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Abstract

Amyloid precursor protein (APP) plays a pivotal role in Alzheimer’s disease (AD) pathogenesis, but its normal physiological
functions are less clear. Combined deletion of the APP and APP-like protein 2 (APLP2) genes in mice results in post-natal
lethality, suggesting that APP performs an essential, if redundant, function during embryogenesis. We previously showed
that injection of antisense morpholino to reduce APP levels in zebrafish embryos caused convergent-extension defects.
Here we report that a reduction in APP levels causes defective axonal outgrowth of facial branchiomotor and spinal motor
neurons, which involves disorganized axonal cytoskeletal elements. The defective outgrowth is caused in a cell-autonomous
manner and both extracellular and intracellular domains of human APP are required to rescue the defective phenotype.
Interestingly, wild-type human APP rescues the defective phenotype but APPswe mutation, which causes familial AD, does
not. Our results show that the zebrafish model provides a powerful system to delineate APP functions in vivo and to study
the biological effects of APP mutations.
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Introduction

Amyloid precursor protein (APP) has been a focus of intense

investigation because of its central role in Alzheimer’s disease (AD)

pathogenesis [1–3]. It is a ubiquitously expressed, single-pass

transmembrane protein that is constitutively processed into

multiple smaller fragments [4]. Of these, the large ectoplasmic

soluble APPa fragment (sAPPa; generated by a-secretase) exerts

neurotrophic effects, the smaller amyloid-b (Ab) peptides (products

of b- and c-secretases) have been shown to play a pivotal role in

AD pathogenesis, while APP Intracellular domain (AICD), a

product of c-secretase activity, regulates intracellular signaling and

likely also contributes to AD pathogenesis [5,6].

Less is known about the normal physiological functions of APP

compared to its pathological role in AD [7,8]. Previous in vitro

studies suggested that APP plays a role in cell migration and

neuronal extension [9]. At this time, the functions of APP are not

completely understood and studies have produced conflicting

results [8,10–12]. We previously showed that knockdown of APP

in zebrafish results in convergent-extension defects [13]. Most of

the in vivo functional analyses of APP have been performed in

transgenic mice that lack APP or the combination of APP and

APP-like protein 2 (APLP2). Deletion of APP alone does not cause

lethality, but the animals show a series of more subtle phenotypic

defects such as reduced grip strength, stunted growth, decreased

brain weight deficits, and impaired LTP [14–16] that can be

rescued by sAPPa [17]. Consistent with theses results, the

extracellular domain of APL-1, an APP homologue in Caenorhab-

ditis elegans, rescues the defects in apl-1 mutants [10]. However,

combined deletion of APP and APLP2 results in postnatal lethality

and a recent study showed that sAPPb (soluble ectoplasmic

peptide produced by BACE cleavage) failed to rescue the lethality

and neuromuscular synapse defects in double-KO mice [11].

The observation that APP/APLP2 double-KO mice display

postnatal lethality indicates that APP performs an important but

redundant function during embryogenesis. Here, we used a

zebrafish (Danio rerio) model system to dissect the functional role

of APP. Zebrafish embryos develop ex vivo, enabling direct

observation of the developing embryo in real time. In addition,

zebrafish offer a number of advantages over mouse models,

including the large number of eggs produced and the ability to

modulate protein expression by antisense morpholino (MO) [18–

20]. In this study we report that knockdown of zebrafish APPb

caused defects in embryonic development and inhibition of axonal

outgrowth of the facial branchiomotor neurons Vp and VII and

spinal motor neurons in a cell-autonomous manner. Interestingly,

we found that only full-length APP (human APP695 or zebrafish

APPb) but not truncated forms, rescued the defective phenotypes,

indicating that both extracellular and intracellular domains of APP

are required for its normal functions.

Results

Zebrafish express two gene products, termed APPa and APPb,

which are homologues of the human APP gene [21]. APPb, a 694-

residue protein, more closely resembles the human APP695

isoform, which is selectively expressed in the brain. Previously

we showed that knockdown of APPb by antisense MO resulted in

impaired embryonic development, resulting in shortened body

axis, deformed tail and small eyes [13], which resembled a

defective convergence-extension phenotype. In the present
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Figure 1. APPb is required for normal zebrafish embryonic development. (A) Schematic representation of APPb-MO blocking the mRNA
splicing site between intron 1 and exon 2 (indicted in red) as used in this study. (B) Western blot analysis of APPb protein in zebrafish embryos at
2 dpf. The lower panel was probed with anti-GAPDH antibody. At 2 dpf, APPb protein migrated as a doublet at 98 KDa with stronger expressions in
the un-injected group and control MO group. With the injection of 10 ng of APPb MO per embryo, APPb protein levels were not detected at 2 dpf.

Knockdown of APP Causes Defects In Axon Outgrowth
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investigation, we studied the effects of APPb knockdown at the

cellular level and examined motor neuron axonal outgrowth.

Knockdown of APPb Results in Abnormal Zebrafish
Development

We injected zebrafish embryos at the one cell stage with APPb

morpholino (APPb-MO) directed at the mRNA splicing site

between intron 1 and exon 2 (Figure 1A, Figure S1) or directed at

the translation initiation site [13] in order to reduce APP levels

throughout the entire embryo. To ensure the effectiveness of APP

knockdown, total protein extracts from embryos at 2 days post-

fertilization (2 dpf) were separated by SDS-PAGE and probed

with an antibody raised to the C-terminal 15 residues of human

APP (the last 15 residues are identical in both species). There was a

dose-dependent decrease in APP protein levels in APPb-MO-

injected embryos compared to uninjected or control-MO-injected

embryos (Figure 1B). By contrast there were no significant changes

in levels of GAPDH, which was used as a loading control. These

results indicate that APPb-MO inhibited the expression of APPb

for at least 48 hours post-injection.

