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Abstract

Tertiary structure prediction of a protein from its amino acid sequence is one of the major challenges in the field of
bioinformatics. Hierarchical approach is one of the persuasive techniques used for predicting protein tertiary structure,
especially in the absence of homologous protein structures. In hierarchical approach, intermediate states are predicted like
secondary structure, dihedral angles, C*-C* distance bounds, etc. These intermediate states are used to restraint the protein
backbone and assist its correct folding. In the recent years, several methods have been developed for predicting dihedral
angles of a protein, but it is difficult to conclude which method is better than others. In this study, we benchmarked the
performance of dihedral prediction methods ANGLOR and SPINE X on various datasets, including independent datasets.
TANGLE dihedral prediction method was not benchmarked (due to unavailability of its standalone) and was compared with
SPINE X and ANGLOR on only ANGLOR dataset on which TANGLE has reported its results. It was observed that SPINE X
performed better than ANGLOR and TANGLE, especially in case of prediction of dihedral angles of glycine and proline
residues. The analysis suggested that angle shifting was the foremost reason of better performance of SPINE X. We further
evaluated the performance of the methods on independent ccPDB30 dataset and observed that SPINE X performed better
than ANGLOR.
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Introduction

One of the ultimate goals of bioinformatics is the prediction of
protein tertiary structure from its primary sequence. In the past,
several techniques were developed for predicting tertiary structure
of a protein that includes homology and threading based
approaches [1,2,3,4,5]. The performance of these methods
depends on the homology between query and target sequences.
Therefore, these techniques work best when homologous tem-
plates are available and are not designed to work in the absence of
homologous protein sequence/structure. Hierarchical approach
provides an alternate to predict the structure of a protein when it is
difficult to detect homologous protein sequences from protein
databank (PDB). In this approach, intermediate states such as
secondary structure states [6,7,8], super-secondary structures
[9,10,11], turns [12,13,14,15,16,17], C*C* distance bounds,
backbone dihedral angle of proteins, etc. are used as restrains to
assist the correct folding of protein backbone [18,19,20]. Recently,
Kurgan et al. reviewed the progress in the field of intermediate
state or one-dimension prediction [21]. It was observed that
predicted secondary structure is useful in the prediction of
disorder, flexible region, fold recognition and function prediction.
It was also observed that dihedral angle (or backbone torsion
angle) and secondary structures of a protein are highly correlated.
In Ramachandran plot, phi-psi angles generally cluster around
phi=—60°, psi= —40° for helix, phi= —120°, psi = 120° for beta-
strand, and around phi=60°, psi=40° for L-helix [22]. Dihedral
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angle omega is almost fixed at 180°and 0° due to planarity of
partial di-peptide bond [23]. Apart from Helix and Sheet, which
have defined phi-psi region, coil residues are distributed in most of
the Ramachandran plot. Strong correlations exist between the
dihedral state of a residue and the immediate sequence neighbor
[24]. This correlation helps in accurately defining the local
ordering/confirmation in proteins. On the other hand, secondary
structure predictions do not distinguish one loop conformation to
another, but backbone dihedral angles accurately provide the local
structural information that is useful in defining highly variable loop
regions in a primary sequence. Backbone torsion angles signifi-
cantly reduce the conformational search space for tertiary
structure prediction. Thus, prediction of dihedral angle is
especially useful for predicting tertiary structure of proteins.
Dihedral angle prediction has many applications in protein
structure prediction that includes: (i) supplement for better
secondary structure prediction [25,26,27], (i) generation of
multiple sequence alignment [28,29], (iii) identification of protein
folds [30,31,32] and (iv) fragment-free tertiary structure prediction
[19]. Initially, dihedral prediction methods were developed for
predicting few discrete states based on their distribution in
Ramachandran plot [33,34,35,36,37,38]. Wood et al. first
developed a method for prediction of real values of dihedral
angle psi and used this information for prediction of the protein
secondary structure with high accuracy [26]. Later, Real-SPINE
(1.0, 2.0 and 3.0), ANGLOR and TANGLE were developed to
predict the real value of both phi and psi dihedral angle
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[39,40,41,42,43]. Real-SPINE was developed on a dataset of 2640
proteins with MAE of 54° for psi angle. The prediction was further
improved in successive methods Real-SPINE 2.0 (38°/25°) for
psi/phi angle respectively, Real-SPINE 3.0 (36°/22°), SPINE X
(35° for psi) and SPINE XI (33.4° for psi) [44]. The new version of
SPINE X incorporated the SPINE XI algorithm and it has MAE
33.4° equivalent to SPINE XI. In our study we have used the new
version of SPINE X. ANGLOR and TANGLE were developed on
a dataset of 1989 proteins and achieved an MAE of 46°/28°
(ANGLOR), 44.6°/27.8° (TANGLE).

