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Abstract: Domain adaptation aims to handle the distribution mismatch of training and testing data,
which achieves dramatic progress in multi-sensor systems. Previous methods align the cross-domain
distributions by some statistics, such as the means and variances. Despite their appeal, such methods
often fail to model the discriminative structures existing within testing samples. In this paper,
we present a sample-guided adaptive class prototype method, which consists of the no distribution
matching strategy. Specifically, two adaptive measures are proposed. Firstly, the modified nearest
class prototype is raised, which allows more diversity within same class, while keeping most of the
class wise discrimination information. Secondly, we put forward an easy-to-hard testing scheme by
taking into account the different difficulties in recognizing target samples. Easy samples are classified
and selected to assist the prediction of hard samples. Extensive experiments verify the effectiveness
of the proposed method.

Keywords: domain adaptation; adaptive class prototype; sample selection

1. Introduction

A fundamental assumption of conventional machine learning is that test samples are drawn from
the identical distribution with training samples [1]. However, such an assumption does not always hold
in real-world applications. For multi-sensor systems, the issue of distribution mismatch can be caused
by many factors, e.g., various sensor parameters and background noises. Such a mismatch can be easily
found in remote sensing images (different area and weather condition) and person re-identification
(different shoot angle). The violation of the assumption results in severe performance degradation,
and labeling data from all sources is laborious; as Figure 1a shows, the decision boundary induced
by source samples performs poorly in the target domain. To tackle this problem, domain adaptation
(DA) [2] has attracted much attention. DA aims at leveraging rich knowledge from training data
(also referred to as the source domain) and making decisions about different, but related testing data
(also referred to as the target domain), which has been successfully applied in many areas, such as
image classification [3–5], person re-identification [6,7], and activity recognition [8–10].

In order to address the issue of distribution mismatch, a series of research works focused on
discovering domain-shared feature representations [11,12], then we can train a classifier with the
learned representation. A graphical illustration of the idea is proposed in Figure 1b; intuitively,
the decision boundary learned with source samples also works well in the target domain since they
are aligned. Instance re-weighting aims to narrow the distribution distance by assigning weights to
samples, the emphasis being different criteria for calculating the weights, e.g., kernel mean matching
(KMM). Chen et al. re-weighted source samples for subspace alignment, and the weight wi of source
sample xi increases if it has a similar distribution as the target samples [13]. Chu et al. attempted to
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match distributions with KMM and minimize the empirical risk of source domain simultaneously [14].
However, studies show that it works well in the scenario where the source and target domains have few
differences, and the performance degrades as the domain gap becomes larger [15]. Feature mapping
seeks the appropriate feature space/subspace to reduce domain discrepancy. Compared to simply
re-weighting, it is capable of learning more powerful representations by means of complex non-linear
mappings, such as kernel methods and deep neural networks, thus yielding remarkable performance.
Pan et al. proposed a PCA-like framework, named transfer component analysis (TCA), which adopts
the maximum mean discrepancy (MMD) as the loss function and maps data to the feature space [16].
Extending TCA, Long et al. introduced conditional MMD by computing the pseudo labels of target
samples, and an iterative training scheme was applied to obtain more accurate labels [17]. Inspired by
the success of deep neural networks (DNN), the combination of domain adaptation and DNN also
achieves dramatic success. Tzeng et al. proposed a composite network that minimizes the distribution
distance by MMD and the cross-entropy of source samples [18]. Furthermore, Long et al. employed
multi-kernel MMD for matching features [19]. Both instance re-weighting and feature mapping rely
greatly on the evaluation of the distribution distance; however, statistical metrics, e.g., MMD, have been
proven to be sensitive to outliers and class weight bias [20]. Another popular method is adversarial
training based domain adaptation, which constructs a source classifier and a domain discriminator
simultaneously. The source classifier aims to recognize the objects of multiple classes, and the domain
discriminator is designed to learn consistent features for two domains.

Conventional machine learning Distribution matching Classifier adaptation

:labeled source samples :unlabeled target samples :decision boundary

(a) (b) (c)

Figure 1. Different measures for cross-domain recognition tasks.

Despite the success of distribution matching, there still remains two major issues: (1) Is it necessary
for distribution matching? Deep convolution neural networks (CNN) can learn fairly unbiased
representations for image data, which is shown by the fact that they report high accuracy over complex
vision tasks using CNN representations and a linear classifier [21]. (2) Existing works made predictions
for target samples independently, i.e., the label yi of target sample xi is obtained according to the
relation between xi and source samples Xs, while ignoring the relations within target samples. In this
paper, we propose a novel framework based on the nearest class prototype for unsupervised domain
adaptation. Similar to instance re-weighting, the proposed method aims to study the sample difference
(both in the source and target domain, while instance re-weighting focuses on source samples) in
cross-domain scenarios. As Figure 1c shows, instead of aligning domains, we aim at learning the
adaptive decision boundary for two domains. Specifically, we explore the diversity within samples
belonging to the same class and find a balance between single-sample discrimination and class wise
discrimination. Furthermore, a multi-stage training scheme is presented for better exploiting the
discriminative structures in the target domain. The contributions of this paper are summarized
as follows.
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• Corresponding to Issue (1), there is no distribution matching strategy in our method.
Experimental results show that the proposed classifier adaptation can achieve comparable
performance when compared to popular distribution matching methods.

