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Abstract

Dendrite microtubules are polarized with minus-end-out orientation in Drosophila neurons.

Nucleation sites concentrate at dendrite branch points, but how they localize is not known.

Using Drosophila, we found that canonical Wnt signaling proteins regulate localization of the

core nucleation protein γTubulin (γTub). Reduction of frizzleds (fz), arrow (low-density lipo-

protein receptor-related protein [LRP] 5/6), dishevelled (dsh), casein kinase Iγ, G proteins,

and Axin reduced γTub-green fluorescent protein (GFP) at branch points, and two functional

readouts of dendritic nucleation confirmed a role for Wnt signaling proteins. Both dsh and

Axin localized to branch points, with dsh upstream of Axin. Moreover, tethering Axin to mito-

chondria was sufficient to recruit ectopic γTub-GFP and increase microtubule dynamics in

dendrites. At dendrite branch points, Axin and dsh colocalized with early endosomal marker

Rab5, and new microtubule growth initiated at puncta marked with fz, dsh, Axin, and Rab5.

We propose that in dendrites, canonical Wnt signaling proteins are housed on early endo-

somes and recruit nucleation sites to branch points.

Introduction

Neurons extend long branched processes from a central cell body. This shape is incompatible

with a centrosomal microtubule organizing center (MTOC). Mature neurons are therefore

among the ranks of differentiated cells that have noncentrosomal microtubule arrays [1–4]. It

is particularly important to understand how neuronal microtubules are organized because the

distance from the primary site of synthesis in the cell body to functional sites in axons and den-

drites can be large and, therefore, place heavy demands on microtubule-based transport. In

humans, slight disruptions in microtubule regulators or motors can manifest as neurodegener-

ative disease [5, 6], underscoring neuronal reliance on perfectly orchestrated microtubule-

based transport.
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If neuronal microtubules are not anchored to the centrosome, how are they organized? In

all neurons so far examined, axonal microtubules have their dynamic plus ends oriented away

from the cell body (plus-end-out) [7]. In dendrites of vertebrate neurons, microtubules are

mixed polarity [8–10]. In invertebrate neurons (Drosophila and Caenorhabditis elegans), axons

have the same plus-end-out microtubule organization as vertebrates [11–14], but mature den-

drites have almost all minus-end-out microtubules [11, 12, 14]. In immature Drosophila den-

drites, microtubules are mixed polarity and only gradually resolve to the minus-end-out

mature arrangement [15]. Thus, although the final arrangement of microtubules in vertebrate

and invertebrate dendrites is somewhat different, they are the same during dendrite

development.

Although the arrangement of neuronal microtubules is clearly noncentrosomal, the source

of axonal and dendritic microtubules has been controversial. Two major models for generating

axonal and dendritic microtubules have been proposed. The first is that neuronal microtubules

are nucleated at the centrosome, or perhaps elsewhere in the cell body, and then released for

transport/sliding into axons and dendrites [16]. This model has substantial support, including

recent analyses with newer techniques. For example, live imaging of microtubules with plus-

tip (+TIP) tracking proteins and photoconvertible αTubulin has provided evidence for direc-

tional transport of microtubules into and out of developing axons in mammalian [17] and

Drosophila [18] neurons.

The second model is that nucleation sites are found outside the cell body and that microtu-

bules are generated locally in axons and dendrites. Evidence for this model came from the

observation that centrosomal γTubulin (γTub), the core microtubule nucleation protein,

decreases gradually over time and that centrosome ablation does not disrupt axon formation

[19]. Similarly, the centriole is not surrounded by γTub in Drosophila neurons in vivo, and it is

dispensable for neuronal microtubule organization [20]. One way to reconcile these two mod-

els is to assume that both are important and that, very early in neuronal development, microtu-

bule sliding can dominate, whereas later in development and in mature neurons, microtubules

are primarily locally nucleated.

In some cell types, the Golgi complex recruits nucleation sites [21, 22], and small Golgi out-

posts can be found in both mammalian and Drosophila dendrites [23, 24]. Thus, it was pro-

posed that the Golgi might act as a noncentrosomal MTOC in dendrites [25]. However,

subsequent analysis of γTub and Golgi outposts, including a strategy to deplete Golgi from

dendrites, called this proposal into question [26].

Within Drosophila dendrites, γTub is concentrated at branch points [26]. In a previous

study, we identified proteins that localize a different microtubule regulator, adenomatous pol-

yposis coli (Apc) 2, to branch points [27]. We reasoned that some or all of this machinery

might be used to position γTub to the same region. We therefore tested whether any of the

Apc2 localization proteins act upstream of γTub-green fluorescent protein (GFP) in dendrites.

Surprisingly, a subset of Wnt signaling proteins was required to localize γTub-GFP to dendrite

branch points, regulate dendritic microtubule polarity, and nucleate microtubules in dendrites

in response to axon injury. The required proteins include the seven transmembrane domain

frizzled (fz) proteins (Wnt receptors), arrow (arr, a Wnt coreceptor), heterotrimeric G pro-

teins, dishevelled (dsh), casein kinase I (CK1)γ, and Axin. Axin seems to be the key output pro-

tein of this pathway because it was sufficient to recruit γTub to ectopic sites in dendrites.

Within branch points, fz, Axin, and dsh were found on puncta that colocalized with Rab5. In

addition, new end-binding protein 1 (EB1) comets at polymerizing microtubule plus ends ini-

tiated from puncta marked with fz, arr, dsh, Axin, and Rab5. We propose that Wnt signaling

proteins localize to early endosomes at dendrite branch points and function there to control

local microtubule nucleation. Although it has previously been shown that Wnt signaling
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proteins can function from endosomes [28], identification of microtubule nucleation as an

output of endosomal Wnt proteins is quite unexpected.

Results

A subset of canonical Wnt signaling proteins is required for γTub

concentration at dendrite branch points

To understand how γTub is concentrated at dendrite branch points, we expressed γTub-GFP

in a model Drosophila cell, the dorsal dendritic arborization (dda) E neuron. γTub-GFP local-

izes similarly to endogenous γTub [26] and can rescue phenotypes in mutant animals [29].

The ddaE cell is found in the larval body wall, where it helps sense body position to facilitate

coordinated movement [30]. Microtubule organization in this cell type has been described in

previous studies [12, 26, 31, 32], and the stereotyped shape of its large dorsal dendrite makes it

easy to consistently assay protein localization. A soluble protein is about 1.2-fold brighter at

branch points than at non–branch points, whereas γTub-GFP is over 2-fold brighter in this

region [26], indicating that it is likely to be actively recruited. We therefore constructed a tester

line, upstream activating sequence (UAS)-dicer2, UAS-mCD8-red fluorescent protein (RFP);

221-Gal4, UAS-γTub-GFP (Fig 1A), in which we could perform RNA interference (RNAi) and

assay γTub-GFP in whole, living larvae. When this tester line was crossed to a control RNAi

line, GFP fluorescence was higher within branch points than between them (Figs 1A and S1).

To make sure that this represented active targeting rather than a larger volume of branch

points, we compared γTub-GFP signal to cytoplasmic GFP signal (S1 Fig). Although cyto-

plasmic GFP signal is slightly higher at branch points than non–branch points, γTub-GFP is

much higher (S1G Fig). The difference between cytoplasmic GFP at branch points versus

non–branch points represents the lowest expected value for γTub-GFP when active targeting

is removed and is indicated by a dotted line on graphs (Fig 1C and 1E). The γTub-GFP tester

line was validated as a screening tool by crossing it to lines with RNAi transgenes targeting

centrosomin (cnn) and Pericentrin-like protein (Plp), proteins previously implicated in den-

dritic microtubule nucleation [25, 32]. Compared with control, cnn and Plp RNAi resulted in

less γTub-GFP at branch points (Fig 1C). Note that these effects are cell autonomous, as

UAS-RNAi hairpins were expressed with 221-Gal4 in a small subset of neurons that includes

ddaE.

The branch point localization of γTub-GFP is reminiscent of another microtubule regula-

tor, Apc2 [31]. We previously identified proteins required for Apc2 localization to branch

points [27] and hypothesized that some of these may also target γTub-GFP. Reduction of mito-

chondria and actin regulators as well as Wnt signaling proteins disrupted Apc2-GFP localiza-

tion [27]. RNAi lines that targeted proteins in the Wnt signaling group but not the other

groups reduced γTub-GFP at dendrite branch points (Figs 1A–1C and S1B–S1E). Of Wnt sig-

naling proteins, those broadly involved in multiple signaling pathways, including fz, dsh,

CK1γ/gilgamesh (gish), and heterotrimeric G proteins [33–38], had phenotypes (Fig 1A and

1C). In addition, phenotypes occurred upon reduction of a subset of proteins specific to

canonical Wnt signaling, including the scaffolding protein Axin [37] and arr, the Drosophila
LRP5/6 ortholog [37, 39]. Knockdown of proteins specific to planar cell polarity (PCP) [38, 40]

did not reduce γTub-GFP at branch points (Fig 1C). Surprisingly, canonical Wnt signaling

proteins Apc and armadillo (arm) (β-catenin/arm) did not seem to play a role at branch points

(Fig 1C). Because it is difficult to make firm conclusions from negative RNAi data, we exam-

ined expression of arm in the ddaE neuron using a GFP-tagged arm minigene (arm promoter

driving full-length arm) that is fully functional and rescues a null arm mutant [41]. Arm-GFP

was readily visible at borders of epithelial cells but was not detectable in neurons (S2A Fig). In
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contrast, a GFP insertion in the gish gene yielded visible fluorescence in neuronal nuclei and

dendrites as well as epithelial cells (S2B Fig). Axin expression in ddaE neurons was confirmed

using a validated [42] antibody (S2C Fig), and concentration of endogenous γTub at dendrite

branch points was validated with a functional γTub-super-folder green fluorescent protein

(sfGFP), which is tagged at the endogenous locus [43] (S2D Fig). Thus, although we confirmed

expression of γTub, Axin, and gish in ddaE neurons, we could not detect expression or func-

tion of arm, the key transcriptional output of Wnt signaling, in these cells.

Although γTub plays a role in controlling microtubule nucleation and polarity in ddaE neu-

rons, even strong reduction of function does not affect overall shape of these cells [26], perhaps

because, under normal conditions, amplification of microtubule number through severing

[44] can compensate for reduced nucleation. In larger ddaC neurons, dendrite simplification

is seen when γTub is reduced [25]. The stronger effect on these large neurons likely represents

increased demands on the cytoskeleton in the larger arbor that are less able to be compensated

for by parallel pathways. We confirmed that, like γTub RNAi, RNAi hairpins targeting Wnt

signaling proteins fz, dsh, and Axin had no effect on dendrite branching in ddaE neurons (S3

Fig). Similarly, no global changes in microtubule stability assessed by staining of acetylated

tubulin were seen in fz, dsh, or Axin RNAi neurons (S4 Fig).

To confirm that a specific subset of canonical Wnt signaling proteins was required for

γTub-GFP localization in dendrites, we used additional genetic approaches. Animals heterozy-

gous for the hypomorphic fzF31 allele [45] had strongly reduced γTub-GFP at dendrite branch

points (Fig 1E); the dotted line indicates the baseline signal expected from cytosolic GFP. Simi-

lar results were obtained with a small deficiency that removes the entire fz2 gene and one

neighboring gene (reptin [rept]) [46] and in animals heterozygous for two different strong

loss-of-function Axin alleles, Axin18 [42] and Axins044320 [47]. Combining Axin RNAi with a

mutant allele (Axin A; Axins044320/+) also reduced γTub-GFP at branch points to baseline. To

confirm a role for Gαo, we overexpressed a dominant-negative guanosine diphosphate

(GDP)-bound mutant [48], and this reduced γTub-GFP (Fig 1E). A constitutively active G

protein alpha subunit s (Gαs)-guanosine triphosphate (GTP) [49] had no effect (Fig 1E).

