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Abstract: A high-fat diet has been associated with systemic diseases in humans and alterations
in gut microbiota in animal studies. However, the influence of dietary fatty acid intake on gut
microbiota in humans has not been well studied. In this cross-sectional study, we examined the
association between intake of total fatty acids (TFAs), saturated fatty acids (SFAs), trans fatty acids
(TrFAs), monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), n3-FAs, and
n6-FAs, and the community composition and structure of the adherent colonic gut microbiota. We
obtained 97 colonic biopsies from 34 participants with endoscopically normal colons. Microbial
DNA was used to sequence the 16S rRNA V4 region. The DADA2 and SILVA database were
used for amplicon sequence variant assignment. Dietary data were collected using the Block food
frequency questionnaire. The biodiversity and the relative abundance of the bacterial taxa by higher
vs. lower fat intake were compared using the Mann–Whitney test followed by multivariable negative
binomial regression model. False discovery rate–adjusted p-values (q value) < 0.05 indicated statistical
significance. The beta diversity of gut bacteria differed significantly by intake of all types of fatty acids.
The relative abundance of Sutterella was significantly higher with higher intake of TFAs, MUFAs,
PUFAs, and n6-FAs. The relative abundance of Tyzzerella and Fusobacterium was significantly higher
with higher intake of SFAs. Tyzzerella was also higher with higher intake of TrFA. These observations
were confirmed by multivariate analyses. Dietary fat intake was associated with bacterial composition
and structure. Sutterella, Fusobacterium, and Tyzzerella were associated with fatty acid intake.

Keywords: diet; fat; microbiome; mucosa; human; epidemiology; Sutterella

1. Introduction

The associations between dietary fatty acid intake and cardiovascular diseases and can-
cer as well as all-cause mortality have been well investigated [1–3]. In general, trans-fatty
acids (TrFAs) and saturated fatty acids (SAFs) are considered ‘unhealthy’, while monoun-
saturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) are considered
‘healthy’ [3–6]. Accordingly, the American Heart Association and American College of
Cardiology recommend avoiding TrFAs, limiting SFAs to <6% of total calories, and substi-
tuting those fats with MUFAs and PUFAs [7,8]. Long-chain PUFAs are further divided into
n-3 and n-6 fatty acids (FAs), and these fatty acids are thought to modulate inflammation
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and provide cardiometabolic benefits [9]. Moreover, the underlying mechanisms of the
associations between fat intake and health outcomes have been investigated. Some studies
have shown that a high-fat diet (HFD) can induce Toll-like receptor 4 (TLR4) and trigger a
downstream inflammatory response in mice [10,11]. Another study showed that mice on
extended HFDs had an increase in inflammatory markers in the hypothalamus, possibly
through the IKKβ/NF-κB pathway [12].

Alterations in gut microbiota have been associated with an increased risk of systemic
diseases, including cardiovascular diseases [13] and cancers [14]. Diet has been shown to
shape the gut microbiome [15,16]. Although dietary fatty acids are thought to be digested
and absorbed in the small intestine [17,18], the influence of fatty acid intake on gut micro-
biota has been widely investigated in animal studies [19]. The studies in humans, however,
have been limited. A recent systematic review of nine feces-based observational studies
did not show consistent changes in taxonomic distribution based on dietary fat intake. A
few interventional studies were relatively short in duration (3–6 weeks) [20]. Our previous
analysis shows that a lower score for saturated fatty acid intake on the Healthy Eating
Index (HEI) was associated with a higher relative abundance of Fusobacterium [21]. This
finding suggests that examining the specific nutrients in association with gut microbiota
would provide additional insight into the role of diet and microbiota in health.

Therefore, in the present analysis, following the lead of the holistic analysis on diet
quality and gut microbiota, we investigated the association between the intake of different
types of dietary fatty acids and the community composition and structure of the adherent
colonic mucosal microbiota in humans. We hypothesized that there would be a positive as-
sociation between SFA and TrFA intake and the abundance of potentially pro-inflammatory
colonic microbiota and a positive association between MUFA and PUFA intake and the
abundance of potentially anti-inflammatory colonic microbiota. Improved understanding
of the association between dietary fat and gut microbiota may help refining the consensus
and developing appropriate preventive and therapeutic strategies for diseases.