• In response to Issue (2), we propose an easy-to-hard testing scheme. The underlying idea is that
the difficulties in recognizing target samples vary from each other, and easy samples along with
their labels can assist the prediction for hard samples.

• We propose the modified nearest class prototype, which allows more diversity within the
same class. Ideally, clusters with less domain discrepancy would yield correct predictions for
target samples.

The rest of this paper is organized as follows. Section 2 gives the background knowledge on
related DA works. Then, the nearest neighbors and nearest class prototype are discussed. In Section 3,
we describe our method in detail. Sections 4 and 5 present the experiments and some empirical
analysis. Finally, Section 6 concludes the paper and provides some ideas for future research.

2. Related Works

In this section, we first give a formal definition for unsupervised/homogeneous domain
adaptation. Then, a brief introduction of the nearest neighbors and nearest class prototype is presented.

2.1. Domain Adaptation

Domain adaptation deals with the scenario where training and testing data have different
distributions. Formally, we first introduce the concepts of domain and task.

Domain: A domain consists of data and a distribution, D = {X , p(X )}. For standard DA
problems, we have Ds and Dt for the source and target domain, respectively. Besides, two domains
have different distributions, p(Xs) 6= p(Xt).

Task: A task includes labels and the mapping function, T = {Y , f (·)}. It is worth noting that
we can learn multiple source mappings fs with different models since source data are well labeled.
Correspondingly, we have Ts and Tt, and the goal is to learn the target mapping ft(·), i.e., ft(Xt) = Yt.

In this paper, we study unsupervised/homogeneous domain adaptation problems, which means
that (1) there is no labeled samples for training in the target domain, and target labels are only available
for evaluating methods Yt = ∅. (2) Source and target data have the same dimensions Xs,Xt ∈ Rm.
Previous works focused on reducing the distribution mismatch, based on either nonparametric
(MMD, CORAL) or parametric (A-distance) metrics, but gave very limited considerations on the
relation between learned representation and the decision boundary. A similar idea to ours is
pseudo-label based domain adaptation (PLDA), which alternates between feature learning and
pseudo-label learning. To our best knowledge, Joint Distribution Adaption (JDA) [17] is the first
method that adopts a classifier to obtain pseudo labels, and the objective is to estimate the conditional
probability of target samples. Consequently, it allows us to match both the conditional and marginal
distribution. Besides, it has an iterative updating strategy, and the classifier is expected to be more
powerful as the training goes. Wang et al. further pointed out that pseudo-labels are not always reliable
because of the domain shift, then proposed confidence-aware pseudo label selection (CAPLS) [22] and
selective pseudo labeling (SPL) [23], which select more credible pseudo labels.

Such methods combine feature learning and classifier training, and the desired representations
and classifiers can be obtained simultaneously. In this paper, we aim to learn a domain adaptive
classifier based on the nearest class prototype, which differs from PLDA in the following aspects:
(1) PLDA does not consider the characteristics of a classifier; in other words, it does not care about
which type of classifier one chooses: the nearest neighbor is fine, and support vector machine is also
feasible. The classifier is only used to make predictions; the emphasis is to learn domain-invariant
representations. However, for our method, we analyze how the domain discrepancy would affect
the standard nearest class prototype and propose several strategies to alleviate the negative effects.
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Most importantly, there is no distribution matching procedures in our method, which makes it differ
most compared to other works. (2) It seems that our easy-to-hard testing scheme is similar to sample
selection, since they all have a selection process. In fact, they are completely different. Selective pseudo
labeling aims to reduce the negative impacts of the wrong labels, and our goal is to better exploit the
discrimination power, i.e., we can obtain more precise predictions for hard samples by considering
both source (all) and target (easy) samples. Hence, sample selection needs to predict all the target
samples during each iteration, but our easy-to-hard testing adopts a decreasing number of target
samples: once a sample is deemed to have a credible label, it will be removed from the test set.

2.2. Nearest Neighbor and Nearest Class Prototype

The nearest neighbor (NN) and nearest class prototype (NCP) are two pattern recognition methods,
which are widely used due to their simplicity [24–26]. Given a query sample xq and a training set
[X, y(X)], under the clustering assumption and manifold assumption, NN and NCP search for the
nearest sample/class prototype and take the corresponding label as the prediction for the query sample.
It is worth emphasizing that there are many ways to compute the class prototype [27], e.g., learning
vector quantization (LVQ) [28] and mean vector (MV). In this paper, we focus on MV due to its
simplicity and stationarity.

