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Integrative analysis identifies two molecular and
clinical subsets in Luminal B breast cancer
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Integrative analysis identifies
two molecular and clinical
subsets in Luminal B breast cancer

Huina Wang,1,6 Bo Liu,2,6 Junqi Long,1 Jiangyong Yu,3 Xinchan Ji,1 Jinmeng Li,1 Nian Zhu,1 Xujie Zhuang,1

Lujia Li,1 Yuhaoran Chen,1 Zhidong Liu,4,* Shu Wang,5,* and Shuangtao Zhao4,7,*

SUMMARY

Comprehensive multiplatform analysis of Luminal B breast cancer (LBBC) speci-
mens identifies two molecularly distinct, clinically relevant subtypes: Cluster A
associatedwith cell cycle andmetabolic signaling and Cluster Bwith predominant
epithelial mesenchymal transition (EMT) and immune response pathways. Whole-
exomesequencing identified significantlymutatedgenes includingTP53,PIK3CA,
ERBB2, andGATA3with recurrent somatic mutations. Alterations in DNAmethyl-
ation or transcriptomic regulation in genes (FN1, ESR1, CCND1, and YAP1)
result in tumor microenvironment reprogramming. Integrated analysis revealed
enrichedbiological pathways and unexploreddruggable targets (cancer-testis an-
tigens, metabolic enzymes, kinases, and transcription regulators). A systematic
comparison betweenmRNA and protein displayed emerging expression patterns
of key therapeutic targets (CD274, YAP1, AKT1, and CDH1). A potential ceRNA
network was developed with a significantly different prognosis between the
two subtypes. This integrated analysis reveals a complex molecular landscape
of LBBC and provides the utility of targets and signaling pathways for precision
medicine.

INTRODUCTION

Breast cancer is the most common malignant tumor in women that poses a serious threat to women’s life

and health. According to the World Health Organization (WHO), the incidence of breast cancer reached

2.06 million in 2020 worldwide, replacing lung cancer as the ‘‘world’s leading cancer’’.1 And China

has the largest number of cases, with more than 410,000 breast cancer patients currently. In the past 10

years, the incidence of breast cancer in China has increased by 3–4% per year on average. Therefore,

exploring the pathogenesis of breast cancer and developing precise screening and treatment methods

can have a significant impact on improving women’s health.

Breast cancer is normally divided into four molecular subtypes, including HER2 positive, triple negative,

Luminal A, and Luminal B, based on immunohistochemistry. Among them, Luminal breast cancer is defined

as a hormone receptor (ER and/or PR) positive breast cancer, which can be divided into Luminal A and

Luminal B according to the expression of HER2 and Ki67. Luminal A is HER2 negative breast cancer with

Ki67 < 14%, while the rest are Luminal B subtype. As reviewed by Metzger-Filho, O et al.,2 Luminal B breast

cancer (LBBC) accounts for a higher proportion (40%) of all breast cancer subtypes, with complex clinico-

pathological features, such as large mass, higher chance of lymph node involvement, low grade of histo-

logical differentiation, and relative insensitivity to endocrine therapy and, therefore, with worse prognosis

compared to the Luminal A subtype.3 Furthermore, even within the LBBC category, prognosis varies greatly

due to the high grade of disease heterogeneity. For example, some LBBC patients portend a similar prog-

nosis with HER2 positive and triple negative breast cancers.4 Fortunately compared with other types, LBBC

has higher specificity in clinical treatment. The expert consensus in the 12th St. Gallen International Breast

Cancer Meeting (2011) emphasized that endocrine therapy combined with chemotherapy could be consid-

ered to treat patients with a high expression of Ki67 in LBBC. The selection of treatment regimens depends

on various factors such as the patient’s hormone receptor expression level, risk factors, and other relevant

clinical factors. The high expression of HER2 and Ki67 in LBBC and the insensitivity to endocrine therapy
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were the reasons for the lower survival rate and poor prognosis compared with Luminal A breast cancer.

Blows et al. analyzed 12 studies involving 10,159 LBBC patients with poor prognosis within 5 years to diag-

nosis.5 Generally, LBBC has complex clinical characteristics and poor therapeutic effects, therefore, it is

very important to use biomarkers to refine the molecular classification of LBBC and explore an untried

way to achieve a precise treatment and improve its prediction accuracy.

In order to address these challenges, in this paper, the LBBC patients are classified into Cluster A (cell

cycle-enriched group) and Cluster B (EMT and immune-related group) according to gene expression

data to maximize the differences in prognosis within these two groups, and then deep excavation is per-

formed based on tumor multi-omics data in two clusters. The integrative proteogenomic analysis revealed

innovative therapeutic targets in signaling proteins, metabolic enzymes, kinases, and cancer testis antigens

for LBBC treatment. This study provided a rich source characterizing proteogenomics of LBBC, and further

informed strategies to target LBBC vulnerabilities.

RESULTS

The multiple omics classification of LBBC

To understand the workflow of biological information in LBBC, we obtained 187 LBBC samples from 1,027

breast cancer samples in the TCGA database,6 in which the subtype was defined based on the PAM50 clas-

sification system (see Figure 1A). Tables S1, S2, and S3 provide a summary of the clinical and pathological

characteristics enrolled in this study. A total of 182 (97%) patients were treated with surgery, with a median

follow-up survival of 23.92 (95%CI: 20.24–32.03) months (see Table S1). LBBC patients in the TCGA

database with initial diagnoses underwent array-based copy number aberration (CNA) profiling and

whole-genome sequencing analysis to detect genomic alterations, RNA sequencing (RNA-seq) analysis

to detect the expression of lncRNAs, miRNAs, and mRNAs, DNA methylation analysis to evaluate

epigenome, and reverse phase protein array (RPPA) analysis to quantify the proteins expression.

We processed the TCGA data to address missing values by removing genes with missing expression in

more than 70% of the samples. This resulted in 16,875 mRNAs out of 19,641. We then identified minimal

batch effects through PCA analysis (see Figure S1A). Of these, 4,248 DEGs were filtered between normal

and tumor for the subsequent analysis (see Figure S1B). A total of 2,762 gene groups were detected and

quantified in all 187 samples (see Figure 1B, top), including those corresponding to classic breast can-

cer-associated genes like the cell cycle gene CCND1, targeted therapy gene ERBB2, familial inherited

genes BRCA1/2 and the luminal cell transcriptional program specified gene GATA3, for which both germ-

line polymorphisms and somatic SNVs are associated with patient prognosis. We divided the 4,248 gene

groups into deciles based on their median abundance (see Figure 1B, bottom). As expected, high-abun-

dance mRNAs were observed in a larger fraction of patients, and most breast cancer deriver genes were

detected in over 70% of the LBBC samples, including APOB, KRT31/75 and ROS1.

