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A B S T R A C T   

Associations between brain structure and body mass index (BMI) are increasingly gaining 
attention. Although BMI-related regional alterations in brain morphology have been previously 
reported, the effect of BMI on the microstructural profiles, which provide information on the 
proxy of neuronal density within the cortex, is unexplored. In this study, we investigated the links 
between cortical layer-specific microstructural profiles and BMI in 302 neurologically healthy 
young adults. Using the microstructure-sensitive proxy based on the T1-and T2-weighted ratio, 
we estimated microstructural profile covariance (MPC) by calculating linear correlations of 
cortical depth-wise intensity profiles between different brain regions. Then, low-dimensional 
gradients of the MPC matrix were estimated using dimensionality reduction techniques, and 
the gradients were associated with BMI. Significant effects in the heteromodal association areas 
were observed. The BMI-gradient association map was related to the geodesic distance along the 
cortical surface, curvature, and sulcal depth, suggesting that the microstructural alterations 
occurred along the cortical topology. The BMI-gradient association map was further linked to 
cognitive states related to negative emotions. Our findings may provide insights into under-
standing the atypical cortical microstructure associated with BMI.   

1. Introduction 

Body mass index (BMI) is a metric that is used to assess the degree of obesity [1]. Individuals can be categorized as underweight 
(BMI≤18.5), healthy weight (18.5≤BMI<25), overweight (25≤BMI<30), or obese (BMI≥30) based on the BMI calculations. In-
dividuals with a high BMI are susceptible to various health-related problems, such as type 2 diabetes, cardiovascular diseases, stroke, 
and cancer [1]. Brain studies have found that a high BMI is associated with altered brain mechanisms. For example, individuals with 
high BMI showed hormone imbalances and atypical functions in eating behavior-related brain circuits [2]. Previous neuroimaging 
studies have assessed BMI-related structural and functional brain alterations using magnetic resonance imaging (MRI) [3,4]. 
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Moreover, as the BMI increases, the overall gray matter volume and cortical thickness reduce, and the curvature increases, affirming 
the association between cortical morphology and BMI [4–10]. Some studies have shown that individuals with a high BMI had 
decreased white matter integrity [3,4], indicating a relationship between microstructural alterations and BMI. These studies highlight 
the relationship between BMI and alterations in brain morphology and microstructure. However, comprehensive research delineating 
the relationship between BMI and cortical microstructure remains to be investigated. In this study, we aimed to examine the alterations 
in the cortical microstructure across varying BMI ranges. 

Brain microstructure can be indirectly assessed in vivo using a microstructure-sensitive proxy based on the T1-and T2-weighted 
ratio [11,12]. A recent study provided a method to estimate cortical microstructure by sampling cortical gray matter into several 
equivolumetric layers and stratifying the intensity values of microstructure-sensitive proxy across the cortical layers [13]. The study 
provided a better understanding of the cortical microstructure by leveraging dimensionality reduction techniques. In that study, the 
microstructural profile covariance (MPC) was calculated by assessing inter-regional similarities in the microstructural profile, and a 
low-dimensional principal component (i.e., gradient) was generated using dimensionality reduction techniques [13]. This approach 
has an advantage in analyzing high-dimensional connectome data by generating principal components without losing substantial 
information of the original data. Additionally, the estimated low-dimensional gradients are robust to noise and biologically inter-
pretable [13]. For example, this microstructural gradient demonstrated remarkable consistency across diverse datasets, further sup-
porting its utility by showing the hierarchical organization along the cortex with a sensory-fugal axis [13]. This pattern was further 
related to gene expressions and functional dynamics in young adulthood and adolescent development [14]. Our previous work 
demonstrated associations between atypical brain hierarchy and obesity-related phenotypes [15,16]. Hence, we hypothesized that the 
microstructural gradient analysis might provide insights into understanding BMI-associated alterations in cortical microstructure. 

In this study, we used T1- and T2-weighted MRI data of neurologically healthy young adults obtained from the Human Connectome 
Project (HCP) database to generate microstructural gradients and studied their associations with BMI. Further, we assessed relations 
between BMI and gradients to cortical morphology to identify the topology of the microstructure-BMI associations and performed 
meta-analytic cognitive decoding to infer related cognitive functions. 