We examined control and treated embryos morphologically

every 24 hours for up to 3 dpf (Figure 1C). Injection of 10 ng

APPb-MO caused defective development, resulting in embryos

with deformed body shapes, shortened and curved tails and

atrophied midbrains compared to uninjected or control-MO-

injected embryos. The morphant phenotype was apparent in some

APPb-MO-injected embryos as early as 1 dpf (compare panels b

and c vs. a, Figure 1C). Approximately 25% of APPb-MO-injected

embryos, which appeared normal morphologically at 1 dpf,

displayed the defective phenotype at the 2 dpf or even at the

3 dpf stage, whereas less than 5% of control-MO-injected or

uninjected embryos showed aberrant development at these stages

(panels d-h). Some of the APPb morphants that shown normal in

morphology at the 1 dpf displayed abnormal morphology at the

2 dpf or 3 dpf. The precise reason why some embryos showed

delayed morphant phenotype is not completely clear. However, it

is possible that small variations in the amount of injected

morpholino may account for the appearance of phenotype at

later days. Quantification from multiple separate experiments

showed that injections of 10 ng APPb-MO caused approximately

50% of embryos to show defective development by 3 dpf

(Figure 1D), whereas less than 10% of the control-MO injected

embryos showed a defective phenotype at this stage. At 1 dpf

about 25% of APPb-MO-injected and less than 5% of control-

MO-injected embryos were defective (red columns in Figure 1D).

At 2 dpf, an additional 20% of APPb-MO-injected embryos had

developed the abnormal phenotype (blue columns; see also arrows

in panels c and f of Figure 1C) and another 5% of embryos

displayed abnormal phenotypes at 3 dpf (orange columns). To

study the specificity of this effect, we co-injected mRNA encoding

zebrafish APPb with APPb-MO and observed that the defective

phenotype was almost completely prevented by co-injecting

350 pg of APPb mRNA (last column in Figure 1D). Injection of

the same amount of mRNA alone did not affect morphological

development (Table S1) or axonal growth (Table S2), suggesting

that there was no toxicity associated with injecting this level of

APPb mRNA. These data indicate that the developmental

abnormalities were caused specifically by reduced APPb levels.

Together, these observations suggest that APPb function is

required for normal embryonic development in zebrafish.

APPb is Required for Normal Motor Axon Outgrowth
During Zebrafish Development

To study the effects of APPb knockdown at the cellular level, we

examined the axonal outgrowth of motor neurons in Tg(isl1:gfp)

fish, which express GFP in facial branchiomotor and spinal motor

neurons [22,23] (kindly provided by Dr. Anand Chandrashekhar).

To minimize the potential for confounded results from severe

developmental defects (the APPb morphants that shown severe

defects in body morphology had defective growth of the axons), we

analyzed only those APPb morphant embryos that showed normal

morphology or only mild morphological abnormality. APPb-MO-

or control-MO-injected embryos were allowed to develop for

3 days and the midbrain region was examined from the ventral

side. Uninjected or control-MO-injected embryos showed the

characteristic cross-wire pattern of nV and nVII (arrowheads and

arrows respectively; Figure 2A, panel a). However, injection of

APPb-MO resulted in almost complete inhibition of nVII axonal

elongation and significant inhibition of nV elongation (arrows in

Figure 2A, panel c). Quantification across multiple experiments

showed (Figure 2B) that injection of APPb-MO caused a

morphant phenotype in approximately 70% of embryos

(n = 151; Figure 2B). Uninjected (n = 132) embryos and embryos

injected with control MO (n = 373) showed normal axonal

elongation (Figure 2A, panels a, b). We further corroborated the

specificity of the morphant phenotype by using translation-block

MO [13], which also produced a similar phenotype in a dose-

dependent manner (Figure 2C). The specificity of the MO effect is

further confirmed by the demonstration that sub-threshold doses

of both MOs, neither of which produced a morphant phenotype

when injected alone, caused defective axonal elongation when

simultaneously administered (Figure 2D). Interestingly, APPa MO

[13] had no effect on axonal elongation (Figure 2E). However,

APPa MO affected migration of the VII neurons (data not shown)

indicating that APPa MO were effective in our assay system but

did not affect axonal elongation. The results above show that

APPb function is specifically required for proper elongation of

faciobrachial motoneurons.

To further establish that the observed abnormal phenotypes

were caused specifically by the knockdown of APPb, we co-

injected APPb-MO with mRNA encoding APPb in embryos at the

one cell stage and observed that in a vast majority of embryos, co-

injection with APPb mRNA rescued the abnormal phenotype

(Figure 2A, panel d; Figure 2B, n = 289). In addition, human

APP695 was also able to rescue the morphant phenotype (see the

result).

We also examined the axonal outgrowth of spinal cord motor

neurons located in the trunk region in the middle of each spinal

With the injection of 4 ng of APPb MO per embryo, weak expression of APPb protein migrating at 98 KDa was observed. (C) Morphological features
of control embryos (a, d, g) and APPb morphant embryos (b, c, e, f, h). Lateral views (anterior to the left and dorsal at the top) of zebrafish embryos.
The gross anatomical phenotype included a deformed body and a shortened and curved tail. In addition, defects in midbrain patterning were
observed (arrows). 1 dpf: a, b, c; 2 dpf: d, e, f; 3 dpf: g, h. (D) APPb mRNA rescues the defective phenotype. There is little effect on normal embryonic
development caused by the injection of control morpholino (APPb mis-match MO). Zebrafish embryos injected with 10 ng of APPb-MO expressed
abnormal phenotypes at the 1 dpf (red), 2 dpf (blue) and 3 dpf (yellow) developmental stages. Embryos co-injected with 10 ng of APPb-MO and
350 pg APPb mRNA expressed normal phenotypes during embryogenesis. Statistical significance was measured comparing APPb-MO embryos and
the co-injected embryos (p = 0.016, p,0.05, in 2-tailed paired t tests).
doi:10.1371/journal.pone.0034209.g001
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Figure 2. Embryos co-injected with APPb-MO and APPb mRNA rescued defective phenotypes of the Vp and VII and spinal cord
nerve projections observed in APPb morphants. (A) Knockdown of APPb disrupts the projections of axons Vp and VII (3 dpf) when injected
with APPb MO. Uninjected embryos and embryos injected with control MO did not show altered axonal outgrowth of neurons Vp and VII. Embryos
injected with APPb-MO expressed axonal inhibition of axons Vp and VII (arrows). The defective phenotype was rescued by co-injection of APPb-MO
and APPb mRNA. Ventral view; anterior, top. (B) Quantification of embryos expressing normal axonal outgrowth of neurons Vp and VII rescued
through co-injection of APPb-MO (splice-block) and APPb mRNA. Uninjected embryos and embryos injected with control MO showed normal axonal
growth of Vp and VII neurons. Embryos co-injected with 10 ng of APPb-MO and 350 pg APPb mRNA rescued the defected phenotype observed in
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cord hemi segment [24]. The uninjected embryos (n = 132) and