2. Materials and Methods
2.1. Study Participants

Participants were prospectively and consecutively recruited from the endoscopy suite
of the Michael E. DeBakey VA Medical Center (MEDVAMC) in Houston between 2013
and 2017. The methods, including comprehensive eligibility criteria, have been described
previously [22]. Eligible participants had no cancer history or inflammatory bowel disease.
They were not diagnosed with colorectal adenoma in the past three years and did not
receive antibiotics in the prior three months. To be eligible for the present study, the
participants had no abnormal findings during colonoscopy.

2.2. Data Collection

Study participants were recruited 2 to 3 weeks before the colonoscopy, when the
lifestyle and medical history were also evaluated using an interviewer-administered ques-
tionnaire. The interviewer measured the body weight and height of each participant after
the interview. Participants self-administered the validated BLOCK Food Frequency Ques-
tionnaire (FFQ), which evaluates consumption of a wide variety of food groups over the
prior 12 months [23]. The food list was developed from the NHANES 1999–2002 dietary
recall data. The nutrient database was developed from the USDA Food and Nutrient
Database for Dietary Study (version 1.0). Daily intake of food and nutrients, including
TFAs, SFAs, TrFAs, MUFAs, PUFAs, n3-FAs, and n6-FAs, was calculated from the FFQ at
the NutritionQuest. The daily intake value was energy-adjusted using the density method.
The 2005 Healthy Eating Index (HEI) score, one of the measures of dietary quality, was
calculated [24].
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2.3. Tissue Collection and DNA Extraction

Participants were advised to stop taking aspirin, anti-inflammatory drugs, blood
thinners, iron, or vitamins with iron 7 days prior to the colonoscopy and stop diabetic
medication one day before the procedure. On the day of colonoscopy, the endoscopists
obtained biopsies from each colonic segment (cecum; ascending colon; transverse, de-
scending, and sigmoid colon; and rectum) when the patients were found to have grossly
normal-appearing colon mucosa. The acquired biopsies were stored at −80 ◦C within
15 min of sample collection [22].

We enrolled 612 eligible study participants in the study. Among them, 174 were
found to have a normal colon, and 134 of them consented to provide colonic mucosal
biopsy. Samples from 69 participants were sent for microbiota profiling. Among them,
a total of 40 participants responded to the FFQ. Five study participants who had self-
reported energy consumption <800 or >5000 kcal per day were excluded from the analysis.
Therefore, the raw sequencing data of 99 mucosal samples from 35 participants were
generated (Supplemental Figure S1). The study protocol was approved by the Institutional
Review Board of Baylor College of Medicine (BCM) and MEDVAMC. All study participants
provided informed consent to participate.

2.4. 16S rRNA Sequencing

The sequence analyses were performed at the Alkek Center for Metagenomics and
Microbiome Research (CMMR) at BCM. Bacterial genomic DNA was extracted from the
biopsies using the MO BIO PowerLyzer UltraClean Tissue & Cell DNA Isolation Kits
(MO BIO Laboratories, Clardad, CA, USA). All DNA samples were stored at −80 ◦C until
further analysis.

The 16S rRNA gene sequencing methods were adapted from the published meth-
ods [25–27]. The 16S rRNA hypervariable region 4 (V4) was amplified by PCR using the
barcoded Illumina adaptor-containing primers 515F and 806R and sequenced on the MiSeq
platform (Illumina, San Diego, CA, USA) using the 2 × 250 bp paired-end protocol. The
primers used for amplification contained adapters for the MiSeq sequencing and single-
index barcodes so that the PCR products could be pooled and sequenced directly [27].