2. Methods 

2.1. Participants 

We studied neurologically healthy young adults obtained from the S1200 release of the HCP database (http://www. 
humanconnectome.org/) [17]. Among 1206 participants, we excluded participants who were genetically related (i.e., twins), had a 
family history of mental illness, a history of drug ingestion, and incomplete T1- and T2-weighted imaging data. Finally, 302 partic-
ipants (mean ± standard deviation [SD] age = 28.3 ± 4.0 years; 51.7 % female) were included in this study (Table 1). The mean ± SD 
of BMI was 26.01 ± 4.82 kg/m2 and within a range of 17.01 and 42.91 kg/m2. All data used in this study were publicly available and 
anonymized. Participant recruitment procedures and the informed consent forms (including consent to share deidentified data) were 
previously approved by the Washington University Institutional Review Board as part of the HCP, and the HCP team approved access to 
the data. 

2.2. MRI data acquisition 

The T1- and T2-weighted MRI were obtained using a Siemens Skyra 3T scanner at Washington University. The T1-weighted images 
were acquired using a magnetization-prepared rapid gradient echo (MPRAGE) sequence (repetition time [TR] = 2400 ms; echo time 
[TE] = 2.14 ms; field of view = 224 × 224 mm2; voxel size = 0.7 mm2; number of slices = 256), and the T2-weighted data were 
scanned using a T2-SPACE sequence, where the parameters were the same as the T1-weighted data except for TR (3200 ms) and TE 
(565 ms). 

2.3. MRI data preprocessing 

The HCP database provided minimally preprocessed MRI data using FSL, FreeSurfer, and Workbench [18–20]. In brief, the T1- and 
T2-weighted images were corrected for gradient nonlinearity and b0 distortions and coregistered using a rigid-body transformation. 
Bias field correction was performed based on the inverse intensities from the T1- and T2-weighting. The processed data were non-
linearly registered to the Montreal Neurological Institute (MNI152) standard space, and white and pial surfaces were generated by 

Table 1 
Demographic information of study participants.   

Underweight (BMI<18.5) Healthy weight (18.5≤BMI<25) Overweight (25≤BMI<30) Obese (BMI≥30) 

N 5 137 102 58 
Age (mean ± SD, years) 28.4 ± 5.27 28.12 ± 4.12 28.16 ± 3.70 29.2 ± 4.03 
Sex (male: female, %) 0 : 100 43 : 57 60 : 40 45 : 55 
BMI (mean ± SD, kg/m2) 17.76 ± 0.58 22.2 ± 1.62 27.18 ± 1.46 33.67 ± 3.14 

Abbreviations: SD, standard deviation; BMI, body mass index. 
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following the boundaries between different tissues [21–23]. The mid-thickness surface was generated by averaging the pial and white 
surfaces, and it was used to create the inflated surface. The spherical surface was registered to the Conte69 template with 164k vertices 
using MSMAll [24,25] and downsampled to a 32k vertex mesh. 

2.4. MPC matrix construction 

First, we estimated the microstructure-sensitive proxy based on the ratio of the T1- and T2-weighted contrast [13]. We divided the 
cortex into 14 equivolumetric layers and sampled the microstructure-sensitive proxy along these surfaces [13]. The MPC matrix was 
constructed by calculating linear correlations of cortical depth-dependent T1w/T2w intensity profiles between different cortical re-
gions defined using a Schaefer atlas with 300 parcels [26] while controlling for the average whole-cortical intensity profile [13]. The 
matrix was set at a threshold value of zero and log-transformed [13]. 

2.5. Microstructural gradient calculation 

The group-level MPC matrix was generated by averaging the matrices across individuals. Then, we estimated microstructural 
gradients using nonlinear dimensionality reduction techniques [13]. Specifically, we constructed an affinity matrix with a normalized 
angle kernel with each parcel’s top 10 % elements. The low-dimensional eigenvectors (i.e., gradients) of the affinity matrix were 
generated using the diffusion map embedding [27] implemented in the BrainSpace toolbox (https://github.com/MICA-MNI/ 
BrainSpace) [28]. The generated individual participant-level microstructural gradients were aligned to the group-level gradient 
using Procrustes alignment [29]. 