In Figure 2, we give an intuitive description of the NN and NCP. These methods work well
when the training and testing set have the same distribution, but when applied in cross-domain tasks,
the clustering assumption does not always hold due to distribution mismatch, thus leading to severe
performance degradation. In this paper, we follow the assumption of sample re-weighting based
methods, i.e., samples have different importance. A modified NCP method is proposed, which allows
more diversity within one class than the original NCP, and a detailed description can be found in the
next section.

NN NCP Ours

: query sample : training set : class prototype : distance/shortest distance between query and training samples

Figure 2. A graphical illustration of the nearest neighbor, nearest class prototype (NCP), and the
proposed modified NCP. NN searches for the nearest samples, and NCP seeks the nearest class
prototype, while our modified NCP finds a balance between them. Samples from each class are first
clustered into several groups, and the goal is to find the nearest group center.

3. Methodology

In this section, we first introduce the general framework of the proposed method and the necessary
notations, then two components, the modified NCP and easy-to-hard testing scheme, are described
in detail.

3.1. Framework and Notations

Suppose that we have source and target data Xs/Xt ∈ Rns/nt×m, which are drawn from two
related, but different distributions p(Xs)/p(Xt). Besides, source data are well labeled (Ys ∈ Rns×1 is
available), while target data have no labels (Yt ∈ Rnt×1 is not available). The goal is to obtain labels for
target samples with high precision. Table 1 introduces the necessary notations and descriptions.
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Table 1. Notations and descriptions used in this paper.

Notations Description

Ds/Dt source/target domain
Xs/Xt ∈ Rns/nt×m source/target data
Ys/Yt ∈ Rns/nt×1 source (available)/target (unavailable) labels

ns/nt ∈ R # of source/target samples
m ∈ R # of features
c ∈ R # of classes
k ∈ R # of clusters for each class

iter ∈ R # of iterations for testing

In this paper, we propose a novel unsupervised DA solution based on the NCP. Firstly, we present
the modified NCP by finding a balance between single-sample discrimination and class wise
discrimination. It allows more diversity within the same class, thus, it is capable of preserving
more local structures. Besides, an easy-to-hard testing scheme is introduced. Instead of predicting
target samples independently, it selects so-called easy samples, which are considered to have more
confidence about the predicted labels, and easy samples along with their labels can assist the prediction
of hard samples. By doing this, we hope to utilize the discriminative information existing in target
samples. A graphical illustration of the proposed method is given in Figure 3.

Are all target samples 

labeled? 
Yes

Labels for target 

samples

reliable

unreliable

:source samples :target samples

Figure 3. A graphical illustration of the total framework. First, we use the labeled source samples to
construct a basic classifier, then the easy samples from the target domain are selected by considering the
confidence. Adding easy samples along with their labels to the training set, a more powerful classifier
can be obtained. The process continues until every target samples has been labeled.

As the title states, we aim to explore the intrinsic relation among samples and learn more robust
decision boundaries, both in the source and target domain. To be more specific, we consider the
domain discrepancy revealed in each source sample. Recall that NCP exploits the class center to make
the prediction for query samples, but for each class, there are both less biased and more biased samples.
Intuitively, we hope to use the less biased samples for prediction. By clustering source samples
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drawn from the same class into several clusters (class sub-center), the query samples are capable of
selecting the closest class sub-centers, thus alleviating the negative effects brought by very biased
samples. When it comes to the target domain, we hope to make precise predictions by utilizing local
discriminative structures existing in the target domain. Previous works focused on the discriminative
information in the source domain, which is easy to quantize and use since source samples are well
labeled, while ignoring the discrimination power among unlabeled target samples. Similar to the
source, we assume target samples have different difficulties in their prediction. Then, a hierarchical
structure is presented naturally, and easy samples are predicted in the earlier steps, so we can label hard
samples by considering both labeled source samples and previously predicted easy target samples.

3.2. Modified Nearest Class Prototype

The nearest neighbor selects the nearest samples to a query sample by means of certain metrics,
e.g., the Euclidean distance. It explores the sample-to-sample relation, so we call it single-sample
discrimination, which can be considered as a specific form of the manifold assumption. However,
when applied in DA tasks, the manifold assumption may not always hold due to the domain shift [29],
thus causing performance degradation. On the other hand, the nearest class prototype follows the
clustering assumption and makes the prediction by means of the distance between the class center
and the query sample, so we call it class-wise discrimination. Similarly, the clustering assumption is
also broken by the domain shift [29]. In this paper, we propose the modified nearest class prototype.
The original NCP considers all the training samples to be equal, while ignoring the influence brought
by the distribution match, i.e., samples have different importance since they hold various degrees of
bias. Naturally, we hope to predict the target sample by less biased source samples.