To define molecular subgroups of LBBC, we first selected the top 1000 genes with the highest standard

deviation andmean value of log2 expression from 4,248 DEGs (see Figure S1C and Table S4). We identified

Figure 1. Proteogenomic landscape of TCGA LBBC

(A) Study overview showing the clinical characteristics of LBBC patients enrolled in this cohort (n = 187) and the number of samples with whole-genome

sequencing, DNA methylation data, RNA-seq including lncRNAs, miRNAs and mRNAs, and reverse phase protein array (RPPA) data (including

phosphorylation data). The data were tested for batch effect correction and missing values were processed by removing genes that were missing more than

70% of all samples.

(B) Distribution of mRNA. The median value of mRNA expression in all samples was used to measure the intensity of mRNAs and the intensity interval of all

mRNAs was divided into 10 equal parts, so that the intensity of all genes could be mapped to 1–10. The top bar graph shows the total counts of mRNAs

contained in the different numbers of samples, which can be seen to contain 2,762 genes quantified in the 187 LBBC samples. The scatterplot at the bottom

shows the distribution of genes of different intensities and marks the names of genes that are associated with cancer or are biologically important.

(C) Unsupervised hierarchical clustering of 187 samples (k = 2) using the top 1,000 variable genes. Clinical covariatare shown in the heatmap above. The

DEGs were performed within RNA expression values for either mRNA (n = 537), miRNA (n = 9), or lncRNA (n = 153), within protein expression values (n = 19)

and DNA methylation values (n = 26,284) in the whole LBBC cohort, and the names of cancer-related genes were labeled on the right. Fisher’s exact test:

* <0.05, ** <0.01, *** <0.001.

(D) The different subtypes(i.e., ER-PR-HER2-, ER + PR-HER2-, ER + PR-HER2+, ER + PR + HER2-, and ER + PR + HER2+) status between cluster A and B.

chi-square test, p = 0.027.

(E) Four quantiles (i.e., Q1, Q2, Q3 and Q4) of Ki-67 mRNA expression between cluster A and B. chi-square test, p = 0.123.

(F) Violin plot shows Ki-67 mRNA expression between Clusters A and B. t test, p = 0.510.

(G) Differences in patient overall survival between the two Luminal B subtypes (log rank p value). See also Figure S1 and Tables S1, S2, S3, and S4.
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two patient subtypes (Clusters A and B) using unsupervised clustering and visualized the clustering results

using PCA analysis (see Figure S1D). Based on the molecular profiles of these two subtypes across multi-

omics platforms (Proteins, mRNAs, MirRNAs, LncRNAs, Methylation), we identified DEGs between the two

subtypes, and integrated the expression data across multi-omics platforms for each subtype (see

Figures 1C and S1E–S1G). We further examined the clinical relevance of multiomics-based classification

which were indicative of tumor heterogeneity. The number of patients with CNA%0.2525 was significantly

higher in cluster A (70% vs. 30%, Fisher’s exact test p = 0.021), but patients with HER2+were notably more in

Cluster B compared with Cluster A (77% vs. 23%, Fisher’s exact test p < 0.001, see Figure 1C and Table S3).

The three-gene subtypes were barely different between Clusters A and B (Chi-square test p = 0.027, see

Figure 1D). To access Ki-67 mRNA expression, we divided it into four quantiles (i.e., Q1, Q2, Q3 and Q4)

based on the overall distribution of Ki-67 expression, which did not reach the statistical significance

between the two subgroups (Chi-square test p = 0.123, see Figure 1E). The expression of Ki-67 has no sig-

nificant difference between the two subgroups (t test p = 0.510, see Figure 1F). We also discovered a

significant trend of shortened survival in patients of Cluster B (HR = 2.132, 95%CI: 1.014–4.484; Renyi

test p = 0.013, see Figure 1G). The 5-year OS rates in Cluster B was 57% (95%CI: 41%–78%), which was

greatly lower than the 90% of Cluster A (95%CI: 80%–100%). All these results indicated that the comprehen-

sive multi-omics analysis of 187 LBBCs in TCGA dataset identified two molecularly distinct, clinically

relevant subtypes.

Comparison in somatic mutation between cluster A and B of LBBC

In order to explore the somatic mutation profiles, we performed whole exome sequencing (WES) analysis

and identified somatic DNA alterations in 187 LBBC samples, including truncating, missense, fusion, ampli-

fication, low-copy gain, deep deletion and shallow deletion. It was observed that TP53 was the most

frequently altered gene (25% vs. 54%) between Clusters A and B in this study followed by PIK3CA (22%

vs. 41%),NSD3 (30% vs. 20%),CDK12 (10% vs. 18%), ERBB2 (7% vs. 18%) andGATA3 (27% vs. 14%) (Figure 2A

and Table S5). Compared with Cluster A, patients in Cluster B had significantly more either missense or

truncating mutations in TP53 (p = 7.845e-05) and PIK3CA (p = 0.007), and amplification ERBB2 (p =

0.025), but less truncating mutations in GATA3 (p = 0.031, Fisher’s exact test), suggesting potential

association with significantly poor prognosis of patients in Cluster B. We also observed recurrent mutations

in several genes previously reported as altered in breast cancer, including mutations in other known onco-

genes, chromatin modification and DNA damage repair genes, such as KMT2C (9% vs. 13%), RB1 (4% vs.

11%), APOB (2% vs. 8%), PTEN (6% vs. 8%), BRCA2 (9% vs. 6%), ARID1A (7% vs. 5%), CDH1 (6% vs. 5%),

and so on, although it did not reach the statistical significance between Clusters A and B. Similarly, the can-

cer hotspots and domains of specific proteins (TP53, PIK3CA, GATA3 and ERBB2 mutants) were shown in

Figure 2B. Then we examined the copy number variation and identified that deletions in ARID1A and PTEN

were predominantly observed in patients of Cluster A, but TP53 and MAP2K4 in Cluster B (Figure S2A). A

low-copy gain of PIK3CA was observed in Cluster B, while a low-copy gain of BRCA1 was observed in Clus-

ter A. The burden of copy number gains was dramatically increased in patients of Cluster A (Wilcoxon test

p = 0.048, see Figure S2B), but the losses were not markedly altered between the two subgroups (Wilcoxon

test p = 0.420). The increased burden of copy number changes was unlikely due to differences in tumor cells

between the two subgroups of samples. To gain a clear understanding of the mutation status of TP53,

PIK3CA, GATA3, and ERBB2, we divided the samples into mutant and wild-type groups and generated

multi-omics data heatmaps for these four genes (see Figure 2C). Generally, these results indicated the

intratumor heterogeneity of patients with LBBC between Clusters A and B.

Differences analysis in DNA methylation between clusters A and B of LBBC

To understand the differences in mean methylation values between Clusters A (n = 65) and B (n = 64) in 129

patients, we performed distribution analysis of differentially methylated regions (DMRs) using ChAMP. The

Figure 2. The Somatic mutations and chromosomal instability between the two subtypes of TCGA LBBC patients

(A) Somatic genomic alterations identified in two subtypes of LBBC patients. The bottom panel showed somatic mutations and gene-level copy number

alterations by patients (column) and by genes (row). The middle track showed the two clusters of LBBC patients (n = 187, cluster A n = 100, cluster B n = 87).

