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Abstract

Tertiary structure prediction of a protein from its amino acid sequence is one of the major challenges in the field of
bioinformatics. Hierarchical approach is one of the persuasive techniques used for predicting protein tertiary structure,
especially in the absence of homologous protein structures. In hierarchical approach, intermediate states are predicted like
secondary structure, dihedral angles, Ca-Ca distance bounds, etc. These intermediate states are used to restraint the protein
backbone and assist its correct folding. In the recent years, several methods have been developed for predicting dihedral
angles of a protein, but it is difficult to conclude which method is better than others. In this study, we benchmarked the
performance of dihedral prediction methods ANGLOR and SPINE X on various datasets, including independent datasets.
TANGLE dihedral prediction method was not benchmarked (due to unavailability of its standalone) and was compared with
SPINE X and ANGLOR on only ANGLOR dataset on which TANGLE has reported its results. It was observed that SPINE X
performed better than ANGLOR and TANGLE, especially in case of prediction of dihedral angles of glycine and proline
residues. The analysis suggested that angle shifting was the foremost reason of better performance of SPINE X. We further
evaluated the performance of the methods on independent ccPDB30 dataset and observed that SPINE X performed better
than ANGLOR.
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Received December 21, 2013; Accepted July 26, 2014; Published August 28, 2014

Copyright: � 2014 Singh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors are thankful to funding agencies Council of Scientific and Industrial Research (project OSDD and GENESIS BSC0121) and Department of
Biotechnology (project BTISNET), Govt. of India. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: Gajendra P. S. Raghava is a PLOS ONE Editorial Board member. This does not alter the authors’ adherence to PLOS ONE Editorial policies
and criteria.

* Email: raghava@imtech.res.in

. These authors contributed equally to this work.

Introduction

One of the ultimate goals of bioinformatics is the prediction of

protein tertiary structure from its primary sequence. In the past,

several techniques were developed for predicting tertiary structure

of a protein that includes homology and threading based

approaches [1,2,3,4,5]. The performance of these methods

depends on the homology between query and target sequences.

Therefore, these techniques work best when homologous tem-

plates are available and are not designed to work in the absence of

homologous protein sequence/structure. Hierarchical approach

provides an alternate to predict the structure of a protein when it is

difficult to detect homologous protein sequences from protein

databank (PDB). In this approach, intermediate states such as

secondary structure states [6,7,8], super-secondary structures

[9,10,11], turns [12,13,14,15,16,17], Ca-Ca distance bounds,

backbone dihedral angle of proteins, etc. are used as restrains to

assist the correct folding of protein backbone [18,19,20]. Recently,

Kurgan et al. reviewed the progress in the field of intermediate

state or one-dimension prediction [21]. It was observed that

predicted secondary structure is useful in the prediction of

disorder, flexible region, fold recognition and function prediction.

It was also observed that dihedral angle (or backbone torsion

angle) and secondary structures of a protein are highly correlated.

In Ramachandran plot, phi-psi angles generally cluster around

phi =260u, psi =240u for helix, phi =2120u, psi = 120u for beta-
strand, and around phi = 60u, psi = 40u for L-helix [22]. Dihedral

angle omega is almost fixed at 180uand 0u due to planarity of

partial di-peptide bond [23]. Apart from Helix and Sheet, which

have defined phi-psi region, coil residues are distributed in most of

the Ramachandran plot. Strong correlations exist between the

dihedral state of a residue and the immediate sequence neighbor

[24]. This correlation helps in accurately defining the local

ordering/confirmation in proteins. On the other hand, secondary

structure predictions do not distinguish one loop conformation to

another, but backbone dihedral angles accurately provide the local

structural information that is useful in defining highly variable loop

regions in a primary sequence. Backbone torsion angles signifi-

cantly reduce the conformational search space for tertiary

structure prediction. Thus, prediction of dihedral angle is

especially useful for predicting tertiary structure of proteins.

Dihedral angle prediction has many applications in protein

structure prediction that includes: (i) supplement for better

secondary structure prediction [25,26,27], (ii) generation of

multiple sequence alignment [28,29], (iii) identification of protein

folds [30,31,32] and (iv) fragment-free tertiary structure prediction

[19]. Initially, dihedral prediction methods were developed for

predicting few discrete states based on their distribution in

Ramachandran plot [33,34,35,36,37,38]. Wood et al. first

developed a method for prediction of real values of dihedral

angle psi and used this information for prediction of the protein

secondary structure with high accuracy [26]. Later, Real-SPINE

(1.0, 2.0 and 3.0), ANGLOR and TANGLE were developed to

predict the real value of both phi and psi dihedral angle
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[39,40,41,42,43]. Real-SPINE was developed on a dataset of 2640

proteins with MAE of 54u for psi angle. The prediction was further

improved in successive methods Real-SPINE 2.0 (38u/25u) for
psi/phi angle respectively, Real-SPINE 3.0 (36u/22u), SPINE X

(35u for psi) and SPINE XI (33.4u for psi) [44]. The new version of

SPINE X incorporated the SPINE XI algorithm and it has MAE

33.4u equivalent to SPINE XI. In our study we have used the new

version of SPINE X. ANGLOR and TANGLE were developed on

a dataset of 1989 proteins and achieved an MAE of 46u/28u
(ANGLOR), 44.6u/27.8u (TANGLE).