Finally, we used two shaggy (sgg) (glycogen synthase kinase 3 beta [GSK3β]) transgenes that

contain mutations of a conserved regulatory phosphorylation site. The S9A version cannot be

Fig 1. A candidate screen to identify proteins that target γTub-GFP to dendrite BPs. (A) Example images of UAS-γTub-GFP localization in ddaE neurons expressing

UAS-Rtnl2 RNAi (control 1) (VDRC 33320) and UAS-fz B RNAi (VDRC 43075) hairpins. Membranes were marked with UAS-mCD8-RFP to see cell shape. Orange

arrows indicate BPs with high γTub-GFP signal, and blue arrows indicate BPs with low γTub-GFP signal. Insets in the top corner of each image show the top BP

highlighted with an arrow in each image (B) Diagram summarizing data in the figure is shown. See also S1 Fig for information about BP and nBP quantitation. (C)

Quantification of γTub-GFP at BPs is shown in larvae expressing different RNAi hairpins. Control 1 is Rtnl2 RNAi because Rtnl2 is thought to be a pseudogene. Control

2 is γTub37C RNAi. This isoform of γTub is maternally deposited and not expressed in somatic cells like neurons. Values were generated by subtracting mean nBP

fluorescence from BP fluorescence for each cell; normalized fluorescence values are shown. Normalization values were generated by making the control value equal to

100. The normalization constant was then used to normalize each sample from every other genotype. Additionally, each sample in the control is also normalized to this

value. A dashed line indicates where a soluble GFP control is used to show baseline BP localization due to the difference in size and shape from nBB regions. This dashed

line will continue throughout the rest of the figures that show γTub-GFP or Axin-GFP. Shaded colors over x-axis names indicate which functional groups the RNAi lines

belong to and are noted as pink for mitochondria (S1 Fig), yellow for Ankyrin2 and Neuroglian (S1 Fig), purple for branched-actin regulators (S1 Fig), blue for wnt

signaling, and green for centrosomal proteins. Color codes will follow throughout the rest of the figures. Gray bars are controls done on an Olympus FluoView1000; the

same control data sets are shown in S1 Fig for reference. The red bars indicate a control performed on a Zeiss LSM800; the same control data set is shown in S1 Fig. (D)

Example images of yw (control) and fzF31/fzP21 animals expressing UAS-γTub-GFP and UAS-mCD8-RFP with the promoter IGI-Gal4 to drive expression in class I da

neurons. Orange arrows indicate BPs with high γTub-GFP signal, and blue arrows indicate BPs with low γTub-GFP signal. Insets in the top corner of each image

indicate the top BP marked in each image. (E) Quantification of BP-nBP fluorescence as carried out before. Throughout the figures, data from the Olympus are on the

left, and data from the Zeiss are on the right. Refer to S1 Table for all genotypes and S1 Data for data used to generate graphs in (C) and (E). Sample sizes are shown

within the bars. Error bars indicate standard deviation. A linear regression was used to determine statistical significance. �p< 0.05, ��p< 0.01, ���p< 0.001. γTub,

γTubulin; Apc, adenomatous polyposis coli; arm, armadillo; arr, arrow; Axn, Axin; BP, branch point; CK1, casein kinase I; cnn, centrosomin; Cyto, cytoplasmic; da

neuron; dendritic arborization neuron; dda, dorsal dendritic arborization; Df, deficiency; dsh, dishevelled; fz, frizzled; Gα, G protein alpha subunit; GFP, green

fluorescent protein; gish, gilgamesh; nBP, non–branch point; Plp, Pericentrin-like protein; RFP, red fluorescent protein; RNAi, RNA interference; Rtnl2, reticulon 2; sgg,

shaggy; stan, starry night; UAS, upstream activating sequence; Vang, Van Gogh; VDRC, Vienna Drosophila Resource Center; yw, yellow, white.

https://doi.org/10.1371/journal.pbio.3000647.g001
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inhibited by phosphorylation and so is constitutively active, whereas the S9E version mimics

the inactive phosphorylated form [50, 51]. The active mutant, but not the inactive mutant,

reduced γTub-GFP localization to branch points (Fig 1E), suggesting an antagonistic role for

sgg in the pathway. To test γTub-GFP localization in fz homozygotes (fzF31/fzP21, fzP21 is a

strong loss-of-function allele [45, 52]), we used a different Gal4 driver that expresses in class I

neurons (IG1-Gal4) and generated control data in a matched background. As expected, γTub-

GFP was strongly reduced at branch points (Fig 1D and 1E). We conclude from this data that

fz, fz2, arr, dsh, CK1γ, Gαo, Gαs, and Axin, as well as cnn and Plp, positively regulate γTub

localization, whereas sgg may negatively regulate it (Fig 1B). We did not find any evidence that

arm or PCP-specific proteins participate in localizing γTub.

arr and fz act upstream of dsh, and dsh acts upstream of Axin, at dendrite

branch points

Consistent with a role in localizing γTub, a functional tagged Axin transgene [53]) concen-

trates at dendrite branch points (Fig 2A and [27]). We previously showed that fz, fz2, and Gαo

are necessary for Axin-GFP branch point localization [27]. After finding that other Wnt signal-

ing proteins act upstream of γTub localization, we wished to confirm that they also play a role

in Axin targeting. Indeed, the same Wnt signaling proteins required for γTub positioning

were required for Axin-GFP targeting. dsh, gish, and arr, but not Apc and Apc2, reduced Axin

at branch points (Fig 2A and 2B). Unlike γTub, cnn and Plp RNAi did not affect Axin localiza-

tion (Fig 2B). Similarly, cnn and Plp RNAi did not affect Apc2-GFP localization (S4 Fig), sug-

gesting that these centrosomal proteins are specifically required upstream of γTub.

Although a role for Axin in dendritic localization of γTub was unexpected, there is some

precedent for a relationship between Axin and γTub. In cultured mammalian cells and mouse

oocytes, Axin localizes to the centrosome and is required for γTub recruitment [54, 55]. We

therefore examined Axin localization in dividing Drosophila neuroblasts and found that Axin-

GFP was concentrated at centrosomes marked with EB1-RFP (Fig 2C and S1 Movie).

We next tested whether dsh, the other Wnt signaling scaffold involved in γTub-GFP localiza-

tion, had a similar distribution to Axin. Dsh-GFP under UAS control localized to puncta present

at over 90% of branch points (Fig 2D and 2E). Axin-GFP also clustered in puncta, although a

more diffuse background was also seen with this marker (Fig 2A). To rule out that the dsh locali-

zation pattern was due to overexpression, we examined dsh-Clover, a derivative of an enhanced

green fluorescent protein (EGFP)-tagged functional transgene expressed using its own regulatory

sequences [56] tagged with the brighter Clover [57] fluorescent protein (S6 Fig). dsh-Clover also

localized to puncta in neurons (S6B Fig). Because the UAS version was easier to image, we gener-

ated a tester line with this transgene. Although RNAi targeting Axin did not reduce dsh-GFP at

branch points, the reduction of the membrane proteins fz and arr did (Fig 2D and 2E). These

data suggest that dsh acts downstream of fz and arr but upstream of Axin at branch points.

To further confirm that dsh is upstream of Axin in dendrites, we used an RFP-tagged Axin

transgene that is largely diffuse on its own (Fig 2F). When expressed with dsh-GFP, Axin-RFP

was recruited to puncta at dendrite branch points and in the cell body that were labeled with

GFP (Fig 2G). These data indicate that, in dendrites, Wnt receptors fz and arr act upstream of

dsh, which in turn acts upstream of Axin.

Wnt signaling proteins are required for normal microtubule polarity in

dendrites

So far, we have used γTub-GFP as a proxy for nucleation sites. As a first functional test of a

role for Wnt signaling proteins in controlling dendritic nucleation, we took advantage of the
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Fig 2. arr and fz act upstream of dsh, which is sufficient to recruit Axin to BPs. (A) Example images of ddaE neurons expressing UAS-Axin-GFP, UAS-mCD8-RFP,

and either UAS-Rtnl2 RNAi (control 1) (VDRC 33320) or UAS-dsh RNAi (VDRC 101525) transgenes. Orange arrows indicate BPs with high Axin-GFP signal, and blue

arrows indicate BPs with low signal. Insets in the top corner of each image indicate the top BP indicated in each image (B) Quantification Axin-GFP BP-nBP normalized

fluorescence in ddaE neurons expressing different RNAi hairpins. (C) UAS-Axin-GFP and UAS-EB1-RFP were expressed using the pan neuronal driver elav Gal4. Live

first instar larvae were mounted for imaging, and movies of neuroblasts in the brain were acquired (see S1 Movie). Still images from movies are shown. Centrosomes

were identified as the site of EB1-GFP comet initiation and are identified with white arrows. (D) Example images of dsh-GFP and mCD8-RFP in neurons also

expressing UAS-Rtnl2 RNAi (control 1) (VDRC 33320) and UAS-arr RNAi (BDSC 31473) transgenes. Orange arrows indicate BPs with high signal, and blue arrows

indicate BPs with low signal; insets are as in other figures. (E) Quantification of dsh-GFP localization at BPs. BP occupancy was scored if there was a discrete dsh

punctum present at each BP along the main branch of the comb dendrite. The number of cells (one per animal) is shown on the bars. Error bars indicate standard

deviation. A linear regression was used to determine statistical significance. �p< 0.05, ��p< 0.01, ���p< 0.001. (F) Representative image of UAS-Axin-RFP. (G) Panel
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polarity phenotype generated by loss of γTub. A strong reduction of γTub23C (the somatic

γTub) generates mixed polarity in ddaE dendrites, shifting the percentage of plus-end-out

microtubules from about 10 to 25 [26]. We hypothesized that reduction of γTub at branch

points would phenocopy the γTub phenotype and disrupt dendrite microtubule polarity. We

used the direction of EB1-GFP comet movement [58] as a readout of microtubule polarity. As

expected, in control neurons, about 10% of microtubules were plus-end-out (Fig 3B and 3D).

In many genetic backgrounds in which γTub-GFP was reduced at branch points, polarity was

more mixed (Fig 3 and S2 Movie) and was comparable to that in γTubA14-9/γTubA15-2 mutant

animals [26]. In contrast with other assays, inactive sgg had a phenotype here, suggesting that

sgg may have a positive function in maintaining dendritic microtubule polarity not necessarily

related to nucleation (Fig 3C and 3E). Not all of the genetic backgrounds that reduced γTub-

GFP localization resulted in changes in dendrite microtubule polarity. For example, the fz het-

erozygous mutant animals had reduced γTub-GFP at dendrite branch points (Fig 1E) but had

normal microtubule polarity, as did cnn and plp RNAi (Fig 3D and 3E). One explanation con-

sistent with our previous results is that γTub function must be strongly reduced to affect

microtubule polarity [26, 29]. We therefore wished to use a more sensitive functional assay to

further test the requirement of candidate proteins in nucleation.

Wnt signaling proteins are required to increase microtubule dynamics in

response to axon injury

Axon severing results in increased microtubule dynamics (number of growing plus ends) in

parts of the neuron remaining connected to the cell body in Drosophila [59] and mammals

[60]. This increase in dynamics is dependent on microtubule nucleation [29]. Unlike polarity

in uninjured neurons, increased microtubule dynamics after axon injury is affected by loss of

one copy of γTub23C or by RNAi targeting γTub [29] and so is more sensitive to partial reduc-

tion of nucleation.

Before using this as a nucleation assay, we wished to confirm that the injury response relies

on classical microtubule nucleation through the γTub ring complex (γTuRC). The γTuRC

contains gamma tubulin ring protein (Grip) 91 and 84, which together make the γTub small

complex (γTuSC), as well as four additional subunits, Grip71, Grip75, Grip128, and Grip163,

which bring together γTuSCs to form the γTuRC. We used RNAi to reduce γTuRC proteins in

neurons and assayed microtubule dynamics in dendrites immediately after axon injury and 24

hours later. Right after injury, microtubule plus-end number was similar in all genetic back-

grounds (Fig 4A and 4B). At 24 hours after injury, when the number of growing plus ends in

control dendrites was more than 2-fold elevated compared with uninjured neurons (Fig 4A

and 4B), neurons expressing RNAi hairpins targeting some of the γTuRC components did not

increase microtubule dynamics to the same extent (Fig 4A and 4B). The Grip84 RNAi line did

not reduce dynamics in response to injury and may be ineffective. We conclude that the

injury-induced increase in microtubule dynamics in dendrites depends on γTuRC and is thus

a functional assay for classic microtubule nucleation.