The bar plot on the right indicated the alteration rates between the two subtypes. p value was calculated by Fisher’s exact test, * <0.05, ** <0.01, *** <0.001.

(B) Location of somatic mutations of TP53, PIK3CA, GATA3 and ERBB2 between the two subtypes within the protein sequence in TCGA dataset.

(C) Multi-omics data heatmap of TP53, PIK3CA, GATA3 and ERBB2 between the mutated and wild-type samples. The samples (n = 121, cluster A n = 54,

cluster B n = 58) were divided intomutated and wild-type groups based on whether the samples had Truncating, Missense and Fusionmutations in these four

genes. See also Figure S2 and Table S5.
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analysis revealed significant hypermethylation in patients of Cluster A compared to those of Cluster B (Wil-

coxon test p = 7.60e-04, Figure 3A). Unsupervised clustering was performed with DNA methylation data

including 85 significant genes from 26,284 DMRs in 129 high-purity samples between Clusters A and B.

There were more extensive DNA hypermethylation regions of some oncogenes (COL1A1, SOX11, FN1,

and YAP1) in Cluster A, and other oncogenes (GATA3, CCDC24, CCND1, and ESR1) in Cluster B

(Figures 3B–3D), suggesting that these genes contained the notably highest number of DMSs in a certain

chromosome position, even though the DNA methylation were consistently weaker across CpG sites (Fig-

ure S3). Consistent with these results, patients from Cluster A had significantly lower mRNA expression for

COL1A1, SOX11, FN1, and YAP1 genes, but higher expression for GATA3, CCDC24, CCND1 and ESR1

genes (Wilcoxon test p < 0.0001, Figures 3C–3E).

The integrated analysis of the DNA methylation and mRNA expression data revealed that these 8 genes

were silenced by DNA methylation, which had been implicated in the development of breast cancer as

well as previously reported to be altered in other cancers.

Dysregulated signaling pathways and potential druggable genes between two subgroups of

LBBC

To gain an understanding of the differences of biological function between two clusters, we performed

pathway enrichment analysis to identify the dysregulated molecular processes in the genomics data.

The top 10 pathways in the Hallmark and KEGG dataset were identified in Clusters A and B, respectively.

The Cluster A was predominantly composed of cell cycle and metabolic reprogramming pathways

(Figures 4A and S4B), such as E2F targets, G2M checkpoint, cell cycle, and glycolysis pathways. With similar

approaches, we discovered that Cluster B was mainly oncogenic and cancer immune response signaling

(Figures 4A and S4A), including epithelial mesenchymal transition (EMT), TNFA signaling via NFKB, cyto-

kine and cytokine receptor interaction, and IL6-JAK-STAT3 signaling. Then we applied two deconvolution

approaches: MCP-counter to produce absolute abundance scores of 8 major immune cells, endothelial

cells and fibroblasts, and CIBERSORT to evaluate the relative cellular fraction of 22 immune cell types.

Among 10 cell types identified by MCP-counter, the abundance scores of fibroblasts, endothelial cells,

cytotoxic lymphocytes and myeloid dendritic cells were significantly higher in Cluster B (Wilcoxon test

p < 0.007, Figure 4B), as well as the relative cellular fraction of macrophage M1 produced by

CIBERSORT (Wilcoxon test p < 3.831e-04, Figure 4C). Together, our results indicated that tumor cells might

have reprogrammed the immune-related response in TME to facilitate the progression of patients in

Cluster B.

Next, we selected 39 tumor-specific, highly abundant and significantly enriched genes through a stepwise

filtering process, which were annotated as functionally important in cancer development (Figure 4D),

including PLAC1, BRDT, CABYR, CTNNA2, and TEX101 as known cancer testis antigens, FN1, CDH2,

CDH11, PDGFRA, COL3A1, and LAMA3 as emerging and attractive targets involved in EMT, three check

points molecules TNFRSF18, TNFSF4, and IDO1, CCND1 correlated with cell cycle, COX6C and MRPS30

appearance in oxidative phosphorylation (OXPHOS), DCN, COL5A1, VCAN, NT5E, TFF3, LCT, and CAC-

NA1H for glycolysis metabolism, and SERPINF1 and EPGN for angiogenesis. Analysis based on canonical

markers for tumor-specific DEGs (YAP1, FN1, and ESR1) also supported the two-type clustering with signif-

icantly different prognosis. In order to explore differently expressed proteins (DEPs) between two clusters,

we performed DEPs analysis and identified 19 significant DEPs in 160 LBBC patients (Figures 4E, S4C, and

S4D). They included the metabolic enzymes (MYOSINIIA, FIBRONECTIN, DJ1, and RAB11) involved in

tumor growth,7 a ligand-dependent nuclear receptor ERALPHA with a good response to anti-estrogen

therapy,8 a transcription regulator YAP_pS127 associated with poor prognosis of breast cancer by promot-

ing tumor cell growth,9 some kinases (MAPK_pT202Y204, MEK1_pS217S221, AKT_pS473, SRC_pY416,

ARAF_pS299, BAP1C4, and P27) regulating the hallmarks of cancer, e.g., tumor growth, survival and

Figure 3. DNA methylation analysis between Clusters A and B of TCGA LBBC

(A) Boxplot showed the different methylation value between Clusters A (n = 65) and B (n = 64) in 26,284 methylation sites. The points in the violin plot depict

the samples in each subtype.

(B) Supervised clustering of 85 key genes across 128 samples between two subtypes. The symbols of cancer-related DEGs were labeled on the right.

(C) Heatmap of methylation and RNA-seq expression of 8 genes between the two subtypes (cluster A (red) and B (blue)), with cancer-related gene symbols

marked in the middle.

(D and E) The violin plot showed the different methylation and RNA-seq value of 8 genes between cluster A (red) and B (blue). The boxplot (black) in the violin

represents the interquartile range (IQR) and median value. The points in the violin plot depicts the samples in each subtype. See also Figure S3.
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Figure 4. Enriched cancer-related pathways, immune profiles and pathway-specific molecules between two subtypes in patients with TCGA LBBC

(A) Pathway enrichment analysis identified top 10 biological pathways enriched in Clusters A and B by the cancer hallmark and KEGG gene sets in the

Molecular Signature Database (MSigDB). The selected pathways were colored by their biological functions. FDR q-value, the p value are adjusted by the

false discovery rate (FDR). A q-value threshold of 0.05 (5% FDR) was selected.

(B) Absolute abundance of fibroblasts, endothelial cells, cytotoxic lymphocytes and myeloid dendritic cells inferred by MCP-counter between two subtypes.