We can quantify the bias degree of two sets of data, i.e., the source set and target set, using some
parametric or nonparametric metrics. However, evaluating the degree of bias for certain sample
is not feasible. Therefore, we further assume that the less biased and very biased samples exhibit
disparate properties, then they can be represented by several clusters. It is worth emphasizing that the
distribution mismatch would ruin the cross-domain manifold assumption and clustering assumption,
but when it comes to within-domain cases, the manifold assumption and clustering assumption always
hold since all samples drawn from the same domain are considered to be independent and identically
distributed (i.i.d.).

Given training data and labels [Xtrain, Ytrain] and testing data Xtest, the pseudocode is shown in
Algorithm 1. k is the number of clusters for a certain category. Firstly, for samples with the same
labels in the training set, we divide them into k centers, then record each cluster clusteri ∈ Rk×m.
Here, we employ K-means clustering due to its simplicity. When testing, we calculate the distance
among the query sample and each cluster (there should be c · k clusters in total). Then, the label
can be obtained by the cluster with the shortest distance. Notice that we set a fixed value k as the
number of clusters for each class, which seems unreasonable. The number should be changed as the
distribution changes. If the samples are close to each other, we need a small k to keep their affinity,
and vice versa. We admit that it is not a good choice for a fixed k, but it also shows the following
advantages. (1) There is no need for a search program for k, thus keeping it efficient. According to the
literature, searching for an optimal k is somewhat time-consuming, e.g., the elbow method and average
silhouette width demand multiple operations of K-means [30]. Even worse, there may be no such
thing as optimal k [31]. (2) We witnessed enough performance improvements with it, so our method
achieves state-of-the-art performance when compared with existing works. Finally, we compute the
confidence score Ctest for each target sample by normalizing the distance, which can be used as the
criterion of sample selection.
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Algorithm 1: mNCP: modified nearest class prototype.
Input: Xtrain, Ytrain, Xtest,k

1 for i = 1, 2, · · · c do
2 classi = {X j, Y j

train = i}
3 clustero

i = K−means− clustering(classi, k), 1 ≤ o ≤ k
4 end
5 for i = 1, 2, · · · #Xtest do
6 distj

i = argmin
o
||Xtesti− clustero

j ||2, 1 ≤ j ≤ c, 1 ≤ o ≤ k

7 Yi = argmin
j

distj
i , 1 ≤ j ≤ c

8 Ci
test = distYi

i / ∑c
j=1 distj

i

9 end
10 return Y, Ctest

3.3. Easy-To-Hard Testing Scheme

Existing works make predictions independently in the target domain, which only investigates
the cross-domain correlation, i.e., for a certain target sample x, the prediction is obtained based on
the relation among x and source samples Xs, but the relation among x and other target samples Xt is
ignored. Recall that the manifold and clustering assumption still hold within-domain, so naturally,
the idea of preserving local structures in the target domain is raised. In this paper, we propose an
easy-to-hard testing scheme; specifically, it has a hierarchical prediction strategy. Samples in the target
domain are considered to have different difficulties in their prediction, then we select the so-called easy
samples (which are believed to have more confidence) in the early stages during training, and these
samples along with their more confident labels are taken into consideration for predicting hard
samples. The underlying philosophy is that we can obtain precise labels for easy samples based on the
cross-domain relation, and for hard samples, we need to combine the cross-domain and within-domain
relations to predict them. It is worth emphasizing that determining which sample is easy (or hard) is
difficult to some extent. Here we first construct a basic classifier with labeled source samples, then we
can select samples with a much confidence as easy samples.

The detailed calculation can be found in Algorithm 2. Here, we split the concept of the
target/source domain and the training/testing set. For initialization, the source data are set to be the
training set, and the target is for the testing. Then in each iteration, we select N samples with the highest
confidence. It is worth noting that there are two ways to determine N, i.e., hard threshold or fixed
number. We chose the fixed number, because selecting a proper threshold is laborious. Thinking of the
worst case, if we employ a relatively big value, the model would stop. However, if we utilize a fixed
number (>0), the model can always converge. To be more specific, we set a hyper-parameter iter as
the number of total iterations, then N can be determined by N = nt/iter. Finally, the selected samples
Xindex

test along with their labels Yindex are integrated into the training set Xtrain/Ytrain. It is worth noting
that once a sample is selected as an easy sample, its label is accepted, which means that we do not need
to predict it again. Therefore, the size of the testing set decreases, and that of the training set increases
(corresponding to Algorithm 2 Lines 6–8). After several iterations, all target samples are considered to
be well labeled.
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Algorithm 2: Easy-to-hard testing.
Input: Xs, Ys, Xt, iter, k

1 Initialization.
2 Xtrain = Xs, Xtrain = Ys, Xtest = Xt, Ytest = ∅
3 for i = 1, 2, . . . iter do
4 [Y, Ctest] = mNCP(Xtrain, Ytrain, Xtest, k)
5 index = argmaxNCtest, N = nt/iter
6 Update Xtrain, Ytrain, Xtest, Ytest

7 Xtrain = Xtrain + Xindex
test , Ytrain = Ytrain + Yindex

8 Xtest = Xtest − Xindex
test , Ytest = Ytest + Yindex

9 end
10 return Ytest

4. Experiments

In this section, we give the detailed description of the experiments. Firstly, we introduce two
widely-used datasets for DA problems, i.e., Office-Caltech10 and ImageCLEF (Cross Language
Evaluation Forum (CLEF)), followed by competing methods and the parameter setting.
Then, the numerical results are presented with some analysis. Besides, we conduct experiments
for parameter sensitivity.