those injected with control-MO (n = 373) showed normal devel-

opment, with motor neuron axons projecting from the spinal cord

to the myotomes (Figure 2F, panels a, b; Figure 2G). However,

greater than 90% of embryos injected with APPb-MO exhibited

axonal projections that were shorter and less branched (n = 142;

arrows in panel c in Figure 2C; Figure 2G). The severity of the

abnormal phenotype was dose-dependent (data not shown). When

co-injected with APPb mRNA, less than 25% of morphant

embryos showed spinal cord motor axon inhibition (panel d in

Figure 2F; Figure 2G), indicating that the phenotype was due to

specific knockdown of APPb.

Together, these data provide compelling evidence that APPb is

required for normal axonal outgrowth of facial branchiomotor

neurons Vp and VII as well as spinal cord motor neurons, and a

reduction in APP levels caused defective axonal outgrowth, which

was rescued by co-injection with APPb mRNA.

Downregulation of APPb in Cultured Neurons Affects
Normal Neurite Growth

APP is a transmembrane protein and undergoes constitutive

processing to release cleaved products in extracellular and

intracellular compartments. Thus, APPb can act in cell-autono-

mous or non-autonomous fashions. To examine whether APPb

functions in a cell-autonomous or non-autonomous fashion, we

prepared neuronal cultures from control or APPb-MO-injected

Isl1-GFP embryos. Isl1 promoter is expressed in motoneurons and

sensory neurons [22,23]. Thus, the GFP positive cells in culture

(Figure 3) represent both motoneurons and sensory neurons.

Neuronal cultures prepared from control embryos (un-injected)

exhibited long axons and multiple primary branches (Figure 3A,

panel a) with several secondary branches (arrows). In contrast, the

neuronal cell cultures derived from embryos injected with APPb-

MO exhibited decreased neurite growth (Figure 3A, panel b vs. a)

and significantly reduced branching. These neurons had on

average one primary branch with many secondary branches

(Figure 3A, panel b) and the severity of neurite growth inhibition

increased with increasing dosage of APPb-MO (data not shown).

The longest neurite length measured in control neurons was

130 mm (n = 80; Figure 3B) whereas the longest in the APPb-MO-

injected group was approximately 100 mm (n = 80; Figure 3B). In

general the neurites from the APPb-depleted neurons (n = 14)

showed fewer branches than the control neurons (n = 15;

Figure 3D, E). Since reduced APPb levels caused a decrease in

neuritic length, we asked whether increasing APPb levels would

have the opposite effect. We injected embryos with mRNA

encoding APPb and prepared the neuronal cultures. We found a

trend toward neurite length (n = 26) prepared form APPb over-

expressing embryos being longer than that in control neurons, but

this difference did not reach statistical significance (panel c in

Figure 3A; Figure 3C).

We also examined the morphology of growth cones and noticed

that the growth cones of APPb-depleted neurons were smaller and

had a significantly reduced number of filopodia (Figure 3F, G)

compared to control neurons. Together theses results suggest that

knockdown of APP causes a significant reduction in neurite length

and growth cone complexity, and that this effect is most likely cell-

autonomous.

Downregulation of APPb Induces Cytoskeletal
Disorganization

Cytoskeletal elements play a crucial role in axonal outgrowth as

well as in growth cone formation. The observations that

knockdown of APPb resulted in both reduced axonal outgrowth

as well as aberrant growth cone morphology prompted us to

examine whether these phenotypes were associated with disorga-

nization of the axonal cytoskeleton in APPb morphant embryos.

Uninjected, control-MO- or APPb-MO-injected embryos were

allowed to grow for up to 5 dpf (Figure S2) and were processed for

transmission electron microscopy (EM). We studied the axonal

cytoskeleton in the hindbrain (the region of facial branchiomotor

neurons; Figure 4A) and the trunk region (to observe spinal cord

motor neurons, Figure 4C). To minimize variability in sample

preparation for EM, we examined the hindbrain regions from 5

uninjected embryos, 3 control-MO-injected embryos and

10 APPb-MO-injected embryos. Similarly, the trunk region was

examined in 6 uninjected embryos, 5 embryos injected with

control-MO and 12 embryos injected with APPb-MO. Represen-

tative images are shown in Figures 4A and 4C and quantification

of the number of morphologically normal neurons is shown in

Figures 4B and 4D, respectively. We observed significant

differences in the Mauthner (M) axon and the axons centered

around the Mauthner axon between the APPb morphants and

uninjected or control-MO embryos in both the hindbrain and

trunk regions. Whereas the axons from control embryos were

tightly packed with microtubules (see insets in panels b and d of

Figures 4A, 4C), those from APPb-MO-injected embryos showed

a reduced number of microtubules, which were also loosely packed

(inset in panel f of Figures 4A, 4C). Thus, the cytoskeletal density

in the APPb-MO axons was significantly reduced compared to

controls. It should be noted that sensory axons cannot be

distinguished from other neuronal axons in EM. We cannot rule

out the possibility that other major axonal tracts also show

developmental defects upon APPb-MO injections in EM images.