2.5. Bioinformatics and Taxonomic Assignment

We used the CMMR bioinformatics pipeline for data analysis. The reads were merged
using USEARCH v7.0.1090 [28]. A quality filter was applied to the resulting merged
reads, and those containing above 0.5% expected errors were discarded. We used the
Divisive Amplicon Denoising Algorithm 2 (DADA2) v1.10.1 package in R v3.3.3 to classify
the bacteria using the Amplicon Sequence Variant (ASV). The ASVs were mapped to
the SILVA v128 to determine taxonomies [29,30]. A rarefied ASV table was used for
downstream analyses of biodiversity and phylogenetic trends using the Agile Toolkit for
Incisive Microbial Analyses (ATIMA) [31]. A rarefaction curve, using the factor 4356,
was constructed using the sequence data for each sample to ensure that we sampled
the majority of its microbial diversity. After rarefaction, two mucosal samples from one
individual had poor sequencing data were eliminated. We were left with 97 mucosal
samples from 34 participants for the final analysis (Supplemental Figure S1).

2.6. Statistical Analysis

The bacterial alpha-diversity, beta-diversity, and the relative abundance of bacterial
taxa (mainly at the phylum, family, and genus level) were compared based on higher vs.
lower intake of dietary TFAs, SFAs, TrFAs, MUFAs, PUFAs, n3-FAs, and n6-FAs. Higher vs.
lower intake was dichotomized using the median intake for each nutrient in 34 participants.
Sociodemographic and clinical characteristics of the participants were compared according
to SFA intake using the Student’s t test or Fisher’s exact test. We examined participant
characteristics by SFA because we observed the score for SFAs was associated with gut
microbiota in our previous study [21]. Permutational multivariate analysis of variance
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(PERMANOVA) was used to evaluate beta-diversity using the weighted Bray–Curtis as the
distance matrix. The principal coordinate analysis (PCoA) plots [32] were constructed to
visualize the dissimilarity of microbial community composition by fatty acid intake. The
relative abundance of bacterial taxa was compared between higher vs. lower intake groups
using the Mann–Whitney test.

We used multivariable negative binomial regression models for panel data to examine
the association between fatty acid intake and bacterial counts, adjusting for age (continu-
ous), ethnicity (non-Hispanic White, African American, and Hispanic), body mass index
(BMI, continuous), smoking status (never, former, and current smokers), alcohol use (never,
former, and current drinkers), HEI score (continuous), hypertension (yes vs. no), diabetes
(yes vs. no), and colon segment (cecum; ascending, transverse, descending, and sigmoid
colon; and rectum). Each participant was treated as a panel because multiple biopsies were
taken from some of the participants. The incidence rate ratio (IRR) and its 95% confidence
interval (CI) of having a non-zero bacterial count in higher vs. lower intake groups were
estimated. Because dietary fat intake also affects the amount of daily calories from protein
and carbohydrates that could impact the gut microbiota [33,34], we also included total
protein and carbohydrate intake in the models.

We used the STATA 16.0 (Stata Corp LLC, College Station, TX, USA) and the R
program for data analysis. A p value < 0.05 indicated statistical significance. In the
microbiota analysis, all p-values were adjusted for multiple comparisons using the false
discovery rate (FDR) algorithm [35]. FDR-adjusted p-values (q values) < 0.05 indicated
statistical significance.

3. Results
3.1. General Characteristics of Study Participants

Our study consisted of 33 men and 1 woman, aged 51 to 71 years old. The majority
of participants were non-Hispanic White (71%) and men (97%). Table 1 shows that there
were no statistically significant differences in the distribution of demographics and lifestyle
factors based on intake of SFAs. However, those who had a lower intake of SFAs had a
significantly higher HEI score and higher intake of total carbohydrates.

Table 1. Patient characteristics by higher vs. lower saturated fatty acid intake.

Characteristics
Mean ± Standard Deviation or n (%)

Lower Intake
n = 17

Higher Intake
n = 17 p Value a

Age (years) 61.1 ± 6.0 62.9 ± 5.1 0.34
Men, n (%) 16 (95%) 17 (100%) 0.31
Racial group

White, n (%) 11 (65%) 13 (76%) 0.66
African American, n (%) 4 (23%) 2 (12%)
Hispanic, n (%) 2 (12%) 2 (12%)