(C) Relative fraction of macrophages M1 inferred by CIBERSORT method between two subtypes.

(D) A heatmap of 39 significantly expressed genes with known functions was shown between two clusters. The tumor specific markers (e.g., YAP1, FN1, EGFR,

GATA3, ERBB2 and ESR1) were labeled on the top tracks for sample classification. Subgroup classification and gene names were annotated on the left with

the corresponding track color coded by the functional category. Right histogram shows the fraction of samples (n = 187) with detected gene expression (y
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invasiveness of tumor cells.10–16 In line with the results above, the tumor-specific DEPs (YAP1, FN1, and

ESR1) were with similarly altered expression between two clusters.

Genomic profiling correlated with somatic mutations of TP53, PIK3CA, ERBB2, and GATA3

To investigate the genomic features of patients with frequently somatic mutations in TP53, PIK3CA, ERBB2,

and GATA3, we divided the samples into mutated and wild-type groups based on whether somatic muta-

tions occurred. The characteristics of the two groups on other datasets were plotted and the characteristic

pathways between the mutated and wild-type groups were obtained by calculating the ssGSEA (single

sample Gene Set Enrichment Analysis) score for each tumor sample (Figure 5). The mutated and

wild-type groups differed in the expression of DNA methylation, lncRNA, miRNA, mRNA, and protein.

Interestingly, genes of biological significance between the mutated and wild-type groups included two

druggable genes in clinical trials (ERBB2 and SOX11), a gene associated with breast cancer metastasis

(SLC39A6), the cell cycle-related gene CCNE1, the tumor invasion-related gene MMP1, and other can-

cer-related genes, such as CCND1, YAP1, COX6C, APOB, KRT81, and CDH2. The analysis of ssGSEA

revealed that the mutated groups within TP53 and PIK3CA received higher scores in the immune pathway,

indicating that mutations in these genes resulted in alterations in genes associated with immunity.

Additionally, it can be seen that Cluster B scored higher in the immune pathway than Cluster A. These

results suggest that Cluster B has a different immune status than Cluster A, resulting in different survival

differences between the two groups.

An innovative lncRNA-miRNA-mRNA competing endogenous RNA network associated with

the clustering of LBBC

To explore the differentially expressed lncRNAs (DELs), we performed DELs analysis in 17,948 lncRNAs and

identified 1,521 DELs between breast cancer and normal controls. We then filtered 12 significant DELs

between Clusters A and B based on the above results. Similarly, we found 9 miRNAs and 20 mRNAs with

significantly different expression which were predicted to be targeted by these 12 significant DELs

(Spearman |r | R 0.3, q-value <0.01; Figures 6A and 6B). And 6 out of 9 significant miRNAs were predicted

to target 16 significant mRNAs by miRbase between Clusters A and B (Spearman |r| R 0.3, q-value <0.01;

Figure 6C). We further performed pathways enrichment analysis to explore the dysregulated molecular

processes informed by 114 mRNAs with strong correlation with the significant DELs between two sub-

groups. In line with the results above, Cluster A was predominantly composed of cell cycle and DNA repair

signaling, but EMT and immune response pathways for Cluster B (Figure 6D).

Ultimately, lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network was constructed based

on the DEGs results including 12 DELs, 8 miRNAs and 594 mRNAs (see Figure 6E). Moreover, a total of 532

mRNAs with significantly different expression were predicted to be targeted by these 8 miRNAs, and 44

mRNAs for these 12 DELs between two subgroups. Through parsing the co-expression network into

different hub-based subnetworks, we observed 8 lncRNA/miRNA centered subnetworks with signaling

pathway enrichment, which also revealed the predominant pathways composed of cell cycle, EMT and

immune response. Generally, the results suggested that each component in the ceRNA network was

remarkably related to the prognosis of LBBC patients between the two clusters.

The 20-gene signature could classify LBBC patients into two subgroups

To validate the two classifications of LBBC, we performed Lasso Cox regression analysis in 537 significant

DEGs between Clusters A and B and revealed 37 genes without multivariate collinearity (see Figure S5A).

Of which 20 important genes were obtained based on the mean decrease accuracy and mean decrease

Gini score using random forest algorithm (see Figure S5B). And this 20-gene signature could stratify the

LBBCpatients into two subgroups (Cluster A and B) with significant prognosis in TCGAdata (see Figure 7B).

Figure 4. Continued

axis on the top) for each listed gene. The red dots indicated the mean expression of each gene averaged across 187 samples (y axis at the bottom, Log2

transformed).

(E) A heatmap of 19 significantly expressed proteins (including phosphorylation data) with known functions was shown between two clusters. The tumor

specific markers (e.g., YAP1, FN1, MAPK1/3, MAP2K1/2 and ESR1) were labeled on the top tracks for sample classification. Subgroup classification and

protein names were annotated on the left with the corresponding track color coded by the functional category. Right histogram shows the fraction of

samples (n = 160) with detected protein expression (y axis on the top) for each listed protein. The red dots indicated the mean expression of each protein

averaged across 160 samples (y axis at the bottom, Log2 transformed). See also Figure S4.
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Among these 20 genes, three genes including CACNA2D2, CCDC24, and RAB3A were significantly

upregulated in Cluster A, and the other 17 signature genes were upregulated in Cluster B (DeSeq2

algorithm p < 0.05).

To confirm this emerging classification, we selected two additional independent datasets (METABRIC/

Nature2012, n = 263; and GSE96058, n = 656) for validation. The detailed clinical and pathological charac-

teristics of the patients were displayed in Figure 7A, Tables S2, S6, and S7, which were consistent with those

in the TCGA dataset. We divided the LBBC patients into two similar subgroups (Clusters A and B) with

significant prognosis in each independent cohort, and the distribution of these 20 signature genes be-

tween the two clusters was consistent with that in the TCGA dataset (Figures 7B and S5C). For Ki-67 protein

expression, there was no significant difference between Clusters A and B in the mean (Mann-Whitney U test

p = 0.130) and quartile range (Fisher’s exact test p = 0.946) of expression, and this situation was the same for

Ki-67 gene expression (Fisher’s exact test p = 0.130, Figure 7C). In accordance with the survival analysis in

TCGA, patients with LBBC in the METABRIC/Nature2012 dataset in Cluster B (n = 130) had a significantly

higher risk (HR = 1.551, 95%CI: 1.014–2.035, Renyi test p = 0.001) than those in Cluster A (n = 133), while the

5-year overall survival (OS) rates in Cluster B were lower than those in Cluster A, i.e., 49% (95%CI: 41%–58%)

compared to 64% (95%CI: 56%–73%), respectively (see Figure 7D upper). The 20-gene signature-based

classification of another cohort in GSE96058 also produced similar results (Figure 7D lower). The HR (Clus-

ter B vs. Cluster A) in this cohort was 1.703 (95%CI: 1.100–2.637). Furthermore, in the GSE96058 cohort, the

5-year overall survival (OS) rates in Cluster B were significantly worse compared to Cluster A, with rates of

79% (95%CI: 73%–86%) and 88% (95%CI: 84%–92%), respectively (Renyi test p = 0.017). Furthermore, to pro-

vide additional validation for the two subgroups, we analyzed the E-MTAB-6703, GSE20685, GSE54275,

and GSE2109 datasets. Based on the heatmap (see Figure S6) and detailed clinical analysis of the patients

(see Table S8), it can be concluded that the expression features of Clusters A and B in the four supplemental

validation sets are consistent with the expression features in the training set. Therefore, the 20-gene signa-

ture was able to classify LBBC patients into two groups with significant prognostic differences. In summary,

the 20-gene signature was able to classify LBBC patients into two groups with significantly different

prognoses.