Nonetheless, these data show that reduced APPb levels during

development resulted in a dis-organized axonal cytoskeleton,

the APPb morphant group. Statistical significance was established between APPb-MO embryos and co-injected embryos (p = 0.0168, p,0.05, in 2-
tailed paired t test). (C) The translation-block MO of the APPb caused the identical defected phenotype on the axonal outgrowth of the Vp & VII
neurons as the splice-block MO of the APPb; both were dose-dependent. (D) The morphants showed an identical defected phenotype on axonal
outgrowth of Vp & VII neurons when co-injected with the translation-block MO (3 ng per embryo) of the APPb and the splice-block MO (6.5 ng per
embryo) of the APPb at lower doses that did not produce a defective phenotype individually. (E) There was no defective phenotype of axonal
outgrowth of Vp & VII neurons in the APPa morphants when injected with the translation-block MO against APPa. (F) APPb function is required for
normal nerve outgrowth of the spinal cord. Lateral views of 3 dpf embryos (anterior is to the left, dorsal is at the top). Uninjected embryos and
control embryos expressed normal motor nerve projections from the spinal cord to the myotomes (5–10 somites). Embryos injected with 10 ng of
APPb-MO (splice-block) expressed severe motor neuron axon defects, including aberrant projections and decreased branching (arrows pointing at
axon). Embryos co-injected with APPb-MO and APPb mRNA rescued the severe phenotype observed in the morphant group. The white rectangle in
(c) is an amplification of the spinal cord neurons, which shows branching defects of the neurites in the APPb morphants. (G) Downregulation of APPb
affects normal projection of motor nerves in the spinal cord. Compared with the control MO and uninjected groups, embryos injected with 10 ng
APPb-MO (splice-block) showed significant axonal inhibition. Embryos co-injected with 10 ng of APPb-MO and 350 pg of APPb mRNA rescued the
APPb morphant phenotype. Statistical significance was observed between morphant embryos and co-injected embryos (p = 0.0001, p,0.05 in 2-
tailed paired t test).
doi:10.1371/journal.pone.0034209.g002
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Figure 3. Neuronal cell cultures derived from embryos injected with APPb-MO had decreased neurite length. (A) Neuronal culture
from control embryos and APPb mRNA (350 pg) over-expression embryos exhibited on average 3 primary branches with several secondary branches.
Neuronal cultures from embryos injected with 8 ng of APPb-MO exhibited on average 1 primary branch with many secondary branches. 8 ng of
APPb-MO is sufficient to inhibit neruite growth, so embryos were injected with 8 ng of the APPb MO instead of the 10 ng to limit the potential for
toxicity. The neurons were cultured for 2 days before fixing. (B) Down-regulation of APPb in cultured neurons affected normal neurite growth. The
neurons from the embryos injected with 8 ng of APPb-MO showed a decrease in neurite length compared to neurons from the control embryos (un-

Knockdown of APP Causes Defects In Axon Outgrowth

PLoS ONE | www.plosone.org 6 April 2012 | Volume 7 | Issue 4 | e34209



which may be responsible for the impaired axonal outgrowth and

aberrant growth cones in APPb morphant larvae.

Human APP695, but not APPswe, Rescued Phenotypic
Defects in APPb Morphant Embryos

Since the defective phenotype caused by APPb knockdown

could be rescued by expression of APPb (Figure 1), we next asked

whether expression of human APP (APP695) could also rescue the

morphant phenotype. We co-injected APPb-MO embryos with 59

capped APP695 mRNA at the one cell stage and inspected the

embryos every 24 hours for 3 days for morphological abnormal-

ities (Figure 5A) and axonal outgrowth of neurons Vp & VII

(Figure 5B) as well as spinal cord motor neurons (Figure 5C). Like

APPb mRNA, embryos co-injected with APP695 mRNA had a

rescued morphant phenotype, as over 85% of embryos were found

to be normal at the 3 dpf stage when co-injected with APP695

mRNA compared to less than 50% when injected with APPb-MO

alone (n = 137, Figure 5A). Interestingly, mRNA encoding

APPswe mutant protein was unable to rescue the phenotype, as

approximately 60% of embryos were found to be abnormal when

co-injected with APPswe mRNA compared to approximately 53%

embryos injected with APPb-MO alone (Figure 5A). To ensure

that the mRNA alone did not cause any significant toxicity, we

injected the same amount of mRNA without APPb-MO and

observed that APP695 mRNA caused no abnormality and that

APPswe mRNA injection alone caused approximately 15% of

embryos to develop abnormally (last 2 columns in Figure 5A;

Table S3, S4, S5).

We extended these observations to nV and nVII outgrowth

(Figures 5B, 5D) and spinal motor neurons (Figures 5C, 5D). We

observed that injection of APPb-MO alone caused a morphant

phenotype, but co-injection with APP695 mRNA significantly

rescued the morphant phenotype for both sets of motor neurons.

APPswe mRNA was much less effective in reversing the defective

phenotype (data not shown). Quantification of these data indicated

that while only 30% of embryos injected with APPb-MO alone

showed normal outgrowth of nV and nVII neurons, co-injection

with hAPP695 mRNA overwhelmingly rescued the phenotype,

with over 90% of embryos developing normally (Figure 5D). Thus,

wild-type APP695 mRNA was equally effective in rescuing the

APPb morphant phenotype in all 3 of our experimental measures:

morphological abnormality (as observed by small body, deformed

tail etc.), outgrowth of facial branchiomotor neurons, and

outgrowth of spinal motor neurons. However, rescue by APPswe

was less efficient. Thus, these results collectively indicate that

human APP695, which shares 69% homology with zebrafish APPb,

can functionally replace the latter during embryonic development.