Presently, it is difficult to conclude which method among
SPINE X, ANGLOR and TANGLE performs better than other,
as these methods have been tested on different datasets. In this
study, we have performed a benchmarking for principal prediction
methods SPINE X and ANGLOR. These methods were evaluated
on three different datasets; (i) SPINE X (2479 protein chains), (ii)
ANGLOR (1989 protein chains), and (iii) a latest dataset from
ccPDB (4682 protein chains) [40,42,45]. As the standalone of
TANGLE method was not available, we were unable to
benchmark TANGLE method on all datasets. Instead, we
compared it with SPINE X and ANGLOR methods, only on
the ANGLOR dataset on which TANGLE has reported its results.
We have also analyzed why different algorithms perform
differently just for few amino acids with respect to their secondary
structure. We have also provided the raw data (prediction results
of methods on different datasets) in an easily understandable text
format, which can be downloaded from (http://crdd.osdd.net/
raghava/download/rawdata.tgz).

Materials and Methods

Datasets Used for Evaluation

In this study, we evaluated the performance of different
methods on datasets used in previous studies. In addition, we
have also created new dataset from PDB using ccPDB server.

Following is the description of these datasets: -.

SPINE X dataset. This dataset contains 2479 protein chains
that were obtained from SPINE X server (http://sparks.
informatics.iupui.edu/SPINE-X/list.spinex.tgz). [40].

ANGLOR dataset. We obtained this dataset from ANGLOR
web site available at URL http://zhanglab.ccmb.med.umich.edu/
ANGLOR/benchmark.html. Out of the total chains, 500 chains
were used as training data, 460 as validation data and 1029 as
testing data [42].

ccPDB Dataset. We created new dataset using the database
cum web server ccPDB “compilation and creation of datasets from
PDB” (http://crdd.osdd.net/raghava/ccpdb) [45]. We extracted
those protein chains from ccPDB that satisfy following three
criteria’s i) protein chains having resolution better than 2A°, ii)
Rfree less than 0.25 and iii) number of residues in each chain
between 50 to 3000. We created a non-redundant dataset having
sequence identity cut-off 30% with 4682 protein chains. This
dataset was named accordingly to its sequence identity level z.e.
ccPDB30 dataset, which consists of chains having sequence
identity less than 30%. The list of PDB IDs used in ccPDB30
dataset is provided in Table S1 of File S2. For more information
on PDB chains sequence identity level, please refer to (ftp://
resources.rcsh.org/sequence/ clusters). We obtained the dihedral
angle of all PDB chains using DSSP software [46].

Dihedral Angle Prediction Methods

SPINE X. The method utilizes a guided-learning artificial
neural network for prediction of dihedral angle. In the first step,
sequence profile, seven representative physical parameters and
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secondary structure were used as input to predict the normalized
solvent accessibility value of a residue. The normalized solvent
accessibility value was combined with the above stated input
features to predict the real value dihedral angles. This method is
then combined with a discrete state classifier to improve the
accuracy of predicted angles. The resulting predicted angles were
further refined with a conditional random field model to give the
final predicted angles. The method is available at http://sparks.
informatics.iupui.edu/SPINE-X/index.html.

ANGLOR. The method is a composite machine-learning
algorithm using neural network for phi angle prediction and
Support Vector Machine (SVM) for psi angle prediction. In the
first step, sequence profile is used to predict secondary structure
and solvent accessibility value of a residue. In the next step, three
features: sequence profile, secondary structure and solvent
accessibility were used as input vector to predict dihedral angles.
The method is available at http://zhanglab.ccmb.med.umich.
edu/ANGLORY/.