To test whether reduction of γTub-GFP in dendrites predicts reduced ability to nucleate

microtubules in response to stress, we assayed microtubule dynamics in the ddaE comb den-

drite 8 hours after axon injury in different genetic backgrounds (Fig 4C and S3 Movie).

of images showing UAS-Axin-RFP expressed with UAS-dsh-GFP using 221 Gal4. Refer to S1 Table for all genotypes and S1 Data for data used to generate graphs in (B)

and (E). arr, arrow; Axn, Axin; BDSC, Bloomington Drosophila Stock Center; BP, branch point; dda, dorsal dendritic arborization; dsh, dishevelled; EB1, end-binding

protein 1; fz, frizzled; GFP, green fluorescent protein; gish, gilgamesh; nBP, non–branch point; RFP, red fluorescent protein; RNAi, RNA interference; Rtnl2, reticulon 2;

UAS, upstream activating sequence; VDRC, Vienna Drosophila Resource Center.

https://doi.org/10.1371/journal.pbio.3000647.g002
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Fig 3. Wnt signaling proteins are required for minus-end-out microtubule polarity in dendrites. (A) An overview of the ddaE neuron dendrite arbor is shown. The

main trunk of the ddaE neuron used for EB1-GFP movies is highlighted. (B) The 300-second movies of EB1-GFP were acquired in the ddaE dorsal dendrites, and

kymographs were generated in Fiji. Cells also expressed either UAS-Rtnl2 RNAi (control 1) (VDRC 33320) (left) or UAS-Axin RNAi (VDRC 7748) (right). (C) A

summary of data in earlier figures as well as some previous data [27] is shown. (D) Quantification of EB1-GFP comet direction in the main trunk of the ddaE dendrite in

animals expressing hairpin RNAi’s. The percentage of microtubules oriented plus-end-out is plotted as a summed value across all cells for each genotype. The numbers

on each bar are total EB1-GFP comets counted, and at least 15 cells were analyzed for each genotype, with one cell per animal. Data in panel D were collected by two

different individuals; the gray bar shows control data from one individual, and the red bar is from the other individual. Experimental genotypes analyzed by an

individual were compared with their own control data, and significance stars are color-coded to indicate the comparisons. (E) Quantification of microtubule polarity

from mutant and dominant-negative strains compared with control data without an RNAi transgene. A logistic regression was used to determine significance. �p< 0.05,
��p< 0.01, ���p< 0.001. Refer to S1 Table for all genotypes and S1 Data for data used to generate graphs in (D) and (E). Ank2, Ankyrin 2; Arp2, actin related protein 2;

Arpc4; actin related protein c4; arr, arrow; Axn, Axin; dda, dorsal dendritic arborization; EB1, end-binding protein 1; Gα, G protein alpha subunit; GDP, guanosine

diphosphate; GFP, green fluorescent protein; Miro, mitochondrial rho; MT, microtubule; Nrg, Neuroglian; Plp, Pericentrin-like protein; RNAi, RNA interference;

Rtnl2, reticulon 2; sgg, shaggy; UAS, upstream activating sequence; VDRC, Vienna Drosophila Resource Center.

https://doi.org/10.1371/journal.pbio.3000647.g003
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Consistent with γTub localization results (S1 Fig) and the microtubule polarity assay (Fig 3D),

disruption of branched actin (actin related protein c4 [Arpc4], Arp2 RNAi), mitochondria

(mitochondrial rho [Miro], ATP Synthase β [ATPsynβ] RNAi), or Neuroglian (Nrg)/Ankyrin

2 (Ank2) did not block the increase in microtubule dynamics after injury (Fig 4E). However,

reducing any of the proteins that were required for γTub localization to dendrite branch points

reduced microtubule dynamics in dendrites after axon injury (Fig 4D, 4E and 4F). Microtu-

bule polarity changes were also observed in response to injury (Fig 4D), as expected [59].

These changes are not dependent on microtubule nucleation [29] and so were not tracked in

this assay.

As predicted, injury-induced nucleation was more sensitive to reduction in proteins that

target γTub than the polarity assay. We conclude not only that fz/arr/dsh/Gα/Axin, cnn, and

Plp are required to position γTub at dendrite branch points but also that disruption of γTub

localization has functional consequences for microtubule nucleation in dendrites (Fig 4G).

Axin and dsh localize to Rab5 endosomes in dendrites

The involvement of membrane proteins in γTub localization suggested that either the plasma

membrane or an organelle might be used as a platform to organize nucleation sites. We exam-

ined Golgi and endosome markers in ddaE neurons and found that endosomes localized to

most branch points, whereas clear spots of Golgi were only seen occasionally in proximal

branch points (S7A Fig). RNAi transgenes targeting lava lamp (lva), a protein required for

Golgi transport into Drosophila dendrites [24], chromosome bows (chb), the Drosophila cyto-

plasmic linker associated protein (CLASP; CLASPs in mammalian cells help microtubules

grow from the Golgi [61]), and cytoplasmic linker protein-190 kDa (CLIP-190), which is a

binding partner of lva [62], did not alter γTub-GFP at branch points (S7B Fig). In contrast,

Rab5 RNAi, but not knockdown of other Rabs, reduced γTub-GFP localization (Fig 5A and

5B). Endocytosis is required for efficient Wnt secretion and involves the cargo chaperone

wntless [63]. However, wntless RNAi did not have a phenotype (Fig 5B), suggesting that the

Rab5 phenotype does not occur because of reduced ligand generated by the neuron.

To determine whether Wnt signaling proteins localize to dendritic endosomes, we coex-

pressed tagged fz, Axin, and dsh with Rab4, Rab5, and Rab11. Unlike tagged Axin and dsh, fz-

EGFP was observed throughout the plasma membrane as well as defined puncta at branch

Fig 4. Wnt signaling proteins are required for microtubule dynamics induced by axon injury. (A) UAS-EB1-GFP was expressed in ddaE

neurons with different RNAi hairpins. Axons were severed with a pulsed UV laser, and 400-second (1 frame per 2 seconds) movies were acquired

immediately after injury and 24 hours after injury in the dendrite. These values were normalized to 300 seconds so as to more accurately compare

them with data shown in (E) and (F). However, the quantification in (E) and (F) differs slightly than this set because of the set 10-μm length for

each video. In (E) and (F), there is a variable 20- to 30-μm distance. With a set short distance of 10 μm, the probability of more comets passing

through in the same given time is increased because of EB1 sustained run length. Individual frames from the movies are shown. (B) Quantification

of EB1-GFP comets per micrometer and 300 seconds for all knockdowns immediately following injury and 24 hours after injury are shown in

different RNAi backgrounds. The dashed line separates 0-hour from 24-hour measurements. The number of cells analyzed is noted on each bar. A

linear regression was used to determine statistical significance. �p< 0.05, ��p< 0.01, ���p< 0.001. (C) An overview of a ddaE neuron 8 hours after

axon injury is shown. The axon stump is indicated with a red arrow. (D) Fiji-generated kymographs depicting microtubule dynamics 8 hours

postaxotomy in UAS-Rtnl2 RNAi (control 1) (VDRC 33320) (left) and UAS-Axin RNAi (VDRC 7748) (right) are shown. (E) Quantification of

microtubule dynamics (comet number per micrometer and 300 seconds) in animals in different knockdown conditions is shown. A dashed line

indicates baseline, uninjured, control microtubule dynamics. This dashed line will continue throughout the figures that show microtubule

dynamics. Gray and red control data were generated by two different individuals, and experimental data were compared with the control by the

same individual as indicated by star color. (F) Quantification of microtubule dynamics in non-RNAi genetic backgrounds is shown. Error bars

indicate standard deviation. A linear regression was used to determine statistical significance. �p< 0.05, ��p< 0.01, ���p< 0.001. (G) A schematic

summarizing the data in panels E and F is shown. Refer to S1 Table for all genotypes and S1 Data for data used to generate graphs in (B), (E), and

(F). Ank2, Ankyrin 2; Arpc4, actin related protein c4; arr, arrow; ATPsynβ, ATP Synthase β; Axn, Axin; cnn, centrosomin; dda, dorsal dendritic

arborization; dsh, dishevelled; EB1, end-binding protein 1; fz, frizzled; GFP, green fluorescent protein; Miro, mitochondrial rho; MT, microtubule;

Nrg, Neuroglian; Plp, Pericentrin-like protein; RNAi, RNA interference; Rtnl2, reticulon 2; sgg, shaggy; UAS, upstream activating sequence;

VDRC, Vienna Drosophila Resource Center.

https://doi.org/10.1371/journal.pbio.3000647.g004
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points (Fig 5C). Fz, dsh, and Axin puncta colocalized with Rab5 but not Rab4 or 11 (Figs 5C–

5H and S7D). In the cell body, expression levels of most markers were very high, but Axin

formed large puncta that overlapped with a subset of Rab5-labeled structures (S8A Fig).

To make sure that colocalization was not due to overexpression of tagged transgenes, we

used mCherry-Rab5 [64] and dsh-Clover, which were controlled by their own regulatory

sequences (S6 Fig). A subset of mCherry-Rab5 puncta aligned with dsh-GFP expressed in neu-

rons (S6A Fig). In neurons, dsh-Clover puncta aligned with mCherry-Rab5 puncta (S6B Fig).

A functional role for Rab5 in control of nucleation was supported by failure to up-regulate

microtubule dynamics after axon injury in Rab5 RNAi neurons (Fig 5I).

To try to understand why the Golgi complex rather than endosomes was previously impli-

cated in dendritic nucleation [25, 32], we examined tagged versions of mannosidase II

(ManII), the major Golgi marker used in the previous studies. Different tagged ManII trans-

genes were present in zero to one large puncta in dendrites (S7A Fig), as well as many smaller

spots that could be seen with higher laser power (S7E Fig). Some of these smaller spots coloca-

lized with Rab5-GFP (S7E Fig), suggesting leakage of markers between organelles. To make

sure that it was not the endosomal marker leaking into Golgi, we used a fly line that has the

start codon of the Rab5 gene replaced with the enhanced yellow fluorescent protein (EYFP)

coding sequence [65]. ManII-RFP was seen in puncta labeled with endogenous EYFP-Rab5

(S7E Fig), indicating that ManII, not Rab5, is mislocalized in these cells. Therefore, it is possi-

ble that the structures assumed to be Golgi outposts in other studies were actually early endo-

somes into which overexpressed ManII had leaked. In summary, the data suggest that Wnt

signaling proteins can be found on a subset of early endosomes in dendrites.

New growing plus ends can initiate at early endosomes in dendrites

The finding that dsh and Axin localized to endosomes in dendrites implicated these as poten-

tial sites of nucleation. We used formation of new comets by EB1-GFP as a readout of nucle-

ation. Whereas new comets can be a result of catastrophe rescue, within branch points, comet

formation has been linked to nucleation [26]. In movies of tagged protein pairs, we captured

EB1 comets initiating from puncta labeled with Rab5 as well as each of the Wnt signaling

markers that colocalized with Rab5 (Figs 6 and S9 and S4–S12 Movies). In addition to UAS-

driven transgenes, Rab5 and dsh under endogenous control were seen as sites of comet initia-

tion (Fig 6B and 6F and S5 and S9 Movies). EYFP-Rab5 has the fluorescent protein coding

Fig 5. Wnt signaling proteins localize to Rab5 endosomes. (A) Example images of UAS-γTub-GFP localization in ddaE neurons

expressing UAS-Rtnl2 RNAi (control 1) (VDRC 33320) and UAS-Rab5 RNAi (VDRC 34096) hairpins. Membranes were marked with

UAS-mCD8-RFP to see cell shape. Orange arrows indicate BPs with high γTub-GFP signal, and blue arrows indicate BPs with low γTub-

GFP signal. Insets in the top corner of each image show the top BPs highlighted with an arrow in each image. (B) Quantification of γTub-

GFP at BPs is shown in larvae expressing different RNAi hairpins targeting endosomal proteins or a wnt secretion protein wntless. Values

were generated by subtracting mean nBP fluorescence from BP fluorescence for each cell; normalized fluorescence values are shown.