2.6. Associations between BMI and microstructural gradients 

Leveraging nonparametric permutation tests, we studied the associations between BMI and the first two gradients, which explained 
enough information on the MPC matrix after controlling for age and sex. The subject indices of microstructural gradients were 
randomly shuffled, and a linear model was constructed to fit the multivariate data (number of participants × number of brain regions 
× number of gradients) to BMI using a BrainStat toolbox (https://github.com/MICA-MNI/BrainStat) [30]. We repeated this process 
10,000 times, and a null distribution was constructed. If the actual t-statistic (Hotelling’s T2) did not fall within 95 % of the null 
distribution, it was deemed significant. Multiple comparisons across brain regions were corrected using a false discovery rate (FDR) <
0.05 [31]. For a sensitivity analysis, we evaluated the between-group differences in the microstructural gradients of healthy weight 
(18.5≤BMI<25) and obese individuals (BMI≥30) based on the permutation tests. We randomly assigned the subject indices and 
implemented the multivariate linear models based on Hotelling’s T statistics after controlling for age and sex from the microstructural 
gradients. This process was repeated 10,000 times, and a null distribution was established. Significance was determined if the actual 
t-statistic did not fall within 95 % of the null distribution. Multiple comparisons across brain regions were corrected using FDR <0.05 
[31]. 

2.7. Topological analysis 

To identify the topological underpinnings of the BMI-microstructural gradient associations, we calculated cortical thickness, 
curvature, sulcal depth, and geodesic distance. Cortical thickness is the distance between pial and white surfaces, which provides the 
thickness of the gray matter. Curvature is the degree of folding of the cortical surface and is used to quantify cortical gyrification. Sulcal 
depth is the vertical distance between the sulci and pial surfaces. Geodesic distance is the shortest path between different vertices along 
the cortical surface. We calculated linear correlations between the BMI-gradient association map and each cortical topology map. The 
significance was evaluated using 10,000 spin permutation tests [32], and multiple comparisons across topological maps were corrected 
using FDR <0.05 [31]. 

2.8. Meta-analytic cognitive decoding 

We conducted a cognitive decoding analysis using NeuroSynth [33], implemented in the BrainStat toolbox [30]. NeuroSynth is a 
platform that provides cognitive terms related to input brain maps by performing a meta-analysis. Specifically, NeuroSynth provides 
statistical maps representing the likelihood of a specific term being related to brain activations, allowing us to evaluate the similarities 
between the input and activation maps derived from multiple neuroimaging studies. In this study, we decoded the BMI-gradient as-
sociation map to identify related cognitive terms. 

2.9. Statistical analysis 

We performed a multivariate association analysis between BMI and microstructural gradients. After controlling for age and sex 
from the microstructural gradients, we repeated the multivariate analysis with 1000 permutation tests. Subject indices were randomly 
shuffled, and a null distribution of the association was established. P-value was calculated by dividing the number of permuted t- 
statistic values, which were larger than the real t-statistic values, by the number of permutations. Multiple comparisons across brain 
regions were corrected using FDR <0.05 [31]. A correlation analysis between the BMI-microstructural gradient association and 
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cortical morphologies, including cortical thickness, curvature, sulcal depth, and geodesic distance, was performed based on 10,000 
spin permutation tests to account for spatial autocorrelation [32]. Multiple comparisons across cortical morphologies were corrected 
using FDR <0.05 [31]. 

3. Results 

3.1. Microstructural gradients 

Studying the T1- and T2-weighted MRI of 302 young neurologically healthy adults obtained from the HCP database [17], we 
leveraged dimensionality reduction techniques [27,28] to estimate microstructural gradients. The first two gradients explained 
approximately 70.2 % of the connectome information (Fig. 1A). The first gradient (explained 42.2 % of information) described the 
sensory-fugal axis expanding from the visual/motor regions to the default mode and frontoparietal areas. The second gradient 
(explained 28.0 % of the information) showed the anterior-posterior pattern. 