Body mass index (kg/m2) 32.4 ± 7.4 35.4 ± 5.2 0.18
Ever smokers, n (%) 10 (59%) 11 (65%) 0.72
Current alcohol use, n (%) 8 (47%) 7 (41%) 0.46
Hypertension, yes (%) 11 (65%) 14 (82%) 0.24
Type 2 diabetes, yes (%) 7 (41) 10 (59) 0.30
Healthy Eating Index 64.1 ± 8.7 57.8 ± 8.3 0.04
Saturated fat (grams/1000 kcal/day) 10.5 ± 0.98 15.7 ± 2.16 <0.0001
Total carbohydrates
(grams/1000 kcal/day) 123 ± 21 103 ±14 0.004

Protein (grams/1000 kcal/day) 35.7 ± 8.1 40.5 ± 5.7 0.05
a p value for two-sample t test or Fisher’s exact test.

In our study, the mean daily intakes of TFA, SFA, TrFA, MUFA, PUFA, n3-FA, and
n6-FA were 42.2, 13.1, 1.39, 16.5, 9.31, 0.89, and 8.04 g/1000 kcal, respectively.
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3.2. Biodiversity

The microbial alpha diversity only differed by TrFA intake. Compared to individuals
with lower TrFA intake, the gut microbiota of individuals with higher intake of TrFAs had
a lower alpha diversity (q value = 0.02 for the Shannon index). There were significant
differences in beta diversity by intake of all types of fatty acids (Figure 1).
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Figure 1 Principal coordinate analysis (PCoA) with weighted Bray–Curtis dissimilarity
shows that the bacterial beta diversity differed significantly between higher vs. lower
intake of multiple fatty acids (p values ≤ 0.006, PERMANOVA test). The centroids of the
two groups did not overlap. The fraction of diversity captured by the coordinate is shown
as a percentage in the corresponding axis. PC1 and PC2 represent the top two principal
coordinates that capture most of the diversity.

3.3. Taxonomy

Seven phyla with relative abundance of greater than 0.5% were identified in our study
sample. The relative abundance was 43.0% for Firmicutes, 35.6% for Bacteroidota, 9.00%
for Proteobacteria, 3.18% for Verrucomicrobiota, 1.53% for both Fusobacteriota and Desul-
fobacterota, and 0.88% for Actinobacteriota. At the phylum level, Table 2 shows the relative
abundance of Desulfobacteria was significantly higher with higher intake of TFAs, MUFAs,
PUFAs, and n6-FAs. The relative abundance of Fusobacteria was significantly higher with
higher intake of SFAs and MUFAs. At the family level, Supplemental Table S1 shows the
relative abundance of Sutterellaceae and Desulfovibrionaceae was higher with higher in-
take of TFAs, MUFAs, PUFAs, and n6-FAs. The relative abundance of Fusobacteriaceae was
higher with higher intake of SFAs and MUFAs. The relative abundance of Acidaminococ-
caceae was higher with higher intake of TFAs, PUFAs, n3-FAs, and n6-FAs. The relative
abundance of Christensenellaceae was lower with higher intake of TFAs, TrFA, PUFAs, and
n6-FAs. Other families, such as Prevotellaceae, Anaerovacaceae, Erysipelotrichaceae, and
Ruminococcaceae, also differed significantly by fatty acid intake (Supplemental Table S1).

Table 2. Relative abundance of bacterial phylum by fatty acid intake.

Type of Fatty Acid Phylum Relative Abundance (%) q Value a

Lower Intake Higher Intake

TFAs Desulfobacterota 1.05 1.84 0.005
MUFAs Desulfobacterota 1.10 1.82 0.029

Fusobacteria 0.84 1.99 0.008
PUFAs Desulfobacterota 1.04 1.89 0.013
n6-FA Desulfobacterota 1.04 1.89 0.013
SFAs Fusobacteria 0.70 2.34 0.008

MUFAs: monounsaturated fatty acids; PUFAs: polyunsaturated fatty acids; SFAs: saturated fatty acids; TFAs:
total fatty acids. a q value for the Mann–Whitney test.