Sample sizes are shown within the bars. Error bars indicate standard deviation. A linear regression was used to determine statistical

significance. �p< 0.05, ��p< 0.01, ���p< 0.001. (C–E) Example colocalization image of UAS-Rab5-RFP coexpressed with UAS-fz-eGFP,

UAS-dsh-GFP, or UAS-Axin-GFP. The orange arrows point to puncta of colocalization between the two markers in each case. For all

colocalization experiments, sequential scanning was used to ensure no bleed through between the markers. (F and G) Plot of PCC between

UAS-Rab4-RFP or UAS-Rab5-RFP with either UAS-dsh-GFP or UAS-Axin-GFP. The y-axis indicates the R score, with 1 being positive

correlation, 0 meaning no correlation, and −1 meaning negative correlation. (H) Examples images of UAS-Rab4-RFP coexpressed with

UAS-dsh-GFP. (I) Quantification of microtubule dynamics (comet number per micrometer and 300 seconds) following laser axotomy in

control animals or animals expressing UAS-Rab5 RNAi (VDRC 34096). Error bars indicate standard deviation. A linear regression was

used to determine statistical significance. �p< 0.05, ��p< 0.01, ���p< 0.001. Refer to S1 Table for all genotypes and S1 Data for data used

to generate graphs in (B), (F), (G), and (I). γTub, γTubulin; BP, branch point; dda, dorsal dendritic arborization; dsh, dishevelled; EB1,

end-binding protein 1; eGFP, enhanced green fluorescent protein; fz, frizzled; GFP, green fluorescent protein; nBP, non–branch point;

PCC, Pearson’s correlation coefficient; RFP, red fluorescent protein; RNAi, RNA interference; Rtnl2, reticulon 2; UAS, upstream

activating sequence; VDRC, Vienna Drosophila Resource Center.

https://doi.org/10.1371/journal.pbio.3000647.g005
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sequence inserted at the start codon of the genomic Rab5 [65]. In some of the movies, EB1 was

in the same channel as the other marker, but it was easy to distinguish endosomes and micro-

tubule plus ends based on their behavior. In some examples, including that in Fig 6A and S4

Movie, the endosome was pulled along by the newly growing microtubule, providing strong

support for the association of the microtubule with the endosome. These events are consistent

with recruitment of nucleation machinery to Rab5 endosomes by Wnt signaling proteins.

To further test whether a specific type of signaling endosome is involved in dendritic micro-

tubule nucleation, we coexpressed EB1-GFP, dsh-GFP, and Rab5-RFP. We counted dsh and

Rab5 puncta in branch points of 25 cells and found that all dsh puncta overlapped with Rab5

puncta but that some Rab5 puncta did not contain dsh signal. When we quantitated the over-

lap, we found that 60% of Rab5 puncta colocalized with dsh (Fig 7A and 7B). Thus, dsh is

found at a subset of endosomal structures marked with Rab5. Based on the involvement of dsh

in γTub localization, we hypothesized that only Rab5 structures with dsh should be sites of

comet initiation. Indeed, when we examined 5-minute movies of dendrite arbors from 25

cells, we identified 15 comets that initiated at Rab5-labeled puncta, and all of these also con-

tained dsh signal (Fig 7 and S13 and S14 Movies). We conclude that new microtubules can ini-

tiate at a subset of endosomes that contain Wnt signaling proteins.

Axin is sufficient to localize γTub to ectopic cellular sites

Although we observed localization of fz, dsh, and Axin to endosomes, we were not normally

able to observe distinct puncta of γTub, even with endogenously tagged γTub (S2D Fig) and

antibody staining of γTub [26]. One exception to diffuse γTub was when we overexpressed a

red version with tagged Axin. By itself, γTub-RFP was diffuse in the cell body (Fig 8A), but

when paired with Axin-GFP, it was recruited to very defined puncta in the cell body (Fig 8A)

and also in dendrites (S8B Fig). We therefore hypothesized that Axin might be sufficient to

recruit γTub to specific intracellular locations, but at branch points, this was normally too

transient to detect above diffuse background. To test whether Axin was sufficient to localize

γTub, we used a short sequence from the actin assembly promoting protein A (ActA) protein

of Listeria monocytogenes that targets the outer mitochondrial membrane in mammalian [66]

and Drosophila [67] cells to generate an Axin fusion protein that we predicted would be tar-

geted to mitochondria (Fig 8B). When expressed in ddaE neurons with mitochondrial (mito)-

GFP, Axin-RFP-ActA colocalized with mitochondria; this pattern was particularly noticeable

in the linear tips of the dorsal comb dendrite (Fig 8D and 8F). In contrast, Axin-GFP was pres-

ent at very low levels in this region and did not align with mitochondria (Fig 8C and 8E).

Because we were able to target Axin to mitochondria, we asked whether γTub-GFP would be

concentrated around mitochondria. In the absence of mitochondrial Axin, γTub-GFP fluores-

cence was not strongly correlated with mitochondria (Fig 8G, 8I and 8K). However, when

mitochondria were coated with Axin-RFP-ActA, γTub-GFP fluorescence much more closely

followed the pattern of RFP fluorescence such that all γTub-GFP peaks in the regions analyzed

were associated with RFP peaks (Fig 8H, 8J and 8L). To more quantitatively assess colocaliza-

tion across multiple cells, we generated Pearson’s correlation coefficients from the comb den-

drite for each set of markers (Fig 8M). This analysis was consistent with line tracings. From

this data, we conclude that Axin is sufficient to recruit γTub to specific sites in Drosophila
neurons.

In addition to Wnt signaling proteins, cnn is required to position γTub at branch points

(Fig 1C) and seems to act in parallel to or downstream of Axin (Fig 2B). If it acts with γTub

downstream of Axin, we hypothesized that Axin-RFP-ActA might also recruit cnn-GFP to
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mitochondria. Indeed, when we paired these two markers, we found that cnn-GFP could be

relocalized to mitochondria in the same way that γTub was (S10 Fig).

Because cnn can activate microtubule nucleation [68, 69], we hypothesized that ectopic

γTub and cnn on mitochondria might convert mitochondria into nucleation sites. We

Fig 6. Microtubules can initiate growth from endosomes in dendrites. (A–G) Example five-frame stills of microtubule comet formation off

either Rab5 endosomes or wnt proteins. UAS-Rab5-GFP or UAS-Rab5-RFP are shown coexpressed with UAS-EB1-GFP. In addition,

UAS-EB1-TagRFPT is shown expressed with endogenous EYFP-Rab5. UAS-fz-eGFP is shown coexpressed with UAS-EB1-TagRFPT. Finally,

UAS-arr-RFP, endogenous dsh-Clover, and UAS-Axin-RFP are shown with UAS-EB1-GFP. In all examples, the first frame includes a blue

arrow to show the endosome or wnt proteins off of which the microtubule comet will initiate. Subsequent frames track movement of the

microtubule with a white arrow. The time stamp at the top-right corner correlates to the time point in the corresponding S4–S7, S10 and S11

Movies. arr, arrow; dsh, dishevelled; EB1, end-binding protein 1; eGFP, enhanced green fluorescent protein; EYFP, enhanced yellow

fluorescent protein; fz, frizzled; GFP, green fluorescent protein; RFP, red fluorescent protein; UAS, upstream activating sequence.

https://doi.org/10.1371/journal.pbio.3000647.g006

Fig 7. Microtubules initiate from dsh-decorated early endosomes. (A and C) Frames from two representative videos of a class I neuron expressing UAS-EB1-GFP,

UAS-dsh-GFP, and UAS-Rab5-RFP. Top panels are the merged image, and bottom is the UAS-Rab5-RFP. A blue arrow is used to show the endosome from which an

EB1 comet will initiate in subsequent frames, indicated with white arrows to track movement. The time stamp at the top-right corner correlates to the time point in the

corresponding S13 and S14 Movies. (B) Quantification of the percentage of Rab5 endosomes that are labeled with UAS-dsh-GFP. Sample size is shown in the bar and

indicates total number of Rab5-RFP puncta that were counted in branch points during 25 300-second videos. (D) Quantification of EB1 comet events that initiate from

dsh-positive or dsh-negative Rab5 endosomes during the same 300-second videos. Sample size, which represents total comet number, is shown in the bar. Refer to S1

Table for all genotypes and S1 Data for data used to generate graphs in (B) and (D). dsh, dishevelled; EB1, end-binding protein 1; GFP, green fluorescent protein; RFP,

red fluorescent protein; UAS, upstream activating sequence.

https://doi.org/10.1371/journal.pbio.3000647.g007
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therefore combined Axin-RFP-ActA with EB1-GFP to determine whether comets would initi-

ate at mitochondria. In control neurons, more comet initiation, or spawning events, occurred

at branch points compared with between branch points (S11A and S11B Fig). When one copy

of an Axin null allele was introduced into the background, spawning at branch points was

reduced (S11A and S11B Fig). Neurons expressing mito-RFP had a similar pattern of spawning

to neurons expressing only EB1-GFP (S11C and S11D Fig), whereas ectopic mitochondrial

Axin increased spawning at branch points and between them (S11C and S11D Fig). The

increase in comet initiation both at branch points and between them is consistent with locali-

zation of mitochondria to 80% of branch points [27] as well as to intervening regions (Fig 8G).

On rare occasions, we saw multiple spawning events initiating from the region within a den-

drite in which Axin-RFP-ActA was concentrated (S15 Movie). Axin-GFP expression without

mislocalization to mitochondria did not alter microtubule dynamics in dendrites (S11E–S11G

Fig). We conclude that Axin is necessary for normal dendritic microtubule dynamics and suf-

ficient to increase microtubule dynamics when ectopically expressed.

Discussion

It was particularly intriguing to find integral membrane signaling proteins required for non-

centrosomal microtubule nucleation. Although Wnt signaling has been linked to microtubule

plus-end regulation in axon growth cones [70] and regulation of microtubule stability and

spindle orientation [71], the only connection to the minus end is localization of some cyto-

plasmic Wnt signaling proteins like Axin to the centrosome in dividing cells [54, 72]. Here, we

demonstrate that a Wnt signaling pathway acts upstream of microtubule nucleation in a post-

mitotic cell. Not only were many canonical Wnt signaling proteins required for γTub-GFP to

accumulate at branch points, but Axin and dsh themselves concentrated at branch points. In

addition, the scaffolding protein Axin was able to recruit γTub-GFP and the nucleation activa-

tor cnn to mitochondria when tethered to them. Moreover, reduction of Wnt signaling pro-

teins phenocopied loss of γTub in two functional nucleation assays, indicating that most or all

dendritic nucleation occurs downstream of this pathway. Although this pathway seems to be

the major regulator of dendritic nucleation, neurons are quite resilient to its loss under base-

line conditions, and the simple ddaE neurons have normal arbor shape. This is likely because

parallel pathways can be used to generate new minus ends. For example, microtubule severing

can be used to generate new plus and minus ends and amplify microtubule number [44, 73].