DISCUSSION

To refine the molecular classification of LBBC using biomarkers and explore innovative approaches to

achieve precise treatment, we identified two LBBC subgroups based on comprehensive genomic data.

One subgroup (Cluster A) was enriched in cell cycle related genes and had a favorable prognosis. The other

subgroup (Cluster B) was mainly enriched in EMT and immune response-related genes.

Somatic mutations and copy number alterations (CNAs) are key to distinguishing clusters A and B. We

discovered four significantly altered genes between the two subgroups; TP53, PIK3CA, ERBB2, and

GATA3. 25% of patients in Cluster A had at least one of the following TP53mutations: truncation, missense,

and shallow deletion. 54% of cluster B patients had similar alterations, which lined up with the previous

study report17 and were more likely to be aggressive.18,19 We also confirmed that the PIK3CA oncogene

is the second most frequently mutated gene in breast cancer after the TP53 suppressor gene.20 Mutations

were observed in 22% of patients in Cluster A, and in 41% of patients in Cluster B. Given the role of PI3K

reported by Nixon, M. J et al.21 in supporting proliferation, survival, and hormone receptor pathway

activity, it is not surprising that patients in Cluster A would have cellular mechanisms to maintain cell cycle

dominance. Unfortunately, clinical trials have not yet demonstrated meaningful activity for single-agent

PI3K inhibitors. According to the report by Mukohara, T,22 PIK3CA mutations could coexist with other

PI3K-enhancing mechanisms including ERBB2 amplification and PTEN protein loss. ERBB2 is amplified

and/or overexpressed in 15–30% of invasive breast carcinomas reported by Iqbal, N.23 However, the ampli-

fication and/or overexpression of ERBB2 is only 7% in Cluster A patients, while it is 18% in Cluster B patients.

Figure 5. Distinct expression features and signaling pathways correlated with aberrant expression of TP53, PIK3CA, ERBB2 and GATA3 in TCGA

LBBC patients

Heatmap showing DNA methylation, LncRNAs, MirRNAs, mRNAs, protein (including phosphorylation data) and pathway expression of TP53, PIK3CA,

ERBB2 and GATA3 between mutated and wild-type. The subtype to which the samples belonged is labeled at the top of the figure, and important cancer-

related genes are listed on the right. In addition, ssGSEA was used to calculate differences in immune pathways for TP53, PIK3CA, ERBB2 and GATA3, and

the pathways that differed between mutated and wild-type are indicated by "*" and the pathways that differed between Cluster A and Cluster B are

indicated by "*". p value was calculated by T-test, * <0.05, ** <0.01, *** <0.001.
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This study showed that patients with locally advanced breast cancer (LBBC) in Cluster B with more ERBB2

amplification underwent crosstalk between epithelial-mesenchymal transition (EMT) and immune

response, which led to restructuring of the extracellular matrix (ECM) and immune landscape to support

tumor proliferation, progression, and metastasis, and this observation was supported by Singh, S et al.24

GATA3 mutations were observed in 27% of LBBC patients, present in 14% of cases in Cluster B, and in

Cluster A with predominantly truncating mutations. According to the report of Takaku, M et al.,25

GATA3 suppresses the expression of factors critical to EMT and metastasis and has been identified as

an important negative regulator of tumor characteristics correlating with poor prognosis. These data high-

light the potential value of clinical application for these somatic alterations even in the absence of a clear

family history of cancer.

There were notable differences in genome-widemethylation between Cluster A (n = 65) and B (n = 64). One

of themost frequent epigenetic alterationswas YAP1with hypomethylation in Cluster B, which wasmapped

to chromosome region 11q22 amplicon26 and considered a specific transcriptional activator and a leading

effector of the Hippo tumor suppressor pathway that was potently pro-metastatic in breast cancer, and this

observation is supported by Lamar, J. M et al.27 And FN1, SOX11, and COL1A1 had a similar methylation

trend in Cluster B compared with Cluster A, which was involved in cell adhesion and migration processes

such as metastasis and host defense, with several reports supporting this observation.28 GATA3 could

promote a transcriptional program specifying luminal cell identity in the normal development reported

by Takaku, M et al.25 However,GATA3with hypomethylation in Cluster A could activate and function down-

stream of BRCA1 to suppress EMT in breast cancer.29 Typically, DNA methylation is a risk factor for breast

cancer. Our genome-wide study confirmed the diverse methylation status between the two subgroups with

significantly different prognoses. Some noteworthy points include the selection of CpG-containing regions

based on observed differences in methylation levels in different locations.

Integrated pathway enrichment analysis revealed diverse biological pathways and untried druggable

targets (cancer testis antigens, enzymes, kinases and TFs). Cell cycle and metabolic signaling pathways

were mainly in Cluster A, whereas EMT and immune response predominated in Cluster B. Thus, Cluster

A was more representative of tumor cell proliferation with higher expressions of cancer markers associated

with cell cycle, including CCND1, E2F1 and SMAD4. The tumor cells in Cluster B might benefit from alter-

native therapies targeted by cancer testis antigens PLAC1, BRDT, CABRY, CTNNA2, and TEX101, and EMT

markers FN1, TWIST2, FAP, CDH2, CDH11, FDGFRA, COL3A1, and LAMA3. Combining previous

studies,24,30–37 we found that the signaling pathway between EMT and immune responsemay be cross-talk-

ing in Cluster B patients. Furthermore, M1 macrophages have been shown to enhance the metastatic

potential of cancer cells through NF-kB activation, which may explain their higher CIBERSORT fraction

in Cluster B, as reported by Cho, U et al.38 A systematic comparison of mRNA and protein expression pat-

terns revealed untried expression patterns of key therapeutic targets, notably low mRNA and high protein

expression of CD274 (PDL1), and high mRNA and low protein expression of YAP1 (YAP_pS127), AKT1

(AKT_pT308), and CDH1 (E-cadherin). Taken together, these results highlight the diverse characteristics

of the TME that assist tumor cells in their proliferation, invasion, and metastasis, and help distinguish

between Clusters A and B.