4.1. Data Preparation

ImageCLEF (https://www.imageclef.org/2014/adaptation) is a visual competition, held by
the Cross Language Evaluation Forum (CLEF). It consists of three domains, Caltech (C) [32],
ImageNet (I) [33], and Pascal (P) [34]. There are twelve classes of objects for each domain, e.g., airplane,
bike, bird, boat, bottle, bus, car, dog, horse, monitor, motorbike, and people. Besides, the number of
images per category is 50.

Office-Caltech10 [35] includes four domains, Amazon (A), Caltech (C) [32], webcam (W),
and DSLR (D). There are ten classes of objects and 8-151 images per class. The accurate number
of images for each category can be found in Table 2.

Table 2. Image numbers in Office-Caltech.

Object Backpack Bike Calculator Headphones Keyboard Laptop Monitor Mouse Mug Projector

Caltech 151 110 100 138 85 128 133 94 87 97

Amazon 92 82 94 99 100 100 99 100 94 98

Webcam 29 21 31 27 27 30 43 30 27 30

DSLR 12 21 12 13 10 24 22 12 8 23

Given two random domains, e.g., Amazon (A) and webcam (W), we can construct two DA tasks,
A→W and W→A. Consequently, we can construct A2

3 = 6 tasks for ImageCLEF and A2
4 = 12 tasks for

Office-Caltech10. A graphical description of the cross-domain tasks is shown in Figure 4.

https://www.imageclef.org/2014/adaptation
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Caltech ImageNet Pascal

Figure 4. Cross-domain recognition.

4.2. Experimental Setting

We compare the proposed method with two baseline models and four state-of-the-art DA methods,
which are listed below.

• Nearest neighbor (NN): NN is selected as a baseline for examining the effectiveness of the
proposed method.

• Nearest class prototype (NCP): Similar to NN, NCP is also a baseline method since the proposed
method is highly correlated with them.

• Confidence-aware pseudo label selection (CAPLS): CAPLS (proposed in IJCNN2019 [22])
selects reliable labels by confidence and learns transferable representations across domains.

• Modified A-distance sparse filtering (MASF): MASF (proposed in Pattern Recognit.2020 [36])
presents an l2 constraint as the metric of domain discrepancy.

• Generalized soft-max (GSMAX): GSMAX (proposed in Inf.Sci.2020 [37]) aims at learning smooth
representations and decision boundaries simultaneously.

• Selective pseudo labeling (SPL): SPL (proposed in AAAI2020 [23]) is also a selective pseudo
labeling strategy based on structured prediction.

• Discriminative sparse filtering (DSF): DSF (proposed in Sensors 2020 [38]) combines discriminative
feature learning and distribution matching based on sparse filtering.

For CAPLS, we set the number of iterations T = 10 and the feature dimension k = 100. For MASF,
we set the balance factor α = 0.001 and the feature dimension k = 100. For GSMAX, we set the
balance factor β = 0.05, γ = 0.0001, and the number of nodes α = 8 on ImageCLEF and α = 10
on Office-Caltech10. For SPL, we set the number of iterations T = 11 and the feature dimension
k = 100. For our method, we set the number of source clusters k = 5 and the number of iterations
iter = 5. Besides, for all methods, we adopted the Resnet50 features for ImageCLEF and Decaf6
features for Office-Caltech10. The deep models were pre-trained on ImageNet without fine-tuning,
and no pre-processing strategy was applied.

Following the setting of [23,38], we report the classification accuracy on the target data as the
evaluation metric.

Accuracy =
∑nt

i=1 1(ŷ(xi) = y(xi))

nt
, x ∈ Xt

1(case) =

{
1 , case is TRUE

0 , otherwise

(1)

where ŷ denotes the predicted label and y is the true label, so 0% ≤ Accuracy ≤ 100%.

4.3. Implementation Details

For the reproducibility of the paper, here we report the experimental details.

(1) All datasets (original images and extracted features) and part of the code (CAPLS, SPL) can be
found in public GitHub repositories, and the link is shown in the Acknowledgments.
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(2) We chose the no pre-processing strategy for the extracted features; as mentioned earlier, they are
good enough for recognizing.

(3) All methods were implemented with MATLAB 2017a. To eliminate the effect of random numbers,
we fixed the random seed to zero.

(4) We are pleased to share our code if anyone is interested; please contact Chao Han
(hanc@mail.nwpu.edu.cn).