3.2. Associations between BMI and microstructural gradients 

We assessed associations between BMI and the estimated two microstructural gradients. Significant (FDR <0.05) effects were 
observed in the temporal pole and inferior parietal regions (Fig. 1B–C). When we stratified the effects according to four cortical hi-
erarchical levels and seven functional communities, visual, limbic, and dorsal attention networks (i.e., idiotypic and heteromodal 
association areas) showed strong effects. When we assessed the between-group differences in the microstructural gradients between 
individuals with healthy weight (18.5≤BMI<25) and obesity (BMI≥30), largely consistent results were found (Pearson’s r = 0.75, pspin 
< 0.001; Supplementary Fig. 1). 

3.3. Topological underpinnings 

For the correlations between the BMI-gradient association map and multiple cortical morphological measures, significant relations 
with the geodesic distance (r = 0.17, pspin-FDR = 0.023), curvature (r = 0.14, pspin-FDR < 0.001), and sulcal depth (r = 0.19, pspin-FDR <

0.001) were observed. However, the correlation with cortical thickness was not statistically significant (r = 0.04, pspin-FDR = 0.803; 
Fig. 2). Our results suggest that the BMI-microstructure gradient associations are partially related to cortical morphology. 

3.4. Cognitive decoding 

We performed a meta-analytic cognitive decoding analysis to identify the potential cognitive functions associated with BMI-related 

Fig. 1. Microstructural gradients and associations with body mass index. (A) Schema of generating microstructure gradients. Individual micro-
structural profile covariance (MPC) matrices were averaged, and dimensionality reduction techniques were applied to the group-level MPC matrix 
(left). The scree plot shows the eigenvalue of each component. We selected the first two gradients (G1 and G2), which explained approximately 70.2 
% of the information. (B) The distribution of body mass index is reported with a histogram. (C) Associations between body mass index and 
microstructural gradients of the whole brain (left top) and regions that showed significant effects are shown (left bottom). The effects were stratified 
according to cortical hierarchy levels (middle) and intrinsic functional communities (right). Abbreviation: FDR, false discovery rate. 
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cortical microstructural differences. Multiple terms were observed, such as conditioning, neutral, stimuli, stress, threat, nociceptive, 
dementia, pain, etc., and the negative terms (e.g., stress, nociceptive, and threat) were dominant (Fig. 3). 

4. Discussion 

A BMI-brain relationship is crucial to understand the neurobiological aspects of obesity. In this study, we investigated the dif-
ferences in cortical microstructures across a wide range of BMI using microstructural gradient analysis. We found that higher-order 
heteromodal association cortices were altered according to BMI. A topological analysis revealed that BMI-related microstructural 
differences may follow cortical morphology of geodesic distance, curvature, and sulcal depth. Finally, these microstructural alterations 
were related to negative emotional states. Our findings suggested that cortical microstructural characteristics are linked to BMI and are 
associated with negative emotions. 

The primary feature of our study was the microstructural gradients, which were the low-dimensional representations of the cortical 
microstructural profiles [13]. The first gradient delineated the sensory-fugal axis expanding from the visual and motor regions to the 
default mode and frontoparietal areas, indicating discernible variations in cortical lamination and myelin contents. The sensory re-
gions exhibit pronounced laminar differentiation and high myelin content, whereas heteromodal association areas show less distinct 
lamination and low myelin content [13,34,35]. The second gradient showed the anterior-posterior axis, commonly observed in 
neuronal streamlines linking prefrontal and parietal/occipital regions [36]. In this study, we observed alterations in these micro-
structural gradients according to BMI. Particularly, the heteromodal association areas showed significant shifts in cortical micro-
structural profiles. The heteromodal association areas included default mode and frontoparietal cortices. These regions integrate 
information transferred from various sensory regions, and this sensory-heteromodal circuit is closely linked to individuals’ 
higher-order cognitive functions [13]. Alterations in this system are highly associated with brain mechanisms related to eating be-
haviors, which might lead to disinhibited eating and obesity [34]. Our findings complement previously published studies by providing 
insights into BMI-related cortical microstructure and its potential links to cognitive functions. 