In many cell types, minus ends generated when a microtubule is severed are recognized by

minus-end binding proteins in the calmodulin-regulated spectrin-associated protein (CAM-

SAP)/Patronin family [74, 75]. In C. elegans, γTub-mediated microtubule nucleation has been

Fig 8. Axin is sufficient to localize γTub to ectopic cellular sites. (A) Images show the localization of UAS-γTub-

RFP in the cell body of a ddaE neuron when expressed alone (left) or when coexpressed with UAS-Axin-GFP (right)

using the 221-Gal4 driver. (B) A diagram of the chimeric protein used to tag Axin with RFP (tdimer2[12]) and target it

to mitochondria is shown. (C and D) Example images of enlarged regions within the secondary ddaE dendrites in cells

expressing a mitochondrial marker and either UAS-Axin-GFP or UAS-Axin-RFP-ActA. (E and F) Fluorescence

intensity measurements from line traces of the dendrite regions shown in (B) and (C). (G and H) UAS-γTub-GFP was

coexpressed with either UAS-mito-RFP or UAS-Axin-RFP-ActA using 221Gal4. Overview images of the entire ddaE

dendrite arbor are shown. (I and J) Enlarged images of the regions within the secondary ddaE dendrites, indicated by

the dashed lines in (G) and (H). (K and L) Normalized fluorescence measurements from line tracings of the regions in

(G) and (H). (M) A plot of the PCC for the four conditions (see the key to the right of the graph). The y-axis indicates

the R score, with 1 being a positive correlation, 0 meaning no correlation, and −1 indicating a negative correlation.

Refer to S1 Table for all genotypes and S1 Data for data used to generate graphs in (E), (F), (K), (L), and (M). γTub,

γTubulin; ActA, actin assembly promoting protein A; dda, dorsal dendritic arborization; GFP, green fluorescent

protein; Mito, mitochondrial; PCC, Pearson’s correlation coefficient; RFP, red fluorescent protein; UAS, upstream

activating sequence.

https://doi.org/10.1371/journal.pbio.3000647.g008
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shown to act in parallel and quite redundantly with Patronin to regulate microtubule organiza-

tion [76]. We have recently shown that Patronin-mediated minus-end growth is an important

regulator of dendritic microtubules in Drosophila [77], so it is possible that microtubule sever-

ing in conjunction with Patronin recruitment to minus ends can compensate for nucleation

under most normal circumstances. Consistent with this hypothesis, phenotypes from reduc-

tion of nucleation or Patronin become more evident after severe stress, including axon [29] or

dendrite [77, 98] injury.

Although we consistently found that partial loss of function (RNAi or heterozygous

mutants) for fz, fz2, arr, dsh, Gao, Gas, and Axin reduced γTub localization and/or function,

we could not find any evidence that β-catenin/arm, the key transcription factor that is the out-

put of canonical Wnt signaling, was involved. In addition, an arm protein trap showed clear

expression in epidermal cells but was not seen in dendritic arborization neurons (da neurons).

Because Axin itself was sufficient to recruit γTub, there was no strong rationale for a transcrip-

tional regulator to mediate signaling between fz/arr and microtubule nucleation. We propose

that canonical Wnt signaling proteins are co-opted in dendrites to directly recruit nucleation

complexes to endosomes. Because this is a variant of canonical Wnt signaling that unexpect-

edly seems not to involve β-catenin, we term this pathway apocryphal Wnt signaling in refer-

ence to the Apocrypha, ancient writings found in only some versions of the Bible.

The involvement of arr as well as dsh and Axin suggests that a signalosome might be

involved in dendritic Wnt signaling. Signalosomes form when wnt ligands bind to fz and

LRP5/6 at the plasma membrane, triggering recruitment and multimerization of dsh and Axin

[78]. The normal output of signalosome formation is release of β-catenin from the destruction

complex and its subsequent stabilization and transit to the nucleus to activate transcription

[78]. Signalosomes assemble at the plasma membrane [79, 80]. Endocytosis generally seems to

promote Wnt signaling [63], although in many contexts the signalosome itself is disassembled

upon endocytosis [63, 80]. It is not clear whether signalosomes persist after endocytosis,

though in some Drosophila cells, dsh and arr are localized to endosomes [28]. In dendrites,

puncta of fz, dsh, and Axin colocalized with Rab5 (Fig 5), suggesting that a stable signaling

complex is present on endosomes in mature neurons. The initiation of comets from these

puncta indicates that endosomes are likely the key site where Wnt signaling proteins promote

nucleation. Colocalization of tagged Golgi proteins with Rab5 suggests that the previous asso-

ciation between Golgi markers and nucleation could have been due to leakage into endosomes.

In addition, the identification of plasma membrane proteins acting upstream of γTub in den-

drites suggests a more general role for the Golgi in the cell body by controlling secretion of arr

and fz.

Wnt signaling receptors have been classically studied at the plasma membrane, where they

bind extracellular ligands that can be autocrine or paracrine in nature. A requirement for arr

and fz upstream of γTub in dendrites suggests that a Wnt ligand is likely involved. Failure of

neuronal wntless knockdown to reduce γTub-GFP at branch points (Fig 5B) favors the

hypothesis that the ligand may be secreted from a neighboring cell. In the embryo, wingless

(wg)/Wnt-1 is made in a patch of epithelial cells adjacent to developing dendritic arborization

neurons and helps pattern dendrite orientation in ddaE [81]. It would be very interesting if

surrounding cells influenced the microtubule cytoskeleton in mature neurons through fz

and arr at the plasma membrane. This signaling pathway is particularly intriguing in the

context of regeneration or during neurodegenerative disease. During axon regeneration,

the initial injury response involves a nucleation-dependent increase in microtubule dynam-

ics, which serves a neuroprotective role [29]. Modulating Wnt signaling could therefore

influence neuroprotection in dendrites. In addition, we have found that this pathway is

required during dendrite regeneration to position nucleation sites in regrowing dendrites
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[98]. Interestingly, G protein coupled receptors (GPCRs) represent 33% of all Food and

Drug Administration–approved drug targets, and as part of this family, fz presents a possi-

ble target [82].

Local microtubule nucleation also occurs in axons [26, 83–85]. As Rab5 endosomes are

present throughout axons, it will be interesting to determine whether Wnt signaling proteins

can be recruited to axonal early endosomes and whether they recruit nucleation proteins in

this part of the cell. It is also possible that a link between Wnt signaling, endosomes, and nucle-

ation could exist more broadly in other cell types. Indeed, the localization of Axin to centro-

somes [54, 55] suggests that even in mitotic cells, parts of this relationship are conserved.

Intriguingly, endosomal membranes are concentrated around the centrosome [86], and Rab5

reduction disrupts mitosis [86–88], so it is possible that Wnt signaling proteins, endosomes,

and nucleation function together at centrosomes.

Methods

Drosophila genetics and lines

Many stocks used in this study were from the Vienna Drosophila Resource Center or Bloom-

ington Drosophila Stock Center (NIH P40OD018537). Refer to S1 Table for information on

specific strains used as well as how they are referred to in figures. RNAi experiments were per-

formed by crossing Drosophila strains with UAS-controlled hairpins to tester lines that

included 221-Gal4 to drive expression in class I dendritic arborization neurons, fluorescently

tagged markers, and UAS-Dcr2 to increase RNAi knockdown efficiency [89]. Of the two dor-

sal class I neurons, the ddaE cell was chosen for analysis because the shape of its dorsal comb-

like dendrite makes it particularly sensitive to perturbation of microtubule polarity [31]. In

whole-brain imaging experiments, expression was driven panneuronally with elav-Gal4. The

mutant fz stock fzF31 was graciously sent by Dr. Paul Adler at the University of Virginia, and

fzP21 was kindly sent by Dr. Yashi Ahmed at Dartmouth University. Constitutively active Gαs

and inactive Gαo fly lines were given to us by Dr. Andrew Tomlinson at Columbia University

Medical Center. Tester lines for screens include (UAS-Dcr2, mCD8-RFP; 221-Gal4,

Apc2-GFP), (UAS-Dcr2, UAS-mCD8-RFP; 221-Gal4, UAS-Axin-GFP), (UAS-Dcr2, UAS-

mCD8-RFP; 221-Gal4, UAS-dsh-GFP) (UAS-Dcr2, UAS-mCD8-RFP; 221-Gal4, UAS-γTub-

GFP), (UAS-Dcr2, UAS-mCD8-RFP; 221-Gal4, UAS-Rab5-GFP) (UAS-Dcr2; 221-Gal4,

UAS-EB1-GFP). Additional fly lines used were (221-Gal4, UAS-Mito-GFP), (221-Gal4, UAS-

γTub-GFP), (221-Gal4, UAS-fz-EGFP), (221-Gal4, UAS-Axin-GFP) (IG1-Gal4, UAS-

mCD8-RFP/cyo; FzR52/TM6), (UAS-gTub-GFP/cyo; FzP21/TM6), (UAS-Mito-RFP),

(UAS-Axin-RFP-ActA), (UAS-dsh-GFP), (dsh-Clover) (mcherry-Rab5), (UAS-RAb4-mRFP),

(Rab11-cherry), (UAS-ManII-EBFP), (UAS-ManII-EGFP), (UAS-GalT-YFP), (UAS--

Rab5-GFP), (UAS-Rab5-YFP), and (elav-Gal4, EB1-RFP). Control genotypes were matched

for UAS-driven transgene number with experimental genotypes. For all RNAi and overexpres-

sion experiments, the tester lines were crossed either to Rtnl2 (control 1) or γTub37C (control

2) RNAi lines (see S1 Table for stock numbers used). These two targets were chosen for con-

trols because neither is expected to be expressed in neurons. Rtnl2 is thought to be a pseudo-

gene, and γTub37C is the maternal γTub, as opposed to γTub23C, the somatic γTub referred

to throughout the manuscript as γTub. For mutant experiments, tester lines we crossed to yw
flies (control) did not contain any UAS-driven transgenes.

Confocal in vivo microscopy

After mating virgin female flies from tester lines with RNAi male flies, embryos were collected

on 35-mm caps filled with Drosophila cornmeal media every 24 hours. Caps with embryos/

PLOS BIOLOGY Wnt endosomes control dendritic microtubule nucleation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000647 March 12, 2020 20 / 37

https://doi.org/10.1371/journal.pbio.3000647


larvae were incubated for 3 days at 25 oC, and live Drosophila third instar larvae were collected

for mounting from these caps. After rinsing with water, individual larvae were mounted on a

microscope slide with a circular piece of dried agar in the middle. Larvae were placed on the

dried agar and whole mounted ventral side down by applying sublethal pressure with a cover-

slip (22 × 40 mm), which was then secured with tape. To locate larvae under the microscope,

10× objectives were used. To find ddaE neurons in segments a2-a4, 60× oil (NA 1.42) (Olym-

pus) and 63× oil (NA 1.4) (Zeiss) objectives were used. For UAS-Apc2-GFP localization, larvae

were imaged on an Olympus FluoView1000. For the rest of the fluorescent markers, including

UAS-Mito-GFP, UAS-Mito-RFP, UAS-Axin-GFP, and UAS-γTub-GFP, larvae were imaged

on an Olympus FluoView1000 or a Zeiss LSM800, as indicated in the figures. Markers includ-

ing UAS-Rab4-mRFP, Rab11-cherry, mcherry-Rab5, UAS-ManII-EGFP, UAS-ManII-EBFP,

UAS-GalT-YFP, and UAS-iBlueberry were imaged exclusively on the Zeiss LSM800. The

UAS-dsh-GFP, UAS-Rab5-GFP, and experiments showing EB1 comets originating off Rab5

endosomes or wnt signaling protein puncta were imaged on the Zeiss LSM800. These markers

include UAS-Rab5-YFP, UAS-Rab5-tdTomato, EYFP-Rab5, UAS-fz-EGFP, and dsh-Clover.

The LSM800 is built on an AxioImager.Z2 and is operated with Zeiss Zen Blue software.

Larval brain imaging

Transgenic elav-Gal4, EB1-RFP flies were crossed with flies expressing either UAS-Apc2-GFP

or UAS-Axin-GFP. Embryos were grown at 25 oC for 1 day, and first instar larvae were

mounted using the same protocol as third instar. The brain was located using the 10× objective

of an Olympus FluoView1000 microscope. One of the lobes was then examined using a 60× oil

(NA 1.42) objective. Actively dividing neuroblasts were identified by the star-like pattern of

EB1-RFP around spindle poles and their relatively large size compared with surrounding cells.