4.4. Results

We report the numerical results in Table 3, where the boldface denotes the highest accuracy.
To sum up, the proposed method achieves state-of-the-art performance with respect to the average
accuracy. Furthermore, we have the following observations:

• OURS vs. NN, NCP: Compared to these two baseline models, our method is significantly better.
NN and NCP have no adaption measures; thus, they would be heavily affected by distribution
mismatch. According to the results, our method yields better recognition accuracies on almost
every sub-task, and the improvements could be higher than 15% on some tasks, e.g., D→A and
D→C. This findings confirm that the proposed modified NCP and easy-to-hard testing can help
make more robust predictions on cross-domain tasks.

• OURS vs. MASF: OURS is superior to MASF. MASF proposes the modified A-distance for
marginal distribution matching; however, it has limited considerations on the relation between
the learned representations and the decision boundary. On the contrary, our method tries to adjust
the decision boundary adaptively. Consequently, our method achieves superior performance.

• OURS vs. CAPLS, SPL: These two methods assign pseudo labels on target samples and select
highly confident ones, then an iterative feature aligning strategy is applied to learn the transferable
representations. Pseudo labels for target samples allow them to match the conditional probability
distribution across domains, so that the learned representations are more discriminative than
MASF. However, they still fail to explicitly model the relation between features and classifiers.
Besides, they are easily influenced by the quality of pseudo labels. From the results, we can see
that MASF < CAPLS, SPL < OURS (with respect to average accuracy).

• OURS vs. GSMAX: Objectively speaking, our method works better than GSMAX, which can be
considered to be the closest method to ours. It learns a dynamic decision boundary by thinking
about both labeled source samples and unlabeled target samples, the underlying idea of which is
all samples (including source and target samples) should be far away from the decision boundary.
Compared to our method, it does not give consideration to the difficulties of target samples and
integrates them all into training; naturally, the wrongly-labeled sample would have negative
effects for final recognition.

• OURS vs. DSF: DSF performs slightly worse than the proposed method. DSF explores feature
separability and distribution matching simultaneously, while it only adopts a linear regression-like
constraint for computing efficiently. Such a constraint cannot handle the complex feature
distribution, especially for high-dimensional features. Our method aims to find the optimal
classifier, rather than feature transformation, thus obtaining higher accuracies. Besides, we also
report the running time of these methods; our method also runs faster than it.

It is somewhat surprising that the baseline methods (NN, NCP) achieve comparable or even
superior performance when compared to state-of-the-art DA works on several subtasks, e.g., I→P.
Does this mean that the study of domain adaptation is meaningless? We think the answer is absolutely
no. Firstly, strong evidence of the improvements brought by DA works can be found when referring to
average accuracy, which reveals the greater robustness of DA works from a statistical point of view.
Secondly, the theorem of no free lunch [39,40] indicates that there is no algorithm that can be chosen as
the best choice for all problems. Naturally, it is reasonable that baseline methods perform better that
state-of-the-art ones (for a few cases).
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Table 3. Performance (accuracy %) on ImageCLEF (Cross Language Evaluation Forum (CLEF))
(Nos. 1–6) and Office-Caltech10 (Nos. 7–18). CAPLS, confidence-aware pseudo label selection;
MASF, modified A-distance sparse filtering; GSMAX, generalized soft-max; SPL, selective pseudo
labeling; DSF, discriminative sparse filtering; C, Caltech; I, ImageNet; P, Pascal; A, Amazon; W, webcam;
D, DSLR.

No. Task NN NCP JDA CAPLS MASF GSMAX SPL DSF OURS

1 C→I 83.33 85.33 92.00 91.00 89.83 87.50 90.83 93.16 90.17 ± 0.55
2 C→P 70.05 70.73 75.50 77.33 72.83 70.39 78.17 75.63 74.04 ± 0.77
3 I→C 90.00 92.67 92.33 94.17 93.17 92.83 94.33 95.67 95.20 ± 0.32
4 I→P 75.47 76.99 77.00 75.80 76.83 78.68 77.50 77.49 76.99 ± 1.32
5 P→C 81.33 92.33 82.83 90.67 85.33 91.50 91.33 85.83 93.77 ± 0.73
6 P→I 77.33 90.67 79.16 85.00 80.83 86.67 85.83 82.50 90.53 ± 1.02
7 C→A 85.70 91.23 89.77 92.90 90.81 92.48 92.80 91.12 92.05 ± 0.61
8 C→W 66.10 76.95 83.72 89.83 87.46 81.02 85.08 91.52 88.34 ± 1.14
9 C→D 74.52 82.17 86.62 91.08 89.81 89.81 91.72 89.17 89.68 ± 2.36