Moreover, these results suggest that a lack of APP function can

result in multiple phenotypic defects, with certain phenotypes

being more sensitive to this change.

Full-length APP, but not Truncated Constructs, Rescues
APPb Morphants

Since full-length zebrafish APPb and human APP695 were able

to rescue the developmental defects caused by reduced APPb

levels, we next used this system to map the functional domain in

APP that was necessary for this rescue. Embryos were co-injected

with the indicated truncated APP mRNA constructs (Figure 6A)

and were examined every 24 ng hours over 3 days of

development. We observed that the extracellular domain of APPb

(APPb-cD99), which is equivalent to human sAPPb, was not able

to rescue the defective phenotype. Similarly, APPb-C99 peptide

was also unable to rescue the defect, indicating that both

extracellular and intracellular domains of APPb are necessary

for proper APP functioning. Likewise, both human sAPPa and

sAPPb (hAPP-cD83, and hAPP-cD99, respectively in Figures 6A,

6B) were non-functional in this assay. Importantly, deletion of the

last 18 residues of human APP was sufficient to render APP non-

functional. Finally, free cytosolic AICD, which contains the last 18

residues of APP, was also unable to rescue the morphant

phenotype, showing that both extracellular and intracellular

domains of APP are required for its full functional activity.

Injections of mRNA alone did not produce any significant

deleterious effects (Figure 6C). Only, sAPPa and AICD encoding

mRNA when injected alone showed moderate toxicity (about 20%

abnormal embryos, Figure 6C; see also Figure S3; Table S6, S7).

To further verify these results, we examined the potential of

hAPP-cD18R to rescue the outgrowth defects of motor neurons.

Again, we noticed that whereas full-length hAPP695 was able to

rescue up to 90% of embryos injected with APPb-MO (Figure 6D),

this number was significantly reduced in the case of hAPP-cD18R.

A similar result was observed in spinal motor neuron outgrowth

(Figure 6E). Together, our results provide compelling evidence

that C-terminal 18 residues are necessary but not sufficient for

proper APP functions during embryonic development in zebrafish.

Discussion

In this study we injected zebrafish embryos with antisense MO

to reduce APPb levels throughout the entire embryo and

examined live embryos to study embryonic development, axonal

outgrowth of facial branchiomotor neurons and outgrowth of

spinal motor neurons at different stages of development. Our data

show that a reduction in APPb levels produces dramatic

developmental defects and results in deformed (morphant)

embryos. More importantly, our studies show that APPb function

is required for proper axonal outgrowth of motor neurons in

zebrafish. To our knowledge, this is a first investigation of the

effects of APP knockdown on axonal outgrowth in a live vertebrate

embryo.

injected). The average neurite length of a control neuron was about 130 mm, compared to only about 100 mm in the morphant embryos. Statistical
significance was observed between control neurons and APPb knockdown neurons (8 ng APPb MO) (p = 0.0007, p,0.05 in two-tailed paired t-test).
(C) Quantifying the effects of APPb mRNA in cultured neurons. No significant difference was observed in neurite length between control and APPb
mRNA over-expression cultured neurons. Control cultured neurons expressed a shorter neurite length compared to APPb mRNA over-expression
neurons. No statistical significance was observed (p = 0.1915, p.0.05 in two tailed paired t-test). (D) There were fewer branches of neurites in the
APPb knockdown neurons (8 ng of APPb MO) than in control neurons (WT); only branches with more than 5 mm were counted. The neurons were
cultured for 2 days. (E) Down-regulation of APPb in cultured neurons affected the number of branch tips. Compared to control neurons, APPb-MO
cultured neurons showed a decreased number of branch tips of the longest neurite. Statistical significance was observed between control and APPb-
MO cultured neurons (p = 0.0074, p,0.05 in two tailed paired t-test). (F) Down-regulation of APPb in cultured neurons affected the morphology and
projection of growth cones and filopodia. APPb knockdown neurons expressed abnormal growth cone morphology and a decreased number of
filopodia (20 hour neuron cultures). (G) Reduced number of filopodia in APPb knockdown cultured neurons. Compared to control cultured neurons,
APPb-MO (8 ng per embryo) cultured neurons expressed a reduced number of filopodia. Statistical significance was observed between control and
APPb cultured neurons (p = 0.0091, p,0.05 in two tailed paired t-test).
doi:10.1371/journal.pone.0034209.g003
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Figure 4. Analysis of Transmission Electron Microscopy images of axons in zebrafish hindbrain and trunk regions (5 dpf). (A)
Transmission Electron Microscopy (TEM) images of axons in zebrafish hindbrain. Compared to uninjected and control MO-injected embryos, zebrafish
embryos injected with APPb-MO (8 ng) expressed a decreased density and disorganization of the cytoskeleton in both the Mauthner (M) axons and
the axons around the M axon. Panels b, d, and f are amplifications of the boxed areas in panels a, c and e, respectively. The white rectangles in panels
b, d, and f are amplifications of the areas marked with red 5-point stars. (B) Quantifying the defects of axonal cytoskeletal morphology in the
hindbrain of APPb morphant embryos. At 5 dpf, zebrafish embryos injected with 8 ng of APPb-MO showed a disruption in axon cytoskeletal
dynamics in the hindbrain region. For the TEM experiment, the embryos were injected with 8 ng of the APPb MO instead of 10 ng. The embryos that
were injected with 8 ng of the APPb MO experienced disorganization of the axonal cytoskeleton; the cytoskeleton of the embryos that were injected
with 10 ng of APPb MO experienced severely defects in or loss of axons. Statistical significance was observed comparing uninjected (263 axons) and
morphant (662 axons) larvae (p = 0.0029, p,0,05 in two-tailed paired t-test). Statistical significance was also observed between control MO
(217 axons) and morphant larvae (p = 0.0466, p,0.05 in two tailed paired t-test). (C) TEM images of axons at in the zebrafish trunk section. Compared
to uninjected and control MO-injected larvae, zebrafish larvae injected with 8 ng of APPb-MO expressed a decrease in axonal density and had defects
in cytoskeletal organization of axons, including the M axon. Panels b, d, and f are amplifications of the boxed areas in panels a, c and e, respectively.
The white rectangles in panels b, d and f are amplifications of the areas marked with red 5-point stars. (D) Quantifying defects of axonal cytoskeletal
morphology in the trunk region of APPb morphant embryos. At 5 dpf, zebrafish embryos injected with 8 ng of APPb MO expressed an abnormal
phenotype in axonal cytoskeletal organization in the trunk region. Statistical significance was observed comparing uninjected (217 axons) and
morphant (562 axons) larvae (p = 0.0006, p,0.05 in two tailed paired t-test). Statistical significance was also observed between control MO
(212 axons) and morphant larvae (p = 0.0016, p,0.05 in two tailed paired t-test).
doi:10.1371/journal.pone.0034209.g004
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Figure 5. hAPP695 (hAPP), but not hAPP-swe, effectively rescued defects in axonal outgrowth in APPb-MO morphants. (A) Co-
injection of hAPP695 mRNA rescued APPb morphant embryonic morphology. As depicted, embryos were inspected over a period of 3 days. Co-
injection of full length human APP695 mRNA rescued the defective phenotype observed in the APPb morphant embryos (*, p = 0.026, p,0.05 in two
tailed paired t-test). In contrast, human APP-Swedish mutation (D, p = 0.5241, p.0.05) and AICD mRNA failed to rescue the APPb morphant
phenotype. Combined injections (10 ng of APPb-MO and 350 pg of AICD mRNA) caused more severe deficits compared to injecting APPb-MO alone.
(B) Co-injection of hAPP695 mRNA rescued axonal outgrowth of motor neurons Vp and VII of the APPb morphant. Zebrafish embryos co-injected with
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These studies revealed two important aspects of the biological

