) (B–E) The parameters of the distribu-

tions are varied one by one with respect to (A). Results are robust against changes in (B, C) the

mean and variance, respectively, of the distributions of module responses to odor inputs, and

(D, E) the mean and variance, respectively, of the distributions of module responses to feed-

back inputs. As in (A), each datapoint is obtained by averaging the results for 10 randomly

generated pairs of odor inputs with close similarity values. Different markers indicate different

feedback conditions. Filled red/blue circles: the two feedback scenarios of Fig 2, corresponding

to ρFB = 0.8 and ρFB = −0.8 in (B–C), ρFB = 0.75 and ρFB = −0.75 in (D, left), ρFB = 0.94 and ρFB
= −0.94 in (D, right), ρFB = 0.92 and ρFB = −0.92 in (E, left), ρFB = 0.72 and ρFB = −0.72 in (E,

right). Empty red/blue circles: two intermediate conditions, corresponding to 50% of modules

receiving feedback, of which 75% are shared between the two odors. Of the feedback-targeted

modules, 75% receive inhibitory feedback for both odors in the first case (red, ρFB = 0.6 in (B–

C), ρFB = 0.56 in (D, left), ρFB = 0.71 in (D, right), ρFB = 0.69 in (E, left), ρFB = 0.54 in (E,

right)), and 75% / 12.5% receive inhibitory feedback for the first/second odor in the second

case (blue, ρFB = −0.6 in (B–C), ρFB = −0.56 in (D, left), ρFB = −0.71 in (D, right), ρFB = −0.69

in (E, left), ρFB = −0.54 in (E, right)).

(TIF)

S2 Fig. The mechanism for pattern convergence and divergence requires a network with

(at least) two layers linked by a high-threshold transfer function. The statistical effects

induced by feedback in a single-layer architecture or with low cortical threshold are qualita-

tively different from those arising in a two-layer model with a high-threshold transfer function.

(A) With only one layer, pattern convergence can be achieved only when the feedback similar-

ity is very high and decreases with increasing odor similarity (red). Moderately correlated and

anticorrelated feedback induce similar effects (empty red and blue circles). Same feedback con-

ditions as in (C): Filled red/blue circles for the two extreme feedback scenarios with ρFB = 0.8
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and ρFB = −0.8, respectively; empty red/blue circles for the two intermediate feedback condi-

tions, with ρFB = 0.6 and ρFB = −0.6, respectively. (B) Same conditions as in (C) except with

lower cortical threshold. The trend reversal is similar to that seen in the analytical framework

(Fig 5A). (C) S1A Fig demonstrating results from a normal two-layer, high-threshold architec-

ture for comparison.

(TIF)

S3 Fig. Pattern convergence that increases with initial odor similarity only occurs for suffi-

ciently high numbers of mitral and cortical cells. A robustly positive slope of the relationship

between initial similarity and change in similarity at high threshold is only achieved for a suffi-

cient number of MCs and bulb modules (i.e., cortical cells). For different numbers of M mitral

cells and K cortical cells, we simulated presentation of the same positive feedback for different

pairs of odors and then measured the slope of the relationship between initial similarity and

change in similarity at high threshold. Although positive slope was achieved for relatively low

numbers of MCs and cortical cells, this relationship did not achieve a consistently high r2 value

without approximate values of M > 8000 and K> 80000. For all simulations, fodor = 0.12,

pFB = 0.08 (fraction of feedback-targeted MCs), and q = 0.07.

(TIF)

S4 Fig. Details of the biophysical model and subsequent distributions in firing rates. (A)

Depiction of the relevant volumes for calculating MC-GC connectivity (B) Distribution of MC

firing rates due to odor input (C) Distribution of changes in MC firing rates due to excitatory

feedback. Inset shows the skew normal distribution that was sampled if the change was not

equal to 0 (see “Firing rate distributions”) (D) Distribution of changes in odor-receiving MC

firing rates due to excitatory feedback to GCs. Note that the lognormal distribution has been

shifted to match the range of the data. The parameters of the simulations for the distributions

in B–D are provided in the text of the Methods (“Neuronal and network dynamics; Firing rate

distributions”).

(TIF)

S5 Fig. Inhibitory feedback induces pattern divergence in the mechanistic model at high

threshold. For high cortical thresholds, pattern divergence occurred when excitatory feedback

was presented for one odor and inhibitory for the other (purple line), or when highly corre-

lated inhibitory feedback was presented for both odors (green line). In all cases, we simulated

10,000 MCs grouped into 500 glomeruli and 100,000 cortical cells, each sampling 7% of the

MCs, with odor targeting 12% of the glomeruli, positive feedback targeting 8% of the MCs,

and negative feedback targeting all MCs.

(TIF)

S6 Fig. Sufficiently similar feedback is required to produce a positive relationship between

initial odor similarity and change in similarity following excitatory feedback to MCs. Suffi-

ciently correlated positive feedback produces a proportional relationship between initial simi-

larity and change in similarity. We generated a range of feedback similarities for pairs of

excitatory feedback vectors. We found that the slope of the relationship between initial similar-

ity and change in similarity at high threshold varied linearly with the feedback similarity

(slope = 0.5469, r2 = 0.9322). Thus, for feedback vectors with significant similarity, the rela-

tionship between initial similarity of two odor representations and the change in similarity of

those representations following feedback is positive. For all simulations, M = 10000,

K = 100000, fodor = 0.12, pFB = 0.08, G = 500, and q = 0.07.

(TIF)
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S1 Text. Pattern convergence and divergence for normal distributions of module

responses: Numerical results.

(PDF)

S2 Text. The necessity of a nonlinear transfer function with high cortical threshold in sim-

ulations of the statistical model.

(PDF)
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