The association analysis with cortical morphologies provided topological underpinnings of the BMI-microstructure associations. 
Cortical morphological features provide information on cortical topology and cognitive ability [35,37–39]. For example, geodesic 
distance reflected functional hierarchy differentiating sensory and transmodal (i.e., default mode and frontoparietal) regions [39,40]. 
The positive correlations between geodesic distance and BMI-microstructural gradient association map indicated alterations in brain 

Fig. 2. Topological associations. A schema of topological measures is described (left). We calculated linear correlations between the body mass 
index-microstructure association maps and geodesic distance, cortical thickness, curvature, and sulcal depth. 

Fig. 3. Cognitive decoding analysis. We performed meta-analysis-based cognitive decoding, and the terms that showed strong correlations were 
plotted using large fonts. 
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microstructure, particularly in the transmodal regions compared to the sensory areas. The cortical curvature and sulcal depth also 
exhibited consistent results. Collectively, these findings suggest that cortical microstructure is more susceptible to BMI in higher-order 
default mode regions. 

Moreover, cognitive decoding analysis revealed that microstructural alterations associated with BMI might be related to negative 
emotional states, such as pain, stress, and threat. Our previous work found that activation of the brain regions related to reward 
processing was associated with negative emotions [41], and other studies have shown that obesity is linked to an increased prevalence 
of negative emotional states, which can exacerbate eating behavior and contribute to a cycle of weight gain and emotional distress [42, 
43]. These studies highlight the importance of BMI management for maintaining physical and mental health. 

To our knowledge, this is the first study to investigate the associations between BMI and microstructural gradients representing the 
principal axis of cortical layer-wise microstructural profiles. This approach provided a compact way to link brain-behavior relation-
ships by estimating low-dimensional representations of the microstructural organization of the brain. We also offered a multilevel 
framework consolidating microstructural profiles, topological characteristics, and cognitive functions to unveil BMI-related brain 
alterations. This framework may offer insights into identifying neuroimaging markers related to obesity. 

Our study has some limitations. Due to the unavailability of data in the database, we did not control for potential confounding 
factors, such as physical activity and dietary habits, which might influence the associations between BMI and cortical microstructure. 
Thus, caution needs to be applied when interpreting the results of this study because the influence of these unmeasured variables 
cannot be ruled out. Future studies could investigate the role of these potential confounders more comprehensively on the associations 
between BMI and cortical microstructure. Additionally, our findings do not provide information on whether negative emotions 
affected the increase in BMI because our analysis assessed the relationship and not causality. Future works are required to evaluate the 
causal links between emotional states and BMI. 

Our study investigated cortical microstructure alterations according to BMI using dimensionality reduction techniques. We pointed 
out that higher-order heteromodal association areas are susceptible to BMI, and the alterations are related to negative cognitive states. 
Our study provides insights into understanding the relationship between BMI and cortical microstructure and also highlights the 
importance of managing BMI. 
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[30] S. Larivière, Ş. Bayrak, R. Vos de Wael, O. Benkarim, P. Herholz, R. Rodriguez-Cruces, C. Paquola, S.J. Hong, B. Misic, A.C. Evans, S.L. Valk, B.C. Bernhardt, 
BrainStat: a toolbox for brain-wide statistics and multimodal feature associations, Neuroimage 266 (2023), https://doi.org/10.1016/j. 
neuroimage.2022.119807. 

[31] Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. 57 (1995) 289–300. 
[32] A.F. Alexander-Bloch, H. Shou, S. Liu, T.D. Satterthwaite, D.C. Glahn, R.T. Shinohara, S.N. Vandekar, A. Raznahan, On testing for spatial correspondence 

between maps of human brain structure and function, Neuroimage 178 (2018) 540–551, https://doi.org/10.1016/j.neuroimage.2018.05.070. 
[33] T. Yarkoni, R.A. Poldrack, T.E. Nichols, D.C. Van Essen, T.D. Wager, Large-scale automated synthesis of human functional neuroimaging data, Nat. Methods 8 

(2011) 665–670, https://doi.org/10.1038/nmeth.1635. 
[34] D. Val-Laillet, E. Aarts, B. Weber, M. Ferrari, V. Quaresima, L.E. Stoeckel, M. Alonso-Alonso, M. Audette, C.H. Malbert, E. Stice, Neuroimaging and 

neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity, Neuroimage Clin 8 (2015) 1–31, https://doi.org/ 
10.1016/j.nicl.2015.03.016. 