Proteogenomic analysis of TP53, PIK3CA, ERBB2 and GATA3 revealed a poor correlation between

genomic and proteomic data as previously discovered in other studies.39 We analyzed the distribution

Figure 6. Competitive endogenous RNA (ceRNAs) associated with subtypes of TCGA LBBC patients

(A–C) Summary of correlations (A) between lncRNAs and miRNAs, (B) between lncRNAs and mRNAs, (C) between miRNAs and mRNAs based on the mean

expression values (log2). The node size was associated with the significance of correlation coefficient between genes.

(D) Enrichment analysis of selected processes higher significantly in each subtype. First, lncRNAs that differed both between tumor and normal samples and

between cluster A and B were screened using DESeq2. Second, based on the lncRNAs obtained, mRNAs that were strongly correlated (spearman r > 0.5)

with the lncRNAs highly expressed in cluster A were selected as input for the enrichment analysis of lncRNAs in clusterA. Similarly, the enrichment analysis of

Cluster B was performed by taking the mRNAs with strong correlation (spearman r > 0.7) with the highly expressed lncRNAs of Cluster B. Enriched pathways

were colored as indicated. FDR q-value, the p value adjusted by the false discovery rate (FDR).

(E) The ceRNAs network displayed differentially activated pathway features between Clusters A and B. A total of 12 lncRNAs, 8 miRNAs and 594 mRNAs (42/

594 genes were significant between two subtypes in the protein expression) were enrolled into this network. The edge stands for the correlation between

genes. Node size and color reflect different RNA types (light purple: lncRNA; light pink: miRNA; light yellow: targeted mRNA; light green: significant mRNA

between Clusters A and B; light gray: mRNA; red-edged: Cluster A; blue-edged: Cluster B). The largest interconnected regulatory subnetworks of

differentially activated ceRNAs were displayed, with network hubs showing cancer-related or biologically functional pathways. The enriched pathways were

labeled with different colors (light blue: Cell cycle and apoptosis; black: oncogenic signaling; pink: cancer immune pathways).

ll
OPEN ACCESS

iScience 26, 107466, September 15, 2023 13

iScience
Article



−1

0

1

Cluster A
Cluster B

Z-scores

Cluster

FCGR3A
MMP1
SERPING1
EGFL6
SLC2A12
CORIN
EMX2
ACKR4
COL3A1
COL5A2
FN1
FNDC1
VGLL3
CFH
NT5E
RASGRF2
LRP1
CACNA2D2
CCDC24
RAB3A

Cluster
GSE96058

FCGR3A
MMP1
SERPING1
EGFL6
SLC2A12
CORIN
EMX2
ACKR4
COL3A1
COL5A2
FN1
FNDC1
VGLL3
CFH
NT5E
RASGRF2
LRP1
CACNA2D2
CCDC24
RAB3A

Cluster
METABRIC/Nature2012

B

D
+++++ +

++ +

+
+

+
+ +

++++
+

++
++++++++

+++

+

+

+
+++

++
++

+

+
++

+ ++

0.00

0.25

0.50

0.75

1.00

0 30 60 90 120

Su
rv

iv
al

 p
ro

ba
bi

lit
y

133 110 78 46 0
130 114 62 22 0

Renyi test 
p = 0.001

Months

METABRIC/Nature2012

Cluster A
Cluster B

Median survival (mon.)
112.1 (107.9 - 118.2)
110.5 (104.5 - NA)

Cluster A
Cluster B

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++
+ +++++

++++
++++++

+
++++++++++++++++++++++++++++++++++++

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80

Su
rv

iv
al

 p
ro

ba
bi

lit
y

328 320 259 131 0
328 316 227 65 7

Renyi test 
p = 0.017

Months

GSE96058

Cluster A
Cluster B

Median survival (mon.)
57.0 (55.1 - 60.7)
51.6 (50.3 - 52.8)

Cluster A
Cluster B

A METABRIC/Nature2012

0.3%

35.7%

11.6%

10.5%

10.5%

7.4%

24.2%

(n = 1904)
GSE96058Luminal A

Luminal B
HER2+
Claudin_low
Basal
Normal
NC

50.6% 10%

10.4%

6.8%

22.3%

(n = 3410)

OS ≤ 120 months Luminal B (n = 263)

Clinical factors

156 107

136 127
NPI

154 14 6
Cellularity

Chemotherapy

≤4.06 >4.06

89

Lymph nodes ≤1 >1

For validation

High Low Moderate N/A

No Yes
232 31

ER Positive Negative N/A
7254

HER2 SNP6 Gain Loss Neutral N/A
70 19 1173

Hormone Therapy YesNo
21944

Menopausal state Post Pre

≤6 >6Intclust
132 115

≤60 >60Age (years)
70 193

3Genes ER+/HER2- 
Low Profile

ER+/HER2- 
High Profile HER2+ ER-/

HER2- N/A

18 197 19 281
Laterality Left Right

131 111
Radiotherapy No Yes

98 165

16
4ER+

N/A
21

2

236 27

OS ≤ 120 months Luminal B (n = 656)

Clinical factors

For validation

Age (years) ≤60 >60
217 439

ER Positive Negative
655 1

PR Positive Negative

Positive Negative
576

HER2

Tumor Size ≤20 >20

Lymph Node Status Gain Loss N/A

Ki67 Low High
384 256 16

66 282

40 40
N/A

75 561 20
N/A

359 291 6
N/A

308
N/A

No YesEndocrinethreapy

Chemothreapy No Yes N/A

Lymph node
341 313

256

29 625 2
N/A

2

16
Positive Negative N/A

384

Ki67
High
Low
N/A

Count

p = 0.130

Cluster A

Cluster B 125 33 170

183 33 112

0 100 200 300

GSE96058

5.5

6.0

6.5

Q1
Q2
Q3
Q4

Quantitles

p = 0.946

M
KI

67
(lo

g2
)

Samples

METABRIC/Nature2012

25.6%24.8%

23.3% 26.3%

24.6%25.4%

23.8%26.2%

p = 0.947
Mann-Whitney U test

Cluster A Cluster B

C

ll
OPEN ACCESS

14 iScience 26, 107466, September 15, 2023

iScience
Article



of Clusters A and B, as well as the frequency of mutations in TP53, PIK3CA, ERBB2, and GATA3 in both

mutated and wild-type samples, which were divided based on the presence or absence of mutations in

each gene. Several cancer-related isogenes SOX11, CCNE1, MMP1, SLC39A6, YAP1, and ERBB2 differed

significantly betweenmutated and wild-type. Furthermore, the ssGSEA analysis results for these four genes

in the mutated and wild-type (TP53, PIK3CA, ERBB2, and GATA3) showed that Cluster B obtained a higher

ssGSEA score, suggesting that it could provide more therapeutic targets.

In summary, our comprehensive analysis of multiple molecular profiling platforms revealed the complex

molecular landscape of LBBC, and the analysis of differences between two subtypes provided useful

targets and signaling pathways for achieving more precise therapy of LBBC.