TANGLE. This method is based on two level prediction using
SVM based regression approach. In the first level, features derived
from sequence (PSSM profiles, secondary structure, solvent
accessibility, native disorder, sequence length and sequence
weight) are used as input to predict initial dihedral angles. The
predicted dihedral angles from first level are used as input in the
second level to predict the final refined dihedral angles. TANGLE
is available at  http://sunflower.kuicr.kyoto-u.ac.jp/~sjn/
TANGLE/webserver.html.

Performance Evaluation. We used Mean Absolute Error
(MAE) as described by Wu et al. [42], for assessing the prediction
of phi/psi angles throughout the study. According to Wu et al. the
MAE is defined as the average difference in degrees between the
predicted (P) and the experimental values (E) of all residues. MAE
measures the accuracy for continuous variables e.g. dihedral
angles and is the standard practice of evaluation of dihedral angle
prediction methods. [39,40,41,42,43]. MAE is defined by the
following formulae:

1 N
MAE= 5> |yi—xi (M
i=1

where, x; and y; are the actual (observed) and predicted dihedral
angles of the i" residue and N is the total number of residues.

To test whether the obtained MAE difference while comparing
the methods is statistically significant, we applied Wilcoxon signed
rank test using coin package [47] in R statistical programming
language [48] to calculate the p-value for the comparison. We also
reported Root Mean Square Error (RMSE) and Pearson
correlation coefficient (PCC) achieved by all the methods on all
the datasets. However, it should be kept in mind that in assessing
the quality of prediction of dihedral angles, PCC appears to be a
less robust measure [40,41,42]. RMSE and PCC are defined by
the following formula:

RMSE =

i (0= %) (i)

V= 2] < [S 0]

PCC=

3)
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where x; and y; are the actual (observed) and predicted dihedral
angles of the i residue; X and y are the mean values of x and y,
and N is the total number of residues.

As the nature of the data is circular, we calculated the difference
between actual and predicted/mean dihedral angle as per Wu et
al. [42] for calculating both RMSE and PCC.

Results

Evaluation of Existing Methods

We evaluated the performance of existing methods on different
datasets used in the past for developing prediction method. In
addition, the performance of existing methods was also evaluated
on new or independent dataset generated in this study. We also
performed amino acid specific random based prediction as
described by Wu et al. [42] and Song et al. [39] to perform the
base line comparison of the methods with a random method. Wu
et al. took the dihedral angles randomly from amino acid specific
pool obtained using training dataset of 500 proteins and repeated
this random process 10,000 times to get a stable distribution. We
also adopted the same process for random prediction. On SPINE
X and ccPDB30 datasets, the whole respective dataset was used for
amino acid specific pool generation to obtain random prediction.
The performance of these methods on various datasets is described
below:

PLOS ONE | www.plosone.org

Table 3. Performance of random prediction method, in terms of MAE, on ANGLOR, SPINE X and ccPDB30 datasets for the
prediction of phi and psi dihedral angle.

Random PHI Prediction Random PSI prediction
Residue/Dataset ANGLOR SPINE X ccPDB30 ANGLOR SPINE X ccPDB30
ALA 40.4 343 337 83.6 823 83.0
cys 446 427 422 88.5 88.7 883
ASP 478 42 M5 84.8 83.2 83.6
GLU 403 332 333 83.6 78.9 80.8
PHE 43.9 406 40.5 88.0 89.5 89.4
GLY 88.5 87.8 88.2 87.3 88.1 88.2
HIS 492 467 46.7 89.6 88.7 87.1
ILE 349 329 325 88.1 88.5 88.1
LYS 440 38.1 384 85.9 84.4 85.6
LEU 343 30.5 30.2 87.9 85.4 86.2
MET 46.8 40.7 392 88.5 86.7 87.7
ASN 59.5 55.6 56.4 83.8 81.8 81.0
PRO 14.0 13.2 124 87.7 87.7 87.4
GLN 422 373 377 84.8 81.2 84.3
ARG 4.9 39.2 39.4 86.0 85.2 86.3
SER 49.7 428 42.1 89.7 89.9 89.7
THR 44 36.8 357 89.0 89.8 88.6
VAL 377 345 340 86.7 86.9 86.0
TRP 40.4 38.2 3838 90.1 88.7 89.0
TYR 422 414 40.6 89.6 89.3 89.2
ALL 447 40.4 40.2 86.8 85.8 86.1
Helix (H) 36.3 32,0 32,0 82.7 784 80.5
Sheet (E) 44.9 442 43.2 90.7 937 922
Coil (C) 51.1 46.4 45.9 87.9 88.2 87.5
doi:10.1371/journal.pone.0105667.t003