Table 3 shows that the relative abundance of the bacterial genera differed significantly
by intake of multiple types of dietary fatty acids. The relative abundance of Sutterella was
higher with the higher intake of TFAs, MUFAs, PUFAs, n3-FAs, and n6-FAs. The relative
abundance of Tyzzerella, Butyricimonas, and Bifidobacterium was higher with the higher
intake of SFAs and TrFA. The relative abundance of Fusobacterium was higher with the
higher intake of SFAs and MUFAs. The relative abundance of Faecalibacterium was higher
with the higher intake of n3-FAs. The relative abundance of Acidaminococcus was higher
with the higher intake of TFAs, PUFAs, n3-FAs, and n6-FAs.

As seen in Table 4, the multivariable analysis confirmed the associations between
Sutterella and TFAs, MUFAs, PUFAs, and n6-FAs, which were independent of dietary
quality because the adjustment of HEI in the model did not change the IRRs. The incidence
rate ratio of having non-zero Sutterella count in participants with higher intake of TFAs was
24% higher than the participants with a lower intake of TFAs.

The association between SFA and TrFA intake and Tyzzerella was borderline significant
after adjusting for dietary quality. The association between Fusobacterium and SFAs was
attenuated when HEI was adjusted in the model. All other differences in bacterial relative
abundance by fat intake were not statistically significant in the multivariable analyses.
Adjustment of protein and carbohydrate did not change the estimate significantly after
dietary quality was included in the model (data not shown).
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Table 3. Relative abundance of bacterial genus by fatty acid intake.

Type Of Fatty Acid Genus Relative Abundance (%) q Value a

Lower Intake Higher Intake

TFAs Sutterella 0.57 2.41 <0.0001

Acidaminococcus 0.03 0.24 0.04

MUFAs Lachnoclostridium 0.87 1.57 0.002

Sutterella 0.80 2.29 0.002

Founierella 0.02 0.13 0.035

Fusobacterium 0.82 1.97 0.036

Intestinibacter 0.15 0.17 0.041

PUFAs Anaerostipes 0.91 0.12 0.0006

Sutterella 0.66 2.44 0.0006

Acidaminococcus 0.03 0.26 0.01

Bilophila 0.50 0.99 0.02

Colidextribactor 0.14 0.33 0.02

Prevotella 1.50 3.39 0.02

n3-FAs Alloprevotella 0.60 0 0.004

Faecalibacterium 4.34 9.92 0.004

Subdoligranulum 0.21 0.73 0.004

Acidaminococcus 0.03 0.26 0.007

Sutterella 0.85 2.30 0.026

Phascolarctobacterium 0.44 0.78 0.03

Tyzzerella 0.45 0.14 0.03

n6-FAs Anaerostipes 0.91 0.12 <0.001

Sutterella 0.66 2.44 <0.001

Acidaminococcus 0.03 0.26 0.007

Bilophila 0.50 0.99 0.007

Colidextribacter 0.14 0.33 0.014

Prevotella 1.51 3.39 0.014

SFAs Tyzzerella 0.11 0.43 0.0004

Negativibacilus 0.18 0.04 0.003

Butyricimonas 0.15 0.20 0.032

Fusobacterium 0.66 2.37 0.030

Bifidobacterium 0.14 0.41 0.031

Intestinibacter 0.26 0.06 0.031

Veillonella 0.14 0.42 0.031

TrFAs Bifidobacterium 0.19 0.36 0.008

Tyzzerella 0.10 0.34 0.008

Butyricicoccus 0.13 0.34 0.028
MUFAs: monounsaturated fatty acids; PUFAs: polyunsaturated fatty acids; SFAs: saturated fatty acids; TFAs:
total fatty acids. TrFAs: trans fatty acids. a q value for the Mann-Whitney test.
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Table 4. The incidence rate ratio (IRR) of having non-zero bacterial count by fatty acid intake.