Limitations of the study

Our study is not without limitations. First, as breast cancer is a heterogeneous disease for which LBBC

accounts for up to 30%, the small number of patients included may reduce the power of our study. Second,

although our study results provide fresh perspectives into the pathogenesis of LBBC, further molecular

biology experiments are needed to validate these findings. Finally, due to the incomplete clinical/demo-

graphic data of the samples included in the experimental process, it was not possible to make a more

accurate judgment on the clinical differences between the subtypes defined in this paper, such as whether

there are differences in ethnicity between Cluster A and Cluster B.
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Figure 7. Validation of clustering in another 2 independent dataset of LBBC

(A) The overview of study showing the clinical characteristics of LBBC patients in another two independent cohorts with mRNA data: METABRIC/Nature 2012

(n = 263) and GSE96058 (n = 656).

(B) Unsupervised hierarchical clustering was performed with the same signature (20 DEGs) in METABRIC/Nature 2012 and GSE96058 by RNA-seq analysis.

(C) Scatterplot (top) showed the Ki-67 mRNA expression in each sample between Clusters A and B inMETABRIC/Nature 2012 dataset, p value was calculated

with Mann-Whitney U test. Pie plots indicated the quantities distribution of Ki67 expression value between two subtypes, p value was calculated with Fisher’s

exact test. Bar plot (bottom) showed the immunohistochemical status of Ki-67 in LBBC patients from GSE96058, p value was calculated with fisher exact test

between Ki67 high and low group.

(D) Kaplan-Meier survival analysis for LBBC between the two subtypes in two testing sets. See also Figure S5, Tables S2, S6, and S7.
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E-MTAB-6703 ArrayExpress https://www.ebi.ac.uk/arrayexpress/

GSE96058 Gene Expression Omnibus (GEO) https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE96058

GSE20685 Gene Expression Omnibus (GEO) https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE20685

GSE54275 Gene Expression Omnibus (GEO) https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE54275

GSE2109 Gene Expression Omnibus (GEO) https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE2109

TCPA The Cancer Proteome Atlas (TCPA) https://www.tcpaportal.org/tcpa/

HPA The Human Protein Atlas (HPA) https://www.proteinatlas.org/

starBase starBase http://starbase.sysu.edu.cn/

LncRNA2Traget v2.0 LncRNA2Traget v2.0 http://www.lncrna2target.org/

LncTarD LncTarD https://lnctard.bio-database.com/

LncBase_Predicted_v2 LncBase_Predicted_v2 http://carolina.imis.athena-innovation.gr/

diana_tools/web/index.php?r=

lncbasev2%2Findex-predicted

miRbase miRbase http://www.mirbase.org/

Software and algorithms

R version 4.0.2 R project https://www.r-project.org/

DESeq2 version 1.36.0 Github https://github.com/mikelove/DESeq2

GSEA Gene Set Enrichment Analysis (GSEA) https://www.gsea-msigdb.org/gsea/index.jsp

Survival version 3.4.0 Github https://github.com/therneau/survival

ChAMP version 2.26.0 Github https://github.com/swsoyee/ChAMP

MethyAnalysis version 1.8.0 Github https://github.com/yuanjinzhang/methyAnalysis

Glmnet version 4.0 Github https://github.com/cran/glmnet

Renyi version Github https://github.com/daijiang/renyi

CIBERSORT CIBERSORT https://cibersort.stanford.edu/

MCP-counter MCP-counter https://github.com/ebecht/MCPcounter

Limma version 3.52.2 Github https://github.com/Bioconductor-mirror/limma

Cytoscape version 3.7.2 Cytoscape https://cytoscape.org/download.html
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Materials availability

All unique/stable reagents generated in this study could be found in the supplemental information.

Data and code availability

All the data in the current study are available from the public datasets listed in the key resources table.

The code used in this study are available at https://github.com/nayangmeihao/Luminal-B-study.git.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethics approval and consent to participate

Ethical approval was obtained from the institutional review committee of Beijing Tuberculosis and Thoracic

Tumor Research Institute/Beijing Chest Hospital of Capital Medical University. And The design and perfor-

mance of the study are in accordance with the Declaration of Helsinki. Signed informed consent was

obtained from all participants before inclusion, allowing analysis of tumor tissue, blood samples and

clinical data.

Patient cohort and sample collection

The raw datasets were downloaded from The Cancer Genome Atlas (TCGA, https://www.cancer.gov/

about-nci/organization/ccg/research/structural-genomics/tcga), METABRIC/Nature 2012 from cBioPor-

tal40 for Cancer Genomics (https://www.cbioportal.org/), E-MTAB-6703 form ArrayExpress (https://www.

ebi.ac.uk/arrayexpress/) and GSE96058, GSE20685, GSE54275 and GSE2109 from Gene Expression

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) database.41 A group of 929 patients and 98 normal

samples from TCGA were treated as training set and another 5,314 patients from METABRIC/Nature

2012 (n=1,904), E-MTAB-6703 (n=1,176), GSE96058 (n=3,410), GSE54275 (n=243) GSE20685 (n=327) and

GSE2109 (n = 354) were treated as validation sets. The multi-omics data types included in TCGA for

LBBC patients with overall survival (OS) times %120 months had: whole exome DNA sequences (n=187),

DNA methylation arrays (n=129), RNA sequences (n=187), miRNA sequences (n=181), lncRNA sequences

(n=187) and reverse phase protein arrays (RPPA, n=160). And similar LBBC patients were selected to assay

RNA sequencing in METABRIC/Nature 2012 (n=263) and GSE96058 (n=656). Based on data from all breast

cancer patients, researchers have published articles between October 2012 and March 2018, which were

selected based on available GEP results and clinical data. All the diagnoses were confirmed on the basis

of WHO classification criteria. These three datasets were composed of 655 patients with surgery, 1,202

patients with chemotherapy, 395 patients with radiotherapy, and 694 patients with hormone therapy,

respectively. Clinical characteristics at presentation in the validation sets were similar with that in the

training data set in terms of age (> 60 in 64%, p = 1.14E-10) and ER status (98% with positive, p = 1.41E-

04). All the clinical information was summarized in the supplemental information (see Tables S1, S2, S3,

S6, S7, and S8). In addition, validation on the E-MTAB-6703 (n = 361), GSE20685 (n = 86), GSE54275 (n =

74) and GSE2109 (n = 105) datasets for clusters A and B using the same analysis as the training set obtained

expression results similar to those from the training set (see Figures S6A–S6D).