Movies were acquired by collecting images every second for up to 350 seconds.

Plasmid and Drosophila line construction

To generate Axin targeted to mitochondria, the region that encodes the short C-terminal ActA

mitochondrial targeting sequence [66] was synthesized by Genscript and cloned via Clone EZ

Technology downstream of tDimer-Red12 (RFP) [90] in pUAST to create a carboxyl-terminal

fusion. The synthesized sequence was as follows:

agatctagattaattcttgcaatgttagctattggcgtgttctctttaggggcgtttatcaaaattattcaattaagaaaaaataattaa.

The resulting vector, pUAST-RFP-ActA, was then linearized with SpeI and KpnI and gel

isolated.

Herculase from Agilent (catalog #600675) and the following primers were used to PCR

amplify the long isoform of Axin from Drosophila cDNA FI19317 (stock #1647293) obtained

from the Drosophila Genomics Resource Center (https://dgrc.bio.indiana.edu/product/View?

product=1647293):

Axin50 primer: ctcgagggcgcgccaactagtATGAGTGGCCATCCATCGGGAATCCGGAAAC

ATGATGATAATGAG

Axin30 primer:

aggccggccacgcgtggtaccATCGGATGGCTTGACAAGACCCATCGCTTTGTC

The PCR product was gel isolated and cloned by In-Fusion (Clontech catalog #639646 In-

Fusion HD Cloning System) into SpeI-KpnI linearized pUAST-RFP-ActA to create pUAS-

T-Axin-RFP-ActA. To generate a pUAST-Axin-RFP vector lacking the ActA sequence, tDi-

mer-Red12 (RFP) was subcloned from the original pUAST-RFP construct as an FseI-PsiI

fragment, which was gel isolated and used to replace the FseI-PsiI fragment in pUAST-Axin-

RFP-ActA by ligation.
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To generate arr tagged with the mScarlet-I fluorescent protein (called for simplicity arr-

RFP), Herculase from Agilent (catalog #600675) and the following primers were used to PCR

amplify the entire Drosophila arr open reading frame from a pUAS-arrow construct gener-

ously provided by Marcel Wehrli [91]:

ArrFBglII

AATTGGGAATTCGTTAACAGATCTCAAAACATGGCTTTCGAGCCATACACAAAG

TC G

ArrRAcc65I

AGCAGGCCGGCCACGCGTGGTACCCGTAAATCCCCGACTTGGCGACTGTACT

GG

The PCR product was gel isolated and cloned by In-Fusion (Clontech catalog #639646. In-

Fusion HD Cloning System) into gel-isolated pUAS-mScarlet-I [92] linearized by BglII-Acc65I

producing C-terminally tagged arr-RFP. UAS-mScarlet-I was generated by inserting the

mScarlet-I coding sequence into a pUAST backbone with an expanded polylinker.

pUAST-Rab5-tdTomato plasmid [93] was obtained from addgene and sent to BestGene for

injection into Drosophila embryos. For simplicity, we call the flies UAS-Rab5-RFP. Transgene

insertion sites were mapped to chromosomes using standard segregation techniques with bal-

ancer chromosomes.

pCasper4-Dsh::Clover2 was made by replacing EGFP of pCasper4-Dsh::EGFP [56] (Axel-

rod, 2001) with Clover2, a derivative of Clover [94]. In detail, the last 713 bp of Dsh coding

sequence together with EGFP was cut out by XhoI/XbaI double digestion. Then, the same 713

bp of Dsh coding sequence without stop codon was cloned back into the XhoI/XbaI digested

pCasper4-Dsh::EGFP to make a pCasper4-Dsh, introducing an XbaI site immediately follow-

ing the Dsh coding sequence. Then, the 717 bp clover2 (with stop codon) fragment was cloned

into the XbaI site in pCasper4-Dsh. The Clover2 fragment was PCR amplified from the vector

pNCS-Clover2 (Michael Lin lab at Stanford).

UAS-dsh::GFP was generated by cloning the dsh cDNA from EcoRI in the 50 UTR to EcoRI

in the 30 UTR into pUAST [95]. The GFP coding sequence was added by fusing the SnaBI site

near the 30 end of dsh to ClaI near the 50 end of GFP by filled-in blunt ligation in pBS+beta.

This fusion sequence was cloned into pCS2+, into which it was placed after the beta-globin 50

UTR, and the GFP was substituted with EGFP. A fragment containing part of the beta-globin

50 UTR, part of the dsh 50 UTR, dsh cDNA::EGFP, followed by SV40 polyA, was cloned back

into pUAST to generate the plasmid for injection. Plasmid injections into Drosophila embryos

were performed by BestGene, and transgene insertion sites were mapped to chromosomes

using standard segregation techniques with balancer chromosomes.

pUAST-γTub-TagRFPT was generated by first digesting GFP from the pUAST-γTub-GFP

plasmid created in our previous publication [20] and digesting TagRFPT from pUAS-

T-EB1-RFPT, also previously generated in our lab (Feng and colleagues [77]), using EcoRI and

KpnI sites. TagRFPT was then ligated into the pUAST-γTub backbone. The product was then

confirmed with diagnostic digest and sent to BestGene for plasmid injections into Drosophila
embryos. Transgene insertion sites were mapped to chromosomes using standard segregation

techniques with balancer chromosomes.

Microtubule polarity assay

Movies of EB1-GFP in the dorsal comb dendrite of the ddaE neuron were acquired with an

AxioCam M2 or AxioCam 506 on a Zeiss ImagerM2 microscope running Zen Blue in live Dro-
sophila third instar larvae. A Colibri2 LED illumination system was used to excite GFP with

470-nm light, and a 63× 1.4-NA objective was used. Movies were acquired for 300 frames at a
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rate of one frame per second. After acquisition, the Template Matching and Slice Alignment

plug-ins in Fiji were used for stabilization. EB1-GFP comets visible for at least three frames

were classified as growing toward or away from the cell body. The main trunk of the comb

dendrite, distal to the first branch point, was used for analysis. Kymographs were generated

using a built-in Fiji plug-in. Data from each cell of a given genotype were pooled to generate

total numbers of comets moving toward or away from the cell body. Statistical analysis was

conducted using logistic regression.

Spawning assay and quantification

EB1-GFP movies were acquired at one frame per second for 300 seconds. Most EB1-GFP mov-

ies were acquired with a Zeiss widefield microscope. When EB1-GFP was paired with mito-

RFP or Axin-RFP-ActA, movies were acquired on a Zeiss confocal LSM800 microscope. For

all movies, the main trunk of the comb dendrite was used for analysis. Spawning events were

characterized as emergence of an EB1 comet that covers a distance of at least 1 μm. Events that

began before the movie started were not counted as a spawn event. Comet events that started

off view and polymerized into the region of interest were also not counted. The same parame-

ters were used for comets originating form labeled endosomes or Wnt proteins. Length mea-

surements were performed in Fiji with the segmented line tool for non–branch point areas

along the main trunk. For branch points, length was calculated by drawing a line from the

start of the taper on the side of the branch furthest from the cell body to the end of the taper

closest to the cell body. Total comet counts were then divided by total length of branch point

or non–branch point alike to produce a normalized value of comet number per micrometer

per 300 seconds.

Axon injury microtubule dynamics assay

A Micro-Point pulsed UV laser (Andor Technology) focused through the 63× objective of a

Zeiss LSM800 microscope was used to make a precise cut to the proximal axon of a ddaE neu-

ron in a third instar larvae. Larvae were then incubated at 20 oC for 8 hours, and the comb den-

drite of the injured cell was imaged using a AxioCam M2 or AxioCam 506 on a Zeiss

ImagerM2. EB1-GFP movies were acquired in the same way as for the microtubule polarity

assay. Images were stabilized using the Template Matching and Slice Alignment plug-in in

Fiji. Total comet number was then counted in Fiji and normalized to the length of the dendrite

region analyzed. This produced a value of microtubule comets per micrometer. Within Fig 4,

data shown in (B) were generated slightly differently than that in (E) and (F). The person who

produced (B) used a defined 10 μm of length in the dendrite as opposed to a variable length of

20–30 μm in (E) and (F). The set 10-μm short distance has the probability of many more com-

ets passing through during the same time interval as EB1 comets have a long run length. This

explains why the two data sets are slightly different in value. Kymographs were generated

using a built-in Fiji plug-in. Statistics were generated using a linear regression model.

EB1 comet initiation off endosome assays

Videos were acquired at one frame per second for 300 seconds on a Zeiss LSM800 microscope.

Only branch points in focus during the duration of the video were used for quantification.

Comets that originated de novo at branch points off of either Rab5 or Wnt proteins were

counted. Comets were not counted if they originated from a growing minus end. They also

were not counted if the comet was a result of a discernable catastrophe/rescue event. For the

experiment involving dsh-decorated Rab5 endosomes, the same stipulations were followed.

Total number of Rab5 puncta were counted and divided into two categories. These consisted
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of dsh-positive and dsh-negative Rab5 endosomes. The percentage of dsh-decorated Rab5

endosomes was calculated using Fiji, and comet events were also visualized with the software.

Fillet prep and immunostaining

Third instar larvae expressing UAS-mcd8-RFP;221 Gal4 to label class I da neurons were dor-

sally filleted in Schneider’s media using dissection scissors after pinning both head and tail

down with 0.10-mm steel insect pins. After making a longitudinal incision between the pri-

mary trachea, the gut and trachea were carefully removed, leaving only muscle and skin. Fol-

lowing this removal, four additional pins were used to carefully stretch and pin the larval body

wall down. Immediately following this, the medium was removed, and 4% PFA was used to fix

the larvae for 30 minutes. After fixation, cells in the larvae were permeabilized in 3% PBS

TX100 for 15 minutes. After this, the fillets were moved to blocking solution of 10% NGS, 2%

BSA, and 0.2% TX100 in PBS for 1 hour. Following this, larvae were incubated overnight at

4˚C in a 1:100 solution of an antibody targeting Axin generated and described in Wang and

colleagues [42]. The following day, the Axin antibody was washed off 5 times for 5 minutes

each. The fillets were then exposed to a secondary 488 goat anti-guinea antibody at 1:500 for 2

hours. Lastly, the secondary antibody was washed off 5 times for 5 minutes each, and then lar-

vae were imaged using a Zeiss LSM800 microscope using the same mounting procedure as the

live larvae. The same procedure was followed for staining with the acetylated tubulin antibody

obtained from Sigma (T7451). The only difference was that 1:500 was used for primary anti-

body, and 1:1000 was used for secondary antibody.

Fluorescence intensity quantification methods

For branch point intensity measurements, z-stack images were acquired with either an Olym-

pus or Zeiss confocal microscope as noted on each graph, and images were prepared and quan-

tified using the image processing software Fiji (ImageJ). Maximum-projection stacked images

were used for all localization analyses. UAS-Apc2-GFP was measured in a binary manner by

scoring each branch point as Apc2-GFP present or absent. Similarly, for UAS-dsh-GFP, any

branch point that had a distinct punctum of GFP was counted as present. For UAS-γTub-GFP

and UAS-Axin-GFP, the regions between branch points (non–branch points) and within

branch points along the dorsal comb dendrite were manually outlined, and average pixel

intensities were measured (S1 Fig). Typically, 8–12 branch points and non–branch point

regions were outlined in each cell, and a single average branch point and non–branch point

value was generated for the cell. These two values were then subtracted from each other to

determine how much more fluorescence accumulated at the branch point than in between.

Refer to S1 Fig for an example image with manual branch point and non–branch point out-

lines. To normalize raw fluorescence intensities, the average branch point–non–branch point

value was divided by 100 to generate a normalization constant, which was then multiplied to

each raw fluorescence intensity value, including those of the control. This generated an average

for the control close to but not exactly 100 because of rounding errors in Excel. For informa-

tion about cytoplasmic GFP quantitation, see S1G Fig. Axin-GFP values were normalized in

the same way.