Genus Type of Fatty Acid Count IRR (95% CI) b IRR (95% CI) c IRR (95% CI) d

Lower Higher
Intake a Intake
Median count

Sutterella TFAs 0 18 1.25 (1.15–1.37) 1.24 (1.12–1.37) 1.24 (1.12–1.37)
Sutterella MUFAs 0 17 1.67 (1.35–2.12) 1.65 (1.32–2.08) 1.65 (1.31–2.07)
Sutterella PUFAs 0 17 1.24 (1.04–1.47) 1.19 (0.95–1.48) 1.48 (1.12–1.94)
Sutterella n6-FAs 0 17 1.30 (1.05–1.60) 1.23 (0.94–1.61) 1.55 (1.11–2.16)
Tyzzerella SFAs 0 14.5 1.18 (0.76–1.83) 2.04 (1.19–3.48) 1.66 (1.00–2.76)
Fusobacterium SFAs 0 5 1.21 (1.02–1.43) 1.38 (1.10–1.71) 1.11 (0.83–1.48)
Tyzzerella TrFAs 0 0 1.52 (0.17–13.3) 6.62 (1.01–43.0) 6.61(1.02–43.0)

CI: confidence interval; IRR: incidence rate ratio; MUFAs: monounsaturated fatty acids; PUFAs: polyunsaturated
fatty acids; SFAs: saturated fatty acids; TFAs: total fatty acids. TrFAs: trans fatty acids. a Lower intake of fatty
acids was the reference group in the negative binomial regression model for panel data. The lower intake was
defined as lower than median intake in 34 participants. b The model was adjusted for age. c The model was
adjusted for age, ethnicity, BMI, alcohol use, smoking, hypertension, diabetes, and segment. d The model was
adjusted for HEI score in addition.

4. Discussion

Our study found that intake of dietary fatty acids significantly associated with the
community composition and structure of the adherent gut microbiota in the colon. Members
of the Sutterellaceae, Desulfovibrionaceae, Erysipelotrichaceae, Fusobacteriaceae, and
Christensenellaceae families differed by fatty acid intake. The relative abundance of
Sutterella, Tyzzerella, and Fusobacterium differed significantly by fatty acid intake.

Experimental studies have shown that increased dietary fat intake is related to a lower
gut microbial alpha diversity [36–38]. A systematic review showed that a higher intake of
SFAs was associated with a decrease in microbial richness and diversity in humans [20].
However, our study did not show a significant difference in alpha diversity based on fatty
acid intake, except for TrFAs. A higher intake of TrFAs was related to a lower Shannon
index. On the other hand, the significant differences in the beta diversity (community
composition) of gut microbiota were found for all types of fatty acids examined. A French
study using fecal samples showed a significant difference in beta diversity based on a diet
that includes various fatty foods, although the type of fat was not specified in the study [39].
In summary, our observations suggest that the intake of fatty acids could be associated
with the community composition of the gut microbiota in the colon in humans. The lower
bacterial richness related to a higher intake of TrFAs may partially explain its harmful
influence on health.

A higher intake of TFAs, MUFAs, PUFAs, and n6-FAs was associated with a higher
relative abundance of Sutterella compared to a lower intake. Higher Sutterella with higher
intake of n3-FAs was not confirmed by the multivariable analyses. The depletion of
Sutterella has been observed in children with autism [40] and with a lower quality of
life in patients with Crohn’s disease [41]. A diet of bodybuilders (high protein, high fat,
low carbohydrate, and low fiber) has been correlated with increased Sutterella [42]. We
previously showed that Sutterella was depleted in people who slept for less than 6 hours
per day compared to people slept for 6–8 h per day [43]. One animal study showed
that Sutterella may have beneficial effects on glycometabolism in diabetic mice fed with
an HFD [44]. On the other hand, increased relative abundance of Sutterella has been
associated with the increased risk of metabolic syndrome, Down’s syndrome, autism,
and inflammatory bowel disease [45–49]. Despite conflicting evidence on the beneficial
vs. detrimental influence of Sutterella on health outcomes, all studies have shown that
diet including fatty acids can modulate Sutterella. The role of Sutterella in metabolism,
neurological symptoms, and inflammation through diet warrants further investigation.

A higher intake of SFAs was associated with a higher relative abundance of Fusobac-
terium. Our observation was in agreement with another study that showed an increase in
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Fusobacterium when participants switched from a high fiber diet to an HFD [50]. Fusobac-
terium, a Gram-negative bacterium with lipopolysaccharides, has been shown to accelerate
atherosclerosis in rabbits [50] and has been associated with colorectal cancer, atherosclero-
sis, and a lower HEI score in humans [21,51,52]. This pro-inflammatory property is likely
from its ability to modulate the immune system. One observational study suggested that
Fusobacterium, which was found in much higher levels in cancerous tissue as compared
to control tissue, increases cancer risk by increasing inflammatory mediators through a
possible miRNA-mediated activation of TLR2/TLR4 [53]. However, the positive association
between Fusobacterium and SFA intake was attenuated when dietary quality was included
in the model. The association between Fusobacterium and MUFA intake was not shown in
multivariable analysis.