ANGLOR dataset. First, we evaluated the performance of
methods on ANGLOR dataset. As shown in Table 1, for dihedral
angle phi, ANGLOR, TANGLE and SPINE X achieved MAE of
28.20°, 27.80° and 24.83°, respectively between actual and
predicted phi. These results show that SPINE X performs better
than other methods. SPINE X achieved MAE of 56.70° and 9.63°
for glycine and proline, which is much better than ANGLOR
(75.1° and 15.2°) and TANGLE (84.1° and 13.6°). Both SPINE X
and TANGLE performed better than ANGLOR in case of serine
and threonine residues. TANGLE performed relatively better than
other two methods for helix forming residues. The result shows
that SPINE X performs better among all methods, but the
difference between all three methods is less than 4° (Table 1). In
case of prediction of psi angle, SPINE X performed better for
almost all residues, especially for glycine and proline residues.
ANGLOR, TANGLE and SPINE X have MAE 46.40°, 44.64°
and 38.80° respectively (Table 2). Again, TANGLE performed
better than other methods for helix forming residues. The above
results clearly indicate that SPINE X is outperforming other two
methods by a margin of around 6°. The MAE of SPINE X for phi
and psi angles on this dataset is significantly smaller than
ANGLOR with a p-value of <<0.001 and <<0.001 respectively,
using  Wilcoxon signed rank test. With respect to random
prediction (Table 3), both ANGLOR and SPINE X performed
significantly better with MAE difference 16.5° (p-value<<<<0.001)
and 19.9° (p-value<<<<0.001) for phi and 40.8° (p-value<<<<0.001)
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Figure 1. Normal psi angle distribution of glycine.
doi:10.1371/journal.pone.0105667.9001

and 48.0° (p-value<<<<0.001) for psi respectively. For both phi and least RMSE in predicting phi dihedral angle (Table S2, S3 in File
psi dihedral angles, SPINE X has high PCC than ANGLOR, S2).
TANGLE (as reported) and random prediction. SPINE X has
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Figure 2. Psi angle distribution of glycine after shifting the angles.
doi:10.1371/journal.pone.0105667.g002
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Figure 3. Normal psi angle distribution of Alanine.
doi:10.1371/journal.pone.0105667.g003

SPINE X dataset. Next, we evaluated the performance of
methods on SPINE X dataset. SPINE X achieved MAE of 20.8°
and performed better than ANGLOR with MAE 24.31° for phi
angle. The results were more pronounced for glycine, proline,
serine and threonine residues. (Table 2). The same trend follows in
case of psi angle; SPINE X performed better for glycine, proline,
serine and threonine having MAE 46.8°, 38.17°, 39.49° and
37.18° as compared to ANGLOR with MAE 65.17°, 58.59°,
52.6°, and 49.46° respectively. Overall ANGLOR achieved MAE
of 43.52° and SPINE X achieved 33.5° (Table 2). It is evident
from the results that SPINE X performs better than ANGLOR,
especially in case of psi angle. The difference of MAE between
SPINE X and ANGLOR for phi (3.5°) and psi (10°) angles on this
dataset, corresponds to a p-value of <<<0.001 using Wilcoxon
signed rank test. Both ANGLOR and SPINE X performed
significantly better than amino acid specific random prediction
method (Table 3) with MAE difference of 16.1° (p-value<<<<0.001)
and 19.6° (p-value<<<<0.001) for phi and 42.3° (p-value<<<<0.001)
and 52.3° (p-value<<<<0.001) for psi, respectively. SPINE X has
highest PCC as compared to ANGLOR and random prediction
for phi and psi dihedral angles (Table S2, S3 in File S2).