METHOD DETAILS

Identification of differently expressed genes (DEGs) and enriched signaling pathways

The HTSeq raw counts including mRNA, miRNA and lncRNA were downloaded from TCGA dataset and

then processed by DESeq242 software to identify DEGs between Clusters A and B. A cut-off gene expres-

sion was defined as fold change among R 2 or % -2 and an FDR q-value as < 0.05 to select the most

significant DEGs. A ranked list of genes was obtained based on DESeq2 FDR q-values for all coding

genes and processed by Gene Set Enrichment Analysis (GSEA)43 against the curated gene sets from

Molecular Signature Database (MSigDB)44 to filter the significantly enriched signaling pathways. The

most significantly enriched signaling pathways were selected based on a cut-off value of FDR q-value

as % 0.05.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Samples classification and validation based on mRNA data

We processed the TCGA data for missing values, removing genes that were missing expression in more

than 70% of the samples, and finally obtained 16,875 from 19,641 mRNAs (Figure S1A), and then differential

analysis were performed between normal (n=98) and tumor (n=1,072) yielded 4,248 DEGs (Figure S1B). The

top 1,000 with the highest standard deviation and mean value out of 4,248 DEGs were selected as variable

genes (Figure S1C) for explore the best clusters and two subtypes (Clusters A and B) were obtained by

hierarchical clustering using the normalised values of the function normTransform in the DESeq2 package,

which was visualised by PCA analysis (Figure S1D). Then a signature including 20 genes was identified as

clustering biomarkers from Lasso regression and Random Forest analysis, based on which subgroups

were divided based on the mRNA expression value in TCGA dataset and validated in two independent

datasets (METABRIC/Nature 2012 and GSE96058).

Mutation signature analysis

All the somatic mutations data was downloaded directly from cBioPortal for Cancer Genomics (https://

www.cbioportal.org/). And then the profiles of mutational signatures were displayed with Oncoprint plot

and then compared between Clusters A and B. The mutated amino acid was identified as a recurrent

hotspot (statistically significant) in a population-scale cohort of tumor samples with various cancer types

using methods partially from Chang et al.45

DNA copy number analysis

The DNA copy number files were also fetched from TCGA (https://www.cancer.gov/about-nci/

organization/ccg/research/structural-genomics/tcga), and then they were loaded into IGV46 for visualiza-

tion. ‘‘CNTools’’ (v1.24.0) R package was applied to identify copy number gains (log2 copy ratios > 0.3)

or losses (log2 copy ratios < -0.3) at the genes level. The total number of genes with copy number gains

or losses per sample was defined by the burden of copy number gain or loss. And the fraction of changed

genome was identified as the proportion of the genome with copy number gains or losses against the total

length of genome with copy number profiling.

DNA methylation analysis

The DNA methylation raw data was obtained from TCGA (https://www.cancer.gov/about-nci/

organization/ccg/research/structural-genomics/tcga) including 129 LBBC patients. And then 26,284 signif-

icantly different methylation sites (DMSs) were discovered between Clusters A (n=65) and B (n=64) among

485,577 DNA methylation sites using ‘‘ChAMP (The Chip Analysis Methylation Pipeline)’’47 R package.

Among them, caner-related genes were selected based on the mutation signature obtained above.

To display the methylation sites and the CpG island near these sites on the chromosome, the R package

‘‘methyAnalysis’’48 was applied to the biologically important genes between Clusters A and B of LBBC

samples.

Deconvolution of the cellular composition with LBBC samples

Two deconvolution approaches were adopted to evaluate the immune infiltration of LBBC samples.

Among them, the MCP-counter49 was applied to producing the absolute abundance scores for 8 major

immune cell types (neutrophils, myeloid dendritic cells, monocytic lineage cells, B lymphocytes, NK cells,

CD3+ T cells, CD8+ T cells and cytotoxic lymphocytes), fibroblasts and endothelial cells; the CIBERSORT

algorithm50 was utilized to assess the relative cellular fraction of 22 immune cell types. The log2-trans-

formed HTSeq counts matrix were used as the input data for both algorithms, and the LM22 leukocyte

genes signature used as input for the CIBERSORT analysis. The deconvolution profiles were performed

with hierarchical clustering method and compared across two clusters and also between HER2- and

HER2+ groups.

Analysis of reverse phase protein array (RPPA)

The RPPA data (level 4), which includes information on 244 proteins (including phosphorylation data), was

obtained from The Cancer Proteome Atlas (TCPA, https://www.tcpaportal.org/tcpa/) for all breast cancer

samples. Protein expression data in normal breast tissues was downloaded from The Human Protein Atlas

(HPA, https://www.proteinatlas.org/) and proteins with median (n=9,677) or high (n=2,888) values were

defined as a control to select cancer specific proteins. A total of 175 proteins detected among R 70%
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LBBC samples were enrolled into calculating the different expression proteins (DEPs) between Clusters A

(n=84) and B (n=76) using the R package ‘‘limma’’.51 Then only 19 proteins were discovered across the two

subtypes. Group enriched proteins were filtered by applying cut-off of the absolute expression fold change

as R 2 and FDR q-value as < 0.05.

Construction of competitive endogenous RNA (ceRNAs) network

To construct the ceRNA network, DEGs analysis was applied to selecting the candidate genes (12 lncRNAs,

8 miRNAs, 574 mRNAs) between Clusters A and B of LBBC patients in TCGA. These databases (starBase,52

LncRNA2Traget v2.0,53 LncTarD54 and lncRNADisease_v2.055) were selected to predict the interactions

between lncRNAs and mRNAs. And LncBase_Predicted_v256 database was used to explore the interac-

tions between lncRNAs and miRNAs. Additionally, miRbase57 database was adopted to validate the inter-

actions (scores R 80) between miRNAs and mRNAs. Finally, ceRNA network was evaluated by computing

the Spearman’s correlation coefficients belonging to each ceRNA network, and the final ceRNA network

including lncRNAs, targeted miRNAs and targeted mRNAs was visualized by Cytoscape software 3.7.2.58

Statistical analysis

The statistical methods used in this study were performed in the R statistical environment (v4.0.2) in addi-

tion to the algorithms mentioned above. Shapiro-Wilk test was used to evaluate the normal distribution

before DEGs analysis. The statistical significance of differences observed between clusters was determined

by the t test for normal distribution data and Wilcoxon test for non-normal distribution data when

comparing continuous variables, and the Fisher’s Exact test when comparing frequencies of clinical factors.

And the Benjamini-Hochberg algorithm was conducted to compute a false discovery rate (FDR) adjusted

p-value (or q-value) in order to control FDR and correct p-values frommultiple testing. The log-rank tests or

Renyi tests (crossed survival curves) were applied to univariate survival analysis in the Kaplan-Meier plots

between two clusters. LASSO regression model from ‘‘glmnet’’ package investigated the significant

signature associated with survival between two subtypes. The Random Forest algorithm evaluated the

importance of the DEGs or DEPs between two groups associated with survival or classification. Spearman’s

correlation coefficient was calculated to evaluate the association between two continuous variables.

Hypothesis testing was performed in a two-sided manner, with p-value or adj. p-value (if applicable) < 0.05

considered to be statistically significant.
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