A higher intake of SFAs and TrFAs was associated with a higher relative abundance
of Tyzzerella. These associations persisted in the multivariable analyses. Tyzzerella is a
member of the Lachnospiraceae family and has been associated with a higher risk of
cardiovascular diseases and a lower HEI score [21,54]. Patients with Crohn’s disease were
reported to have significantly more abundant Tyzzerella than patients without Crohn’s
disease [55]. One study showed that Tyzzerella was one of the bacteria that significantly
decreased in hyperlipidemic rats after treatment with simvastatin [56]. However, the exact
mechanism by which Tyzzerella may mediate the potential harmful effects of fatty acid
intake in cardiovascular or other diseases is unclear.

A higher intake of TFAs, PUFAs, n3-FAs, and n6-FAs was associated with an increased
relative abundance of Acidaminococcus. Acidaminococcus is a genus in the Firmicutes phylum
and Negativicutes class. Acidaminococcus is a glutamate-fermenting microbe [57] and
glutamate has been shown to provide oxidative fuel for the intestinal epithelium and
play an important role in maintaining normal gut barrier function [58,59]. PUFAs have
been shown to decrease the incidence of coronary heart disease and have a beneficial
effect on glycemic control and cancer [60,61]. The role of PUFAs in supporting colonic
epithelial barrier integrity has also been reported [62]. Previous studies have suggested that
n3-FAs could increase the relative abundance of Faecalibacteria and short-chain-fatty acid-
generating bacteria in animal models or in humans [63]. However, in the present analysis,
we did not observe a significant association between n3-FA intake and gut microbiota
in multivariable analysis. The Western type of diet has a higher n6-FA:n3-FA ratio [64].
Our study participants had much lower n3-FA intake than n6-FA intake, with an average
ratio of 9.0. Large studies in other study populations are warranted to further investigate
the multivariable association between Acidaminococcus and diet as well as n3-FA and
gut microbiota.

A unique feature of our study was that we examined the adherent mucosal bacteria
in association with intake of different types of fatty acids in humans. We included other
lifestyle factors and dietary quality as the confounding factors in the multivariable models.
The association between Fusobacterium and SFAs was attenuated when HEI was adjusted.
Our study had several limitations. First, the study finding was mostly based on male
veterans, which limited its generalizability to other populations. Second, we used the
arbitrary median as the divider between higher vs. lower dietary intake in our analysis.
Third, because we relied on patients’ subjective reports on food consumed in the previous
year, information bias cannot be excluded. Fourth, the 16S rRNA taxonomic survey has
limited sequencing resolution and could not identify the bacterial species in association
with fat intake. There were abundant unnamed bacteria that showed significant differences
in relative abundance by fatty acid intake. Future studies should identify those bacteria
genus or species that could have biological consequence. Fifth, we could not completely rule
out the influence of anti-diabetic and anti-hypertensive medications on the gut microbial
profile because participants were allowed to use these medications up to the date of the
procedure. Future studies should investigate the interaction between diet, medication use,
and gut microbiota. Last, our study sample size was small, but if enlarged, would have
given us more powerful statistical analyses.
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5. Conclusions

Various types of fatty acids may influence gut microbiota differentially and explain
their respective effects on systemic diseases. The genera that are most associated with intake
of fatty acids include Sutterella, Tyzzerella, and Fusobacterium. Our findings were consistent
with our hypothesis that TrFAs and SFAs were positively associated with Tyzzerella and SFAs
were positively associated with pro-inflammatory Fusobacterium. However, the findings
on Sutterella and health outcomes are conflicting. Identifying bacterial species that are
associated with fatty acid intake and immune and inflammatory modulation may provide
novel preventive and treatment modalities for more tailored health management.
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