functions of APP. First, we provide direct evidence that reducing

APPb levels results in impaired axonal outgrowth of motor

neurons in live embryos. APP belongs to a family of proteins and

studies on single APP knockout mice revealed only subtle

phenotypes, very likely due to the presence of functionally

redundant members of the APP gene family [25]. By contrast

APP and APLP2 compound knockout mice show lethality in the

early postnatal period [26]. Although the reasons for postnatal

lethality are unclear, the findings from mouse models indicate that

APP performs an essential function during embryogenesis.

However, mouse embryos develop in utero and therefore do not

provide an optimal model to directly observe developing embryos.

In contrast developing zebrafish embryos are readily accessible ex

vivo for direct visualization. We believe that our findings

demonstrate the potential of the zebrafish model to examine

APP function during embryogenesis.

The second important conclusion of the present investigation is

that both extracellular and intracellular domains of APP are

necessary for proper APP function and that the APP mutation

(APPswe) that causes familial AD is not able to compensate for the

loss of wild-type APP in the zebrafish model. The APP family of

proteins is highly evolutionarily conserved and has highly

conserved domains in both the extracellular and intracellular

regions of APP. Full-length zebrafish APPb and human APP695

were both able to rescue the APPb knockdown morphant

phenotype, but none of the truncated mutant proteins were able

to do so effectively. We cannot completely rule out the possibility

that the truncated APP fragments did not fold correctly or were

rapidly degraded and therefore could not rescue the defective

phenotype. However, studies in mouse models have also shown

that APP fragments are unable perform the functions of full-length

APP [11,27]. Thus, we believe that our data further confirm that

both extracellular and intracellular domains of APP are essential

for APP function. These observations are consistent with the fact

that both domains of APP contain highly conserved motifs. The

finding that APPswe was unable to rescue axonal outgrowth

defects in motor neurons or to rescue defective development could

be of relevance to AD pathology. APPswe undergoes increased b-

secretase processing and generates more Ab peptides [28] and the

currently favored amyloid hypothesis suggests that increased Ab
production plays a crucial role in causing AD. Our findings reveal

an additional pathological consequence of Swedish mutation,

namely the inability of the mutant protein to support normal

functioning of APP during embryogenesis.

We provide clear evidence that reducing APPb levels causes

impaired axonal outgrowth in vivo and future studies are required

to understand the underlying mechanism. Our EM data show

gross disorganization of cytoskeletal elements in axons of APPb-

depleted embryos. The connections between APPb knockdown

and cytoskeletal disorganization are unclear but it is likely that

APP intracellular domain plays an important role in this

phenomenon. AICD is known to exhibit multiple biological effects

including the regulation of gene expression involved in cytoskeletal

organization [29,30]. AICD contains the conserved ‘EYNPTY’

motif, which acts as a docking site for multiple cytosolic adapter

proteins including Fe65, JIP1, x-11a and others [31,32]. The

finding that the hAPP-cD18R mutant, which lacks only the last 18

residues (including the ‘EYNPTY’ motif), is unable to rescue the

APPb morphant phenotype confirms the importance of AICD in

APP function. Indeed, a recent study in transgenic mice arrived at

similar conclusion [33]. It is important to note that APPb-c99,

which does contain the EYNPTY motif but lacks most of the

ectoplasmic domain (including both E1 and E2 conserved motifs),

is also non-functional in the zebrafish model we describe here.

Thus, APP intracellular domain is necessary but not sufficient for

the proper functioning of APP.

Finally, we believe that the zebrafish model system used here

will be crucial for understanding APP function in vertebrates.