10 A→C 70.35 84.77 82.27 81.66 87.36 85.31 81.39 83.88 88.16 ± 0.59
11 A→W 57.29 74.24 78.64 81.69 81.02 81.69 84.07 82.03 84.95 ± 1.19
12 A→D 64.97 84.08 80.25 90.45 86.62 87.26 90.45 89.17 84.71 ± 2.43
13 D→C 60.37 72.31 83.52 87.62 85.04 81.39 74.00 81.92 86.16 ± 1.14
14 D→A 62.53 77.35 90.18 92.38 91.34 77.97 91.96 89.35 91.65 ± 2.07
15 D→W 98.73 95.54 100.00 100.00 99.36 97.45 100.00 100.00 99.49 ± 0.53
16 W→C 52.09 80.14 85.12 89.05 85.75 84.95 88.51 84.23 88.42 ± 0.38
17 W→A 62.73 86.01 91.44 93.32 90.40 90.61 93.32 91.44 92.34 ± 0.40
18 W→D 89.15 93.56 98.98 99.66 98.98 98.98 100.00 98.30 99.05 ± 1.06

19 AVG 73.45 83.73 86.07 89.09 87.38 86.47 88.41 87.91 89.21

Recall that instance based methods would be heavily affected by increasing gaps; however,
the results show that the proposed method could alleviate the negative effects to some extent.
Here, we use the accuracy obtained by non-adaptation methods to measure the domain gap.
These methods are expected to have better results in the scenario where testing and training data
have the same distribution. Since the proposed method is a variant of the nearest class prototype
(NCP), we use the NCP as the non-adaptation method. If the NCP achieves high accuracy on a
task, this means that there are few domain gap for this task, and vice versa. We can say that task
C→W has a larger domain gap than task C→D since the NCP achieves higher accuracy on the
task C→D (82.17% vs. 76.95%). However, the proposed method has larger improvements on C→W
(76.95%→89.83%, 13%↑) than C→D (82.17%→87.26%, 5%↑).

Another thing to notice is that when we have very few training samples, i.e., D→C, D→W,
and D→A, constructing too many clusters would degrade the proposed method to the nearest
neighbors. For example, domain DSLR has only eight images of mug, but we still build five clusters
for this class, then each cluster holds only 1 4 images. Therefore, the performance of mNCP is
expected to be close to NN. However, according to Table 3, our method still gains more than 15%
improvements on average accuracy for D→C and D→A, and these results further support the idea
of easy-to-hard testing. Although we may not have enough samples in the earlier stages, as the
hierarchical testing goes, more samples are integrated into the training set, then we are capable of
exploring local discriminative structures.

4.5. Parameter Sensitivity Analysis

For better understanding the proposed method, we investigate how each hyper-parameter affects
the performance by setting them to a series of different values while fixing the other one. Our method
has two hyper-parameters, the number of source clusters k and the number of iterations iter.

Sensitivity analysis of k: k indicates how many clusters we need for training. When k = 1,
this means that we think all the training samples are equally important, and the method degrades
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to NCP. As k becomes larger, more diversity is allowed within the same class. Our method is able to
explore the different importance for training samples. However, if it is too large, especially for the
extreme case, k = #train, the method degrades to NN, which is sensitive to outliers and easily affected
by distribution mismatch. As shown in Figure 5a, the mean accuracy first arises then falls, which is
consistent with our analysis.
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(a) Sensitivity analysis of k.
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(b) Sensitivity analysis of iter.

Figure 5. Sensitivity analysis. X-axis: the value of the parameters. Y-axis: the mean accuracy (%) on
two datasets.

Sensitivity analysis of iter: iter is the total iterations for target data. When iter = 1, our method do
not adopt the easy-to-hard testing scheme. We can see that the mean accuracy increase 4% immediately
as setting iter to 2, this finding verifies that the discriminative structure within target domain does
help cross-domain recognition. As iter becomes larger, the mean accuracy rises and tends to be stable
at certain point. An interesting phenomenon is that when iter gets too large, the performance would
drop slightly. This result may be explained by the fact that we introduce the so-called high-confidence
testing samples into training set; however, it could still be wrongly labeled. The proportion of samples
that are predicted based on only well labeled samples is 1

iter , then the proportion of samples that would
be affected by noisy labels is 1− 1

iter . As iter gets bigger, noisy labels would affect more samples.
A more comprehensive discussion about how the performance changes during testing is given in the
following section.

5. Discussion

In this section, we aim to discuss the easy-to-hard testing deeply, and maybe, some points can be
the direction for future research. We report the running times of the experiments.

5.1. Easy-To-Hard Testing vs. Single Testing

In the previous section, we showed that the mean accuracy increases as iter becomes larger,
but whether the easy-to-hard testing is helpful for each subtask remains unclear. In Figure 6, we present
how the accuracy changes for all the subtasks for each iteration; the number corresponds to the index
in Table 3. Firstly, we define the easy task and the hard task by the initial accuracy. If the initial accuracy
is high, the task is considered to be the easy task, and vice versa. We select 85% as the threshold
roughly. Intuitively, we can say that the improvements for the hard task are more significant than
for theeasy task, and the reason is that the difficulties in recognizing target samples in the hard task
have greater differences, which is consistent with our hypothesis. Another interesting finding is that
the easy-to-hard testing may have a negative influence on the hard tasks, e.g., Task No. 16 (W→C).
This can be explained by the fact that the selected confident samples may still be wrongly labeled.
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Figure 6. Performance (accuracy, %) of each subtask.