[35] N. Gogtay, J.N. Giedd, L. Lusk, K.M. Hayashi, D. Greenstein, A.C. Vaituzis, T.F. Nugent Iii, D.H. Herman, L.S. Clasen, A.W. Toga, J.L. Rapoport, P.M. Thompson, 
Dynamic mapping of human cortical development during childhood through early adulthood, Proc. Natl. Acad. Sci. USA 101 (2004) 8174–8179. 

[36] A.M. Radwan, S. Sunaert, K. Schilling, M. Descoteaux, B.A. Landman, M. Vandenbulcke, T. Theys, P. Dupont, L. Emsell, An atlas of white matter anatomy, its 
variability, and reproducibility based on constrained spherical deconvolution of diffusion MRI, Neuroimage 254 (2022), https://doi.org/10.1016/j. 
neuroimage.2022.119029. 

Y. Park et al.                                                                                                                                                                                                           

http://refhub.elsevier.com/S2405-8440(24)09165-5/sref1
https://doi.org/10.1007/s00401-013-1190-x
https://doi.org/10.1007/s00401-013-1190-x
https://doi.org/10.1002/hbm.21491
https://doi.org/10.1007/s11682-019-00036-4
https://doi.org/10.1007/s11682-019-00036-4
https://doi.org/10.1038/oby.2007.4
https://doi.org/10.1038/ijo.2016.42
https://doi.org/10.1038/s41366-018-0269-9
https://doi.org/10.1111/obr.12799
https://doi.org/10.1016/j.pscychresns.2013.06.004
https://doi.org/10.1038/ijo.2014.121
https://doi.org/10.1016/j.neuroimage.2013.03.060
https://doi.org/10.1523/JNEUROSCI.2180-11.2011
https://doi.org/10.1371/journal.pbio.3000284
https://doi.org/10.1371/journal.pbio.3000284
https://doi.org/10.7554/eLife.50482.001
https://doi.org/10.7554/eLife.50482.001
https://doi.org/10.1038/s42003-021-02268-x
https://doi.org/10.1038/s42003-021-02957-7
https://doi.org/10.1038/s42003-021-02957-7
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2013.04.127
http://www.idealibrary.com
http://www.idealibrary.com
https://doi.org/10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO
https://doi.org/10.1093/cercor/bhr291
https://doi.org/10.1038/nature18933
https://doi.org/10.1093/cercor/bhx179
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1038/s42003-020-0794-7
https://doi.org/10.1038/s42003-020-0794-7
https://doi.org/10.1007/978-3-319-24571-3_38
https://doi.org/10.1016/j.neuroimage.2022.119807
https://doi.org/10.1016/j.neuroimage.2022.119807
http://refhub.elsevier.com/S2405-8440(24)09165-5/sref31
https://doi.org/10.1016/j.neuroimage.2018.05.070
https://doi.org/10.1038/nmeth.1635
https://doi.org/10.1016/j.nicl.2015.03.016
https://doi.org/10.1016/j.nicl.2015.03.016
http://refhub.elsevier.com/S2405-8440(24)09165-5/sref35
http://refhub.elsevier.com/S2405-8440(24)09165-5/sref35
https://doi.org/10.1016/j.neuroimage.2022.119029
https://doi.org/10.1016/j.neuroimage.2022.119029


Heliyon 10 (2024) e33134

8

[37] P. Shaw, D. Greenstein, J. Lerch, L. Clasen, R. Lenroot, N. Gogtay, A. Evans, J. Rapoport, J. Giedd, Intellectual ability and cortical development in children and 
adolescents, Nature 440 (2006) 676–679, https://doi.org/10.1038/nature04513. 

[38] D. van der Meer, T. Kaufmann, Mapping the genetic architecture of cortical morphology through neuroimaging: progress and perspectives, Transl. Psychiatry 12 
(2022), https://doi.org/10.1038/s41398-022-02193-5. 
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