For mitochondrial colocalization experiments, an overview z-stack image using sequential

channel scanning was collected on a Zeiss LSM800 Imager.Z2 running Zen Blue, and maxi-

mum-intensity projections were generated using Fiji. Secondary dendrites emerging from the

trunk of the dorsal comb dendrite of the ddaE neuron were chosen as regions for analysis

because mitochondria are found along their length, but little Axin normally concentrates

there. A segmented line was generated along one of these dendrites, and fluorescent intensity
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line tracings were made using Fiji for both red and green channels. To normalize these intensi-

ties, the values along the line were divided by the highest pixel value, and these values were

plotted. For the correlation analysis, the Fiji plug-in JACoP was used to calculate a Pearson’s

coefficient (R score) [96]. This coefficient was calculated for the entire comb dendrite between

red and green channels for each of the four conditions.

Class I dendrite morphology analysis

Images were acquired on a Zeiss LSM700 confocal microscope using a 63× oil objective NA

1.2 running Zen Blue. Images were processed in Fiji as maximum-intensity projections. To

quantify morphology, branch points of all dendritic processes were counted and summed as

previously described [97]. Images used for quantification were collected one cell per animal.

Statistical methods

Multiple linear regression analysis was used to compare conditions against a control for all

localization experiments and for microtubule dynamics. This analysis calculates p-values the

same way as ANOVA, but it allowed us to specify which condition was the control. A logistic

regression was used to compare polarity assay conditions to a control because this is a pooled

data set. GraphPad Prism 6 software was used to carry out statistical analyses. See individual

figure legends for the statistical test used. Statistical significance is noted as �p< 0.05,
��p< 0.01, and ���p< 0.001. Statistical methods were carried out after consulting with Haley

Brittingham, a master’s student in the Penn State Statistics Department. In all figures with

error bars, they represent standard deviation.

Supporting information

S1 Fig. Candidate screen for proteins required for γTub-GFP localization to dendrite BPs.

(A) Example images of γTub-GFP and mCD8-RFP in ddaE neurons are shown with BP (left)

and nBP (right) regions outlined. Outlines were drawn manually in Fiji, and the measuring

tool was then used to measure fluorescence in each region. These values were then averaged

for each cell. The BP was outlined until it began to taper, and this was the cutoff point for

where the nBP areas began. (B–E) Quantification of γTub-GFP at BPs is shown in larvae

expressing different RNAi hairpins. Control 1 is Rtnl2 RNAi, as Rtnl2 is thought to be a pseu-

dogene. Control 2 is γTub37C RNAi. This isoform of γTub is maternally deposited and not

expressed in somatic cells like neurons. Values were generated by subtracting mean nBP fluo-

rescence from BP fluorescence for each cell; normalized fluorescence values are shown. Shaded

colors over x-axis names indicate which functional groups the RNAi lines belong to and are

noted as pink for mitochondria, yellow for Ankyrin2 and Neuroglian, and purple for

branched-actin regulators. (F) Representative images showing a soluble cytoplasmic GFP (left)

and UAS-γTub-GFP (right) under 221-GAL4. (G) Raw quantification of fluorescence showing

BP and nBP values of gTub-GFP. The raw peak values (BP) for cytoplasmic GFP (BL 6658)

were slightly dimmer than γTub-GFP, so they were multiplied by 1.1 to make the values easier

to compare. Black bars represent either BP or nBP values for each condition. Gray bars indi-

cate the subtraction of nBP from BP. A normalization constant was generated by setting the

raw fluorescence value of BP-nBP to 100 for γTub-GFP. This constant was then used to nor-

malize each γTub-GFP sample from every other genotype (Figs 1, 5 and S7). The number of

cells (one per animal) is shown on the bars. Refer to S1 Table for all genotypes and S1 Data for

data used to generate graphs in (B–E) and (G). γTub, γTubulin; dda, BP, branch point; dorsal

dendritic arborization; GFP, green fluorescent protein; nBP, non–branch point; RFP, red fluo-

rescent protein; RNAi, RNA interference; Rtnl2, reticulon 2; UAS, upstream activating
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sequence.

(TIF)

S2 Fig. Endogenous arm, gish, Axin, and γTub localization in neurons. (A and B) Example

images from a region of a third instar larval body wall are shown from animals expressing

UAS-mCD8-RFP under the control of 221-GAL4 and either arm-GFP or gish-GFP under the

control of their native promoters. (C) An example image from a filleted larva, immunostained

with an antibody against Axin. Cell shape marker is the cytoplasmic marker UAS-iBlueberry,

pseudocolored in red for viewing convenience. (D) Example image from the main trunk of a

comb dendrite from an animal expressing UAS-mCD8-RFP under the control of 221-GAL4

and a CRISPR-tagged γTub-sfGFP at the endogenous locus. An orange arrow points to the

branch point shown in the insets. γTub, γTubulin; arm, armadillo; GFP, green fluorescent pro-

tein; gish, gilgamesh; RFP, red fluorescent protein; sfGFP, super-folder green fluorescent pro-

tein; UAS, upstream activating sequence.

(TIF)

S3 Fig. Class I dendrite morphology is unaltered when gTub or Wnt signaling proteins are

reduced. (A) Example images of class I da neurons expressing either control or gTub23C

RNAi hairpins. The number of total dendrite branch points for each example is provided. (B)

Quantification of total branch point number for RNAi conditions. Sample size is shown in the

bars and represents number of cells quantified for each condition. Branch point number was

summed between all dendritic processes, and a linear regression was used to determine statisti-

cal significance. �p< 0.05, ��p< 0.01, ���p< 0.001. Refer to S1 Table for all genotypes and S1

Data for data used to generate the graph in (B). da neuron, dendritic arborization neuron;

RNAi, RNA interference.

(TIF)

S4 Fig. Microtubule density is not reduced with Wnt signaling protein knockdown. (A)

Example images from filleted larva, immunostained with an antibody against acetylated tubu-

lin (right panels). Cell shape marker is the membrane marker UAS-mCD8-GFP (left panels).

The top example is control, and the bottom is Axin A RNAi. A white arrow in the red panel

indicates a 10-μm region that was used for quantification of acetylated tubulin fluorescence.

The inset in each panel is an enlarged view of this region. (B) Quantification of fluorescence

intensity of acetylated tubulin in the first proximal 10 μm of the comb dendrite. Sample size is

shown in the bars and represents the number of cells quantified. A linear regression was used

to determine statistical significance. �p< 0.05, ��p< 0.01, ���p< 0.001. Refer to S1 Table for

all genotypes and S1 Data for data used to generate the graph in (B). GFP, green fluorescent

protein; RNAi, RNA interference; UAS, upstream activating sequence.

(TIF)

S5 Fig. RNAi’s targeting γTub, cnn, and Plp do not affect Apc2-GFP localization to branch

points. (A) Example image of Apc2-GFP and mCD8-RFP in ddaE neurons expressing

UAS-Rtnl2 RNAi (control 1) (VDRC 33320) and UAS-γTub23C RNAi (VDRC 19130) hair-

pins are shown. Orange arrows indicate branch points with high Apc2-GFP signal, scored as

occupied. Insets in the top corner of each image indicate the top branch point, indicated by an

arrow. (B) Quantification of Apc2-GFP branch point occupancy is shown in neurons express-

ing different RNAi hairpins. Refer to S1 Table for all genotypes and S1 Data for data used to

generate the graph in (B). γTub, γTubulin; Apc, adenomatous polyposis coli; cnn, centroso-

min; dda, dorsal dendritic arborization; GFP, green fluorescent protein; Plp, Pericentrin-like

protein; RFP, red fluorescent protein; RNAi, RNA interference; Rtnl2, reticulon 2; UAS,
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upstream activating sequence; VDRC, Vienna Drosophila Resource Center.

(TIF)

S6 Fig. dsh localizes to endogenous Rab5 early endosomes. (A) Example image of endoge-

nous mcherry-Rab5 and UAS-dsh-GFP. Because there is no membrane marker, the panel on

the right was enhanced and used as a template to draw the outline of the dendrite branch

point. (B) Two example images of a section of dendrite where the colocalization between

mcherry-Rab5 and dsh-Clover can be seen in the branch point of the neuron. The orange

arrow indicates the colocalization. The middle and right panels show the green and red chan-

nels, with orange arrows indicating colocalization. dsh, dishevelled; GFP, green fluorescent

protein; UAS, upstream activating sequence.

(TIF)

S7 Fig. The Golgi is not required for γTub-GFP localization, and other Rabs do not coloca-

lize with dsh-GFP. (A) Three examples of dendritic localization of Golgi markers, including

UAS-ManII-eBFP, UAS-ManII-eGFP, and UAS-GalT-YFP, and one example of the early

endosomal marker UAS-Rab5-YFP. The UAS-ManII-eBFP (pseudocolored) is coexpressed

with UAS-Rab5-GFP. All other markers have the cell shape marker UAS-mCD8-RFP coex-

pressed for localization reference. (B) Quantification of γTub-GFP at BPs is shown in larvae

expressing different RNAi hairpins targeting Golgi-associated proteins. Values were generated

by subtracting mean nBP fluorescence from BP fluorescence for each cell; normalized fluores-

cence values are shown. The number of cells (one per animal) is shown on the bars. Error bars

indicate standard deviation. (C) Quantification of EB1-GFP comet direction in the main trunk

of the ddaE dendrite in animals expressing hairpin RNAi’s. The percentage of microtubules

oriented plus-end-out is plotted as a summed value across all cells for each genotype. The

numbers on each bar are total EB1-GFP comets counted, and at least 15 cells were analyzed for

each genotype, with one cell per animal. A logistic regression was used to determine signifi-

cance. �p< 0.05, ��p< 0.01, ���p< 0.001. (D) Example image of endogenous Rab11-cherry

and UAS-dsh-GFP. Because there is no membrane marker, the panel on the right was

enhanced and used as a template to draw the outline of the dendrite branches. (E) Examples

images of either EYFP-Rab5 or UAS-Rab5-GFP coexpressed with UAS-ManII-eBFP. The

orange arrows point to puncta of colocalization between the two markers in each case. Insets

in the top corner of each image show the example highlighted with an arrow in each image.

For EYFP-Rab5, the bottom arrow correlates with the bottom left insets. Refer to S1 Table for

all genotypes and S1 Data for data used to generate graphs in (B) and (C). γTub, γTubulin; BP,

branch point; dda, dorsal dendritic arborization; dsh, dishevelled; EB1, end-binding protein 1;

eGFP, enhanced green fluorescent protein; EYFP, enhanced yellow fluorescent protein; GFP,

green fluorescent protein; MannII, mannosidase-II; nBP, non–branch point; RFP, red fluores-

cent protein; RNAi, RNA interference; UAS, upstream activating sequence.

(TIF)

S8 Fig. Axin colocalizes with a subset of Rab5 endosomes in the cell body and can recruit a

diffuse gTub to puncta at branch points. (A) Images showing the localization of UAS--

Rab5-RFP in the cell body of a ddaE neuron when coexpressed with UAS-Axin-GFP. Orange

arrows indicate the subset of Rab5 endosomes that colocalize with Axin-GFP. (B) Images show

the localization of UAS-γTub-RFP (middle) in the branch points of a ddaE neuron when coex-

pressed with UAS-Axin-GFP (left) using the 221-Gal4 driver. Merged channel is provided on

the right. Orange arrow points to a colocalized puncta at the branch point and is enlarged in

the inset. γTub, γTubulin; dda, dorsal dendritic arborization; GFP, green fluorescent protein;
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RFP, red fluorescent protein; UAS, upstream activating sequence.