C. elegans and drosophila animal models have generated important

insights into APP function, but these invertebrate models have also

generated information which is inconsistent with that observed in

mouse models [34]. On the other hand, although the information

generated from studying knockout mouse models is more relevant

to humans (as well as to AD pathogenesis), embryonic develop-

ment in mice is not amenable to direct examination of live

embryos. Moreover, different mouse models have generated

inconsistent or contradictory information, perhaps due to genetic

complexity [3]. Thus, the zebrafish model occupies a unique

niche, as it is relevant to humans as a vertebrate animal and yet it

also provides an unmatched in vivo system to directly observe

events during embryogenesis. Our findings that this model can be

successfully used to distinguish the biological activity of APPswe

mutant protein from that of wild-type APP provides a powerful

demonstration of the potential of the zebrafish model to study

familial AD mutations in APP.

Materials and Methods

Zebrafish
The Tg (isl 1: GFP) line of zebrafish (Danio rerio) [23] was

maintained at 28uC under a controlled photoperiod (14 hour light:

10 hour dark cycle). Embryos were collected from natural

spawning of adult fish and raised in an incubator at 28.5uC.

Embryos and larvae were fixed in 4% phosphate-buffered

paraformaldehyde (PFA) (Sigma) at 4uC and stored at 4uC until

use for further analysis. Pigmentation of embryos and larvae was

inhibited by adding 0.003% PTU (Sigma) to water. All

experimental procedures and fish protocols in this study were

approved by the Cleveland Clinic Institutional Animal Care and

Use Committee.

mRNA/Morpholino Microinjection
Full-length APPb cDNA (Clone ID 7086881, Open Biosystem)

and truncated APPb-c99, APPb-cD99 were subcloned into T3TS

vector and linearized with BamH I; full-length human APP695

full length human APP695 rescued the APPb morphant axonal outgrowth phenotype of motor neurons Vp and VII (arrow). (C) Embryos co-injected
with hAPP695 rescued the defective phenotype of motor axons in the spinal cord in APPb morphant embryos. Uninjected embryos expressed normal
motor neuron projections from the spinal cord to the myotomes (5–10 somites). Embryos injected with (10 ng) APPb-MO expressed severe motor
neuron axonal defects including aberrant projections and decreased branching. Embryos co-injected with APPb-MO and hAPP695 mRNA had a
rescued phenotype compared to the morphant group. Lateral views of 3 dpf embryos (anterior is to the left, dorsal is at the top). (D) Quantification of
embryos expressing normal axonal outgrowth of neurons Vp and VII and spinal cord rescued through co-injection of hAPP695 mRNA. Injection of
10 ng of APPb-MO caused abnormal axonal outgrowth of motor neurons Vp and VII in 75% of embryos. Co-injection with mRNA encoding full-length
human APP695 overwhelmingly rescued the APPb morphant phenotype (p = 0.0075, p,0.05 in two tailed paired t-test) (3 dpf). Embryos injected
with 10 ng APPb-MO showed significant inhibition of spinal cord axon outgrowth. Embryos co-injected with 10 ng of APPb-MO and 350 pg of
hAPP695 mRNA rescued the APPb morphant phenotype (p = 0.0101, p,0.05 in two tailed paired t-test).
doi:10.1371/journal.pone.0034209.g005
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(hAPP), hAPPswe (carrying NL mutation), hAPP-CD18R, hAPP-

CD83R, hAPP-CD99R (lacking C-terminal 18, 83 or 99 residues,

respectively), AICD (containing C-terminal 59 residues) were

subcloned into the pCS2+ vector and linearized by Not1 digestion

[16]. The mRNA for each gene was transcribed using an

mMessage mMachine Kit (Ambion). 350 pg of mRNA was

injected at the one-cell stage.

Antisense morpholino oligonucleotides (MOs) (Gene Tools)

were designed to target the APPb intron1-exon2 boundary

(Figure 1A), 59 GCACCTGCCAACAGCACAACCGGCA 39

(APPb MO); a 5 base mismatch morpholino as the control

morpholino: 59 GCAGCTGCGAACACCACAAGCGCCA 39

(misAPPb MO) (Figure S1); we also used a APPb MO

(translation-block) [13] and a APPa MO (translation-block) [13]

in this study. Fish embryos at the one-cell stage were injected with

Figure 6. Truncated APP fragments cannot rescue the APPb morphant phenotype. (A) Schematic representation of the full length Amyloid
Precursor Protein (APP) and the truncated mutations used in this study. (B) Full length APP is required for normal embryonic development. As
depicted by the graph, embryos co-injected with APPb-MO and APPb-cD99R or APPb-c99 or hAPP-cD18R or hAPP-cD83R or hAPP-cD99R or AICD
mRNA did not rescue the APPb morphant embryos. By contrast, excluding hAPP-cD18R, these truncated APP fragments increased the number of
abnormal embryos in the APPb morphants. (C) The morphological effects on embryonic development of over-expression of the truncated mutants of
APP mRNA (350 pg). The APPb-c99, hAPP-cD83R, hAPP-cD99R and AICD have limited domain negative effects on embryo development compared
with full length APPb and hAPP. (D) Human APP-cD18R partially rescued the defective phenotypes of axons Vp and VII observed in APPb morphants
compared to full length hAPP. (E) Human APP-cD18R partially rescued the defective phenotypes of spinal cord axons observed in APPb morphants
compared to full length hAPP.
doi:10.1371/journal.pone.0034209.g006
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the indicated amount of APPb MO or misAPPb MO. For the

rescue experiments, the mixture of the APPb MO (10 ng) and

mRNA (lacking the morpholino target sequence; 350 pg) was

injected at the one-cell stage of each embryo.

Western Blotting
Proteins were isolated by homogenizing 2 dpf embryos in RIPA

buffer (Millipore) containing protease inhibitor cocktail (Sigma).

SDS-PAGE and western blotting were performed as described

previously [16]. The antibodies used were anti-APP C-terminal

antibody 0443 (Calbiochem, 1:2000) and GAPDH (Chemicon,

1:4000). Band density was normalized to GAPDH loading

controls.