ccPDB30 Dataset. We also evaluated the performance of
SPINE X and ANGLOR on independent ccPDB30 dataset. For
dihedral angle phi, SPINE X achieved MAE of 21.23° and
ANGLOR achieved 24.46°. SPINE X performed much better for
glycine and proline having MAE 19.33° and 5.8°, which is lower
than ANGLOR. Similarly, in case of psi angle, SPINE X achieved

PLOS ONE | www.plosone.org

MAE 17.29° and 18.45°, which is lower than ANGLOR for
glycine and proline residues respectively. SPINE X having MAE
of 35.70° performed much better than ANGLOR with MAE of
44.48°. The results clearly demonstrate the superior performance
of SPINE X over ANGLOR (Table 1, 2). Using Wilcoxon signed
rank test, the MAE difference between SPINE X and ANGLOR
for phi angle (3.3°) corresponds to a p-value<<<<0.001 and for psi
angle (8.8°) p-value<<0.001. Both SPINE X and ANGLOR
performed significantly better than random prediction (Table 3)
with p-values (phi<<0.001; psi<<0.001) and (phi<<0.001;
psi<<<0.001) respectively. SPINE X has least RMSE and highest
PCC for phi dihedral angle on this dataset (Table S2, S3 in File
S2).

Effect of Angle Shifting in SPINE X

The results suggest that SPINE X performs better than
ANGLOR and TANGLE for the prediction of psi angle. Amino
acid wise comparison reveals that SPINE X performs better than
ANGLOR and TANGLE especially in glycine, proline, serine and
threonine amino acids. Interestingly, both glycine and proline do
not follow the standard Ramachandran plot. In case of glycine of
ccPDB30 dataset, ANGLOR achieved MAE of 65.32° and SPINE
X has 48.03° for psi angle. It has been observed that distribution of
psi angle for glycine in helix region has a range between —55° to
—10°, sheet ranges from —180° to —130°, 110° to 180° and coil
occurs mainly in —180° to —120°, —45° to 45° and 130° to 180°
as shown in Figure 1. SPINE X shifted the angles by adding 100°
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to the angles between —100° and 180° and adding 460° to the
angles between —180° and —100°, thus shifting the angles from —
180° —-180° to 0° —360° (Figure 2). SPINE X authors have
suggested that this shifting ensures that a minimum number of
angles occur at the end of the sigmoidal function, making the data
more linear and continuous, which ultimately improves the
learning by machine learning algorithms. To prove that shifting
the angles actually work or not, we developed two models, one
without angle shifting and other with angle shifting using SPINE X
dataset. It was observed that the model developed with shifted
angles has 10° lower MAE as in case of glycine (data not shown).
We also observed that shifting the phi dihedral angle improved the
MAE in case of glycine.

There are amino acids in which angle shifting does not increase
the performance because they have minimal residues in the —100°
to —180° ranges. Thus shifting of angles makes no difference as in
the case of alanine (Figure 3). For graphs showing the dihedral
angles distribution of all 20 amino acids, please refer to File S1 and
complete details are found in (Table S4, S5 in File S2). We have
also observed in the developed models on SPINE X dataset that
angle shifting produce negligible difference for alanine (data not
shown).

Discussion

One of the advantages of prediction of dihedral angles of
residues over secondary structure state is that they can be
effectively used as restraints for building tertiary structure of
proteins. In the past, methods were developed to predict real value
of dihedral angles of residues in a protein. The assessment of the
performance of a method/technique plays a vital role in the
development of any field of science. It is important for users as well
as developers, since it allow users to find the best method for their
work and for the developers to compare their method with existing
methods. In this study, an attempt has been made to assess the
performance of existing methods in the field of dihedral prediction.
We benchmarked the performance of SPINE X and ANGLOR in
this study. The performance of these methods was evaluated on
datasets used in the past as well as on new dataset called
independent dataset generated using ccPDB server. TANGLE
method was compared with ANGLOR and SPINE X on only
ANGLOR dataset because of its reported results on this dataset
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