(TIF)

S9 Fig. Microtubules initiate from dsh puncta. (A) Example five-frame stills of microtubule

comet formation off UAS-dsh-GFP puncta. The top example is shown coexpressed with

UAS-EB1-GFP, and the bottom is with UAS-EB1-TagRFPT. In both examples, the first frame

includes a blue arrow to show the dsh-GFP puncta that the microtubule comet will initiate off.

Subsequent frames track movement of the microtubule with a white arrow. Time stamp at the

top-right corner correlates to the time point in the corresponding S8 and S12 Movies. dsh,

dishevelled; EB1, end-binding protein 1; GFP, green fluorescent protein; UAS, upstream acti-

vating sequence.

(TIF)

S10 Fig. Axin is sufficient to recruit cnn to ectopic cellular sites. (A and B) UAS-cnn-GFP

was coexpressed with either UAS-mito-RFP or UAS-Axin-RFP-ActA using 221-Gal4. Over-

view images of the entire dendrite arbor are shown. (C and D) Regions within the comb den-

drite indicated by the dashed lines in (A) and (B). (E and F) Fluorescence intensity

measurements from the regions shown in (C) and (D). (G) A plot of Pearson’s correlation

coefficient between the two conditions. The y-axis indicates the R score, with 1 being positive

correlation, 0 meaning no correlation, and −1 meaning negative correlation. The key to the

right of the graph indicates which conditions match the symbols. (H) A diagram of the chime-

ric protein used to tag Axin with RFP (tdimer2[12]) and target it to mitochondria is shown.

Refer to S1 Table for all genotypes and S1 Data for data used to generate graphs in (E), (F), and

(G). ActA, actin assembly promoting protein A; cnn, centrosomin; GFP, green fluorescent

protein; Mito, mitochondrial; RFP, red fluorescent protein; UAS, upstream activating

sequence.

(TIF)

S11 Fig. Analysis of microtubule spawning events in dendrites with reduced and ectopic

Axin. (A) Example images compiled from EB1-GFP movies of the main comb dendrite trunk

were generated using a summed projection of all 300 frames. Movies were acquired in control

(yw) and Axin18/+ mutant backgrounds. White arrows indicate spawning events at branch

points, and red arrows indicate comets that spawn from non–branch point regions during the

300-second movie. (B) Quantification of number of EB1 comets per micrometer for the entire

300-second movie is shown. (C) UAS-EB1-GFP was coexpressed with either RFP-tagged mito-

chondria or the chimeric UAS-Axin-RFP-ActA. Summed example images are shown. Arrows

follow the same scheme as the top two panels. (D) Quantification of number of EB1 comets

per micrometer for the entire 300-second movie is shown. (E) Kymographs generated from

neurons expressing either dsh-clover and UAS-EB1-GFP or UAS-Axn-RFP and

UAS-EB1-GFP. dsh-clover is used as the control because it is endogenously tagged and thus is

not overexpressed like the Axin-RFP. (F and G) Microtubule polarity and dynamics of control

versus UAS-Axin-RFP. Sample size shown in or above the bars represents the number of cells

imaged; except in the case of polarity, it is the number comets. Error bars indicate standard

deviation. A linear regression was used for dynamics, and a logistic regression was used for

polarity to determine statistical significance. �p< 0.05, ��p< 0.01, ���p< 0.001. Refer to S1

Table for all genotypes and S1 Data for data used to generate graphs in (B), (D), (F), and (G).

ActA, actin assembly promoting protein A; Axn, Axin; dsh, dishevelled; EB1, end-binding pro-

tein 1; GFP, green fluorescent protein; RFP, red fluorescent protein; UAS, upstream activating

sequence; yw, yellow, white.
(TIF)
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S1 Data. Quantitation for all graphs is included in the Excel file. The relationship between

individual tabs and figures is noted in the title of the tab. Additional information about which

data relate to a particular panel in a figure is included in the data sheet.

(XLSX)

S1 Table. Drosophila stocks and other reagents used in the study are documented in this

table.

(XLSX)

S1 Movie. Axin localizes to the centrosome of dividing neuroblasts in whole larval brains.

UAS-Axin-GFP and UAS-EB1-RFP were coexpressed in neuroblasts using the pan neuronal

driver elav-Gal4. First instar larvae were imaged as described in the methods. EB1, end-bind-

ing protein 1; GFP, green fluorescent protein; RFP, red fluorescent protein; UAS, upstream

activating sequence.

(MOV)

S2 Movie. Microtubule polarity is disrupted when proteins required for γTub localization

to branch points are reduced. Movies of EB1-GFP in the dorsal comb dendrite were acquired

by taking an image every second for 300 seconds. Examples of two movies are shown side by

side. The cell body is oriented at the bottom of the image for both movies. A neuron expressing

Rtnl2 RNAi (control 1) (VDRC 33320) is shown on the left, and a neuron expressing Axin

RNAi (VDRC 7748) is on the right. Kymographs in Fig 6 were generated from these movies.

γTub, γTubulin; EB1, end-binding protein 1; GFP, green fluorescent protein; RNAi, RNA

interference; Rtnl2, reticulon 2; VDRC, Vienna Drosophila Resource Center.

(MOV)

S3 Movie. The increase in microtubule dynamics following axotomy is blocked when pro-

teins required for γTub localization are reduced. Axons of ddaE neurons were severed with

a pulsed UV laser, and EB1-GFP movies were acquired from the comb dendrite 8 hours later.

The cell body is oriented at the bottom of the image for both videos. The cell on the left

expresses Rtnl2 RNAi (control 1) (VDRC 33320), and the one on the right expresses Axin

RNAi (VDRC 7748) hairpins. Kymographs in Fig 7 were generated from these movies. γTub,

γTubulin; dda, dorsal dendritic arborization; EB1, end-binding protein 1; GFP, green fluores-

cent protein; RNAi, RNA interference; Rtnl2, reticulon 2; VDRC, Vienna Drosophila Resource

Center.

(MOV)

S4 Movie. EB1 comets initiate from Rab5 endosomes at dendrite branch points. The three

examples include UAS-EB1-GFP with UAS-Rab5-YFP, UAS-EB1-TagRFPT with EYFP-Rab5,

and UAS-EB1-GFP with UAS-Rab5-tdTomato. During the movies, red arrows mark the endo-

some, and white arrows mark and follow microtubule plus-end growth. EB1, end-binding pro-

tein 1; EYFP, enhanced yellow fluorescent protein; GFP, green fluorescent protein; RFP, red

fluorescent protein; UAS, upstream activating sequence.

(MOV)

S5 Movie. EB1 comets initiate from Rab5 endosomes at dendrite branch points. The three

examples include UAS-EB1-GFP with UAS-Rab5-YFP, UAS-EB1-TagRFPT with EYFP-Rab5,

and UAS-EB1-GFP with UAS-Rab5-tdTomato. During the movies, red arrows mark the endo-

some, and white arrows mark and follow microtubule plus-end growth. EB1, end-binding pro-

tein 1; EYFP, enhanced yellow fluorescent protein; GFP, green fluorescent protein; RFP, red

fluorescent protein; UAS, upstream activating sequence.

(MOV)
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S6 Movie. EB1 comets initiate from Rab5 endosomes at dendrite branch points. The three

examples include UAS-EB1-GFP with UAS-Rab5-YFP, UAS-EB1-TagRFPT with EYFP-Rab5,

and UAS-EB1-GFP with UAS-Rab5-tdTomato. During the movies, red arrows mark the endo-

some, and white arrows mark and follow microtubule plus-end growth. EB1, end-binding pro-

tein 1; EYFP, enhanced yellow fluorescent protein; GFP, green fluorescent protein; RFP, red

fluorescent protein; UAS, upstream activating sequence.

(MOV)

S7 Movie. EB1 comets initiate from fz puncta. The example includes UAS-EB1-GFP and

UAS-fz-eGFP. During the movie, red arrows mark the fz punctum, and white arrows mark

and follow microtubule plus-end growth. EB1, end-binding protein 1; eGFP, enhanced green

fluorescent protein; fz, frizzled; GFP, green fluorescent protein; UAS, upstream activating

sequence.

(MOV)

S8 Movie. EB1 comets initiate from dsh puncta. The two examples include UAS-EB1-GFP

with UAS-dsh-GFP and UAS-EB1-GFP with dsh-clover. During the movies, red arrows mark

the dsh punctum, and white arrows mark and follow microtubule plus-end growth. dsh,

dishevelled; EB1, end-binding protein 1; GFP, green fluorescent protein; UAS, upstream acti-

vating sequence.

(MOV)

S9 Movie. EB1 comets initiate from dsh puncta. The two examples include UAS-EB1-GFP

with UAS-dsh-GFP and UAS-EB1-GFP with dsh-clover. During the movies, red arrows mark

the dsh punctum, and white arrows mark and follow microtubule plus-end growth. dsh,

dishevelled; EB1, end-binding protein 1; GFP, green fluorescent protein; UAS, upstream acti-

vating sequence.

(MOV)

S10 Movie. EB1 comets initiate from Axin puncta. The example includes UAS-EB1-GFP

and UAS-Axin-RFP. During the movie, red arrows mark the Axin punctum in the beginning,

and white arrows mark and follow microtubule plus-end growth. EB1, end-binding protein 1;

GFP, green fluorescent protein; RFP, red fluorescent protein; UAS, upstream activating

sequence.

(MOV)

S11 Movie. EB1 comets initiate from arr puncta. The example includes UAS-EB1-GFP and

UAS-arr-mScarlet. During the movie, red arrows mark the arr punctum in the beginning, and

white arrows mark and follow microtubule plus-end growth. arr, arrow; EB1, end-binding

protein 1; GFP, green fluorescent protein; UAS, upstream activating sequence.

(MOV)

S12 Movie. EB1 comets initiate from dsh puncta 2. The example includes UAS-EB1-T-

agRFPT and UAS-dsh-GFP. During the movie, red arrows mark the dsh punctum in the

beginning, and white arrows mark and follow microtubule plus-end growth. The settings used

for these videos were optimized so that EB1-TagRFPT comets could be visualized. The con-

struct is very dim and needs both simultaneous scanning with a higher laser intensity. There-

fore, there is bleed through of the red and green signal at the dsh puncta. This does not change

the interpretation of the comet that comes off the dsh puncta because this is not colabeled. For

colocalization experiments, sequential scans were taken to ensure no bleed through of the

markers used. dsh, dishevelled; EB1, end-binding protein 1; GFP, green fluorescent protein;
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UAS, upstream activating sequence.

(MOV)

S13 Movie. EB1 comets preferentially initiate from dsh-decorated Rab5 endosomes. The

example movies include animals expressing UAS-EB1-GFP, UAS-dsh-GFP, and UAS--

Rab5-RFP. During the movies, red arrows mark the dsh-GFP/Rab5-RFP puncta, and white

arrows mark and follow the microtubule plus-end growth. dsh, dishevelled; EB1, end-binding

protein 1; GFP, green fluorescent protein; RFP, red fluorescent protein; UAS, upstream acti-

vating sequence.

(MOV)

S14 Movie. EB1 comets preferentially initiate from dsh-decorated Rab5 endosomes. The

example movies include animals expressing UAS-EB1-GFP, UAS-dsh-GFP, and UAS--

Rab5-RFP. During the movies red arrows mark the dsh-GFP/Rab5-RFP puncta, and white

arrows mark and follow the microtubule plus-end growth. dsh, dishevelled; EB1, end-binding

protein 1; GFP, green fluorescent protein; RFP, red fluorescent protein; UAS, upstream acti-

vating sequence.

(MOV)

S15 Movie. Localization of γTub to mitochondria results in multiple EB1 initiation events

from mitochondria. Movies of EB1-GFP were taken while coexpressing Axin-RFP-ActA. In

rare events such as the example, multiple microtubules can be seen coming off mitochondria

at the same time. Arrows indicate where the spawn point occurs and follows the three

EB1-GFP comets as they travel off in an “aster-like” pattern. γTub, γTubulin; ActA, actin

assembly promoting protein A; EB1, end-binding protein 1; GFP, green fluorescent protein;

RFP, red fluorescent protein.

(MOV)
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