5.2. Computation Complexity and Running Time

The computational cost is detailed as follows: Considering Algorithm 1, O(ns) is for source
clustering using K-means and O(nt) for testing. Use N = ns + nt to denote the total number of source
and target samples, then the computational complexity for single testing is O(N). When it comes
to Algorithm 2, since it is a linear decreasing model, its computational complexity can be denoted
as O( 1

2 · iter · N). Since 1
2 · iter << N, the total computational complexity can be simplified to O(N),

which means that the computational complexity increases linearly as the number of samples increases.
For comparison, CAPLS and SPL have a complexity of O(N3). When the number of samples becomes
bigger, the proposed method would save much time.

We check the execution time of all the competing methods and report the total running time
of 18 subtasks. All the methods were implemented with MATLAB 2017a and executed on the
same computer, with I7-4790 CPU, 3.60 GHz, and 8 GB RAM. The results are shown in Table 4.
Obviously, our method is the fastest algorithm except for the two baseline methods, NN and NCP.
Besides, the proposed method is more than 1000 times faster than CAPLS and SPL with respect to the
average running time, which is consistent with the previous analysis.

Table 4. Running time (seconds) on ImageCLEF (Nos. 1–6) and Office-Caltech10 (Nos. 7–18).

No. Task NN NCP CAPLS MASF GSMAX SPL DSF OURS

1 C→I 0.469 0.032 292.867 4.961 0.842 341.601 6.798 0.526
2 C→P 0.128 0.033 264.741 4.922 0.914 304.481 6.893 0.463
3 I→C 0.126 0.032 296.524 4.953 4.397 334.425 6.666 0.473
4 I→P 0.127 0.033 251.369 4.912 3.161 290.072 6.682 0.467
5 P→C 0.141 0.033 261.794 4.823 1.610 302.712 6.600 0.455
6 P→I 0.129 0.033 247.965 5.051 12.975 283.321 6.674 0.459
7 C→A 1.452 0.095 2516.933 90.814 3.936 3206.378 10.515 1.801
8 C→W 1.043 0.070 897.388 87.457 2.484 1030.175 6.755 1.282
9 C→D 0.966 0.061 842.526 89.808 2.677 921.195 5.905 1.210
10 A→C 1.297 0.095 3278.291 87.355 3.700 4365.437 11.097 1.774
11 A→W 0.806 0.060 2870.206 81.016 2.412 3528.711 5.879 1.070
12 A→D 0.786 0.054 2725.151 86.624 3.224 3272.032 4.716 0.998
13 D→C 0.703 0.062 735.878 85.040 2.229 833.277 6.479 0.850
14 D→A 0.562 0.052 1510.084 91.336 1.874 1840.393 5.528 0.770
15 D→W 0.290 0.022 319.998 99.363 1.612 369.574 1.951 0.347
16 W→C 0.633 0.055 519.365 85.752 1.764 622.318 5.375 0.716
17 W→A 0.509 0.046 1336.746 90.396 1.731 1751.001 4.678 0.620
18 W→D 0.221 0.022 241.107 98.983 1.481 278.883 1.982 0.322

19 SUM 10.388 0.890 19,408.930 1103.571 53.023 23,875.990 111.173 14.603
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6. Conclusions and Future Works

In this paper, we propose a sample-guided adaptive class prototype method for visual domain
adaptation. Unlike previous methods focusing on distribution matching, the proposed method
aims to adjust the decision boundary according to the domain discrepancy existing in different
samples. Extending the NCP, we present the modified NCP to explore a balance between single-sample
discrimination and class-wise discrimination. For better exploiting the discriminative structures
existing in the target domain, an east-to-hard training scheme is proposed. Target samples are
considered to be of different difficulties to be recognized, then it selects the easy samples and uses them
to make predictions for hard samples. Experimental results show that the proposed method is both
effective and efficient. However, despite these promising results, questions remain. Previous works
proved that class weight bias would gives rise to the performance degradation of statistic based
methods, so our method (which does not rely on the statistics of the sample distribution) is expected to
gain a large improvement on Office-Caltech10 than on ImageCLEF. However, the experimental results
did not find a significant difference between these, and we think this can be explained by the changing
sample size have more demand for an adaptive cluster number than the same sample size, while we
adopted a fixed number of clusters for all the experiments.

Existing domain adaptation works study how to transfer knowledge between data from different
sources; however, there is abundant room for further progress in transferring between different tasks.
For example, if a person is good at poker, he/she may grasp chess quickly. We call that learning from
experience, but currently, our models can only learn from data. Consequently, we believe investigating
learning from experience is the key step to achieving artificial general intelligence.
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