Live Larvae Confocal Images
Live larvae were anesthetized in a 0.10% tricaine (Sigma) solution

in fish water and then mounted in a 1% low-melt agarose 0.10%

tricaine solution. Larvae were placed on glass slides under coverslips

and were imaged using a Leica-SP5 Confocal Microscope.

Whole-mount Immunofluorescence
Larvae were euthanized in 0.10% tricaine anesthetic, fixed in

4% PFA at 4uC overnight at the designated dpf, treated with

collagenase (1 mg/mL in water) at 25uC for 30 min and bleached

in 3% hydrogen peroxide and 1% KOH for 30 minutes. After

washing in PBS (pH 7.4) with 0.01% Triton-X100 (PBT), larvae

were incubated in blocking buffer (5% BSA in PBS, with 0.01%

Triton-X100) with 1:500 diluted primary mouse anti-GFP

antibody (N86/38, 75–132; UC Davis/NIH Neuromab Facility

Antibodies Incorporated) overnight at 4uC. After washing with

0.01% Triton-X100 in PBS, this was followed by 1:500 diluted

Alexa-Fluor-488 goat anti-mouse conjugated secondary antibody

(Invitrogen, A-11029). The larvae were mounted with a 1% low-

melt agarose and imaged with a confocal microscope with

excitation lasers at 488 nm (Fluorescein).

Neuron Cultures and Immunostaining
GFP-marked neurons were obtained from the Tg (isl 1: GFP)

line of zebrafish embryos. Embryos developed at 24–26uC and

were collected after 24 hours. Following washing with sterile

water, the embryos were treated with 70% ethanol for 3 seconds

and then washed 3 times with Neurobasal medium (Gibco, 21103,

no l-Glutamine) containing 100 u/ml penicillin, 100 mg/ml

streptomycin, 2 mm/ml B-27 supplement (GIBCO), and 28 mM

L-Glutamine. Approximately 50 larvae were deyolked by

puncturing the yolk sac with a 100 ml pipette tip and then washed

by suspending them in medium 3 times. The washed larvae were

dissociated by passing the 10 ml tip 100 times and then sat for

5 minutes before collecting the supernatant. The same procedure

was repeated 3 times. The cells (neurons) in the combined

supernatant were filtered with a 40 mm Nylon filter (BD Falcon,

352340) and then transferred into a COSTAR 24 well cell culture

cluster (3524) that was pre-coated with poly-D-lysine. The cultures

were plated at a cell density of 30–50 embryos per well. The

cultures were maintained at 25uC for 2 or 3 days. Following the

removal of the medium, neurons were fixed in 4% PFA at 4uC
overnight. The cultured neurons were washed with PBS with

0.01% Triton-X100 3 times and then were incubated with

blocking buffer (5% BSA in PBS with 0.01% Triton-X100) for

2 hours at 25uC. The mouse anti-GFP antibody (1:500 dilution)

was used as primary antibody incubated overnight at 4uC.

Thereafter, the cultured neurons were washed 3 times with

0.01% Triton-X100 and then incubated with Alexa-Fluor-488-

conjugated secondary antibody (1:500 diluted) at 4uC for

overnight. The stained neurons were imaged by fluorescence

microscopy (Leica DM5500B) or confocal microscopy.

Axonal Length Quantification
The stained cultured neurons were visualized under a Leica

fluorescent microscope with attached mercury light bulb source

and filter cubes. GFP was visualized in the green channel. Neurons

were randomly selected and images were taken via the Leica

Microsystems_AP software program in the green channel. Axonal

length was measured by tracing the longest axon of each imaged

neuron. Measurements were properly recorded and documented.

Transmission Electron Microscopy (TEM) Analysis
Larvae were collected at 5 dpf (days post fertilization),

anesthetized with tricaine (Sigma), and then fixed with fresh 4%

formaldehyde in 1% glutaraldehyde in PBS at 4uC overnight. The

larvae were transferred to 1% osmium tetroxide and dehydrated

using a graded ethanol series followed by treatment with propylene

oxide and embedded in Epon-812 resin. Ultra-thin sections (50–

60 nm) were mounted on grids and post-stained with 3% uranyl

acetate in 50% ethanol and 1% lead citrate in 0.1 M sodium

hydroxide and imaged under a Philips Tecnai G2 20 S-TWIN

microscope.

Statistical Analysis
Statistical analysis (paired t tests) was performed using the

software package GraphPad Prism Software. Differences were

considered to be significant with a p-value ,0.05.

Supporting Information

Figure S1 The information about the design of the APPb
morpholino blocking the mRNA splicing site between
intron 1 (indicted in black) and exon 2 (indicted in red).
(TIF)

Figure S2 Embryos injected with APPb-MO (splice-
block) still expressed motor neuron axon defects at
5 dpf.
(TIF)

Figure S3 Morphological features of normal (a, c, e) and
abnormal (b, d, f) embryos injected with APP mRNA and
its truncated mRNA.
(TIF)

Table S1 The embryos injected with the 350 pg of the
zebrafish APPb mRNA expressed the normal morphol-
ogy.
(TIF)

Table S2 The embryos injected with the 350 pg of the
APPb mRNA were normal on axon growth.
(TIF)

Table S3 About 95% of the embryos injected with
220 pg–350 pg of the hAPP695 mRNA were normal.
(TIF)

Table S4 There was no toxicity on the embryo develop-
ment when injecting 350 pg of the hAPP695 mRNA per
embryo.
(TIF)

Table S5 The embryos injected with the 350 pg of the
hAPP695 mRNA expressed the normal axon growth.
(TIF)

Knockdown of APP Causes Defects In Axon Outgrowth

PLoS ONE | www.plosone.org 12 April 2012 | Volume 7 | Issue 4 | e34209



Table S6 The embryos injected with 350 pg of the hAPP-
D18R mRNA were normal on morphology.

(TIF)

Table S7 The embryos injected with 350 pg of the hAPP-
D18R mRNA expressed the normal axon growth.

(TIF)
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