Presently, it is difficult to conclude which method among

SPINE X, ANGLOR and TANGLE performs better than other,

as these methods have been tested on different datasets. In this

study, we have performed a benchmarking for principal prediction

methods SPINE X and ANGLOR. These methods were evaluated

on three different datasets; (i) SPINE X (2479 protein chains), (ii)

ANGLOR (1989 protein chains), and (iii) a latest dataset from

ccPDB (4682 protein chains) [40,42,45]. As the standalone of

TANGLE method was not available, we were unable to

benchmark TANGLE method on all datasets. Instead, we

compared it with SPINE X and ANGLOR methods, only on

the ANGLOR dataset on which TANGLE has reported its results.

We have also analyzed why different algorithms perform

differently just for few amino acids with respect to their secondary

structure. We have also provided the raw data (prediction results

of methods on different datasets) in an easily understandable text

format, which can be downloaded from (http://crdd.osdd.net/

raghava/download/rawdata.tgz).

Materials and Methods

Datasets Used for Evaluation
In this study, we evaluated the performance of different

methods on datasets used in previous studies. In addition, we

have also created new dataset from PDB using ccPDB server.

Following is the description of these datasets: -.

SPINE X dataset. This dataset contains 2479 protein chains

that were obtained from SPINE X server (http://sparks.

informatics.iupui.edu/SPINE-X/list.spinex.tgz). [40].

ANGLOR dataset. We obtained this dataset from ANGLOR

web site available at URL http://zhanglab.ccmb.med.umich.edu/

ANGLOR/benchmark.html. Out of the total chains, 500 chains

were used as training data, 460 as validation data and 1029 as

testing data [42].

ccPDB Dataset. We created new dataset using the database

cum web server ccPDB ‘‘compilation and creation of datasets from

PDB’’ (http://crdd.osdd.net/raghava/ccpdb) [45]. We extracted

those protein chains from ccPDB that satisfy following three

criteria’s i) protein chains having resolution better than 2Au, ii)
Rfree less than 0.25 and iii) number of residues in each chain

between 50 to 3000. We created a non-redundant dataset having

sequence identity cut-off 30% with 4682 protein chains. This

dataset was named accordingly to its sequence identity level i.e.
ccPDB30 dataset, which consists of chains having sequence

identity less than 30%. The list of PDB IDs used in ccPDB30

dataset is provided in Table S1 of File S2. For more information

on PDB chains sequence identity level, please refer to (ftp://

resources.rcsb.org/sequence/clusters). We obtained the dihedral

angle of all PDB chains using DSSP software [46].

Dihedral Angle Prediction Methods
SPINE X. The method utilizes a guided-learning artificial

neural network for prediction of dihedral angle. In the first step,

sequence profile, seven representative physical parameters and

secondary structure were used as input to predict the normalized

solvent accessibility value of a residue. The normalized solvent

accessibility value was combined with the above stated input

features to predict the real value dihedral angles. This method is

then combined with a discrete state classifier to improve the

accuracy of predicted angles. The resulting predicted angles were

further refined with a conditional random field model to give the

final predicted angles. The method is available at http://sparks.

informatics.iupui.edu/SPINE-X/index.html.

ANGLOR. The method is a composite machine-learning

algorithm using neural network for phi angle prediction and

Support Vector Machine (SVM) for psi angle prediction. In the

first step, sequence profile is used to predict secondary structure

and solvent accessibility value of a residue. In the next step, three

features: sequence profile, secondary structure and solvent

accessibility were used as input vector to predict dihedral angles.

The method is available at http://zhanglab.ccmb.med.umich.

edu/ANGLOR/.

TANGLE. This method is based on two level prediction using

SVM based regression approach. In the first level, features derived

from sequence (PSSM profiles, secondary structure, solvent

accessibility, native disorder, sequence length and sequence

weight) are used as input to predict initial dihedral angles. The

predicted dihedral angles from first level are used as input in the

second level to predict the final refined dihedral angles. TANGLE

is available at http://sunflower.kuicr.kyoto-u.ac.jp/,sjn/

TANGLE/webserver.html.

Performance Evaluation. We used Mean Absolute Error

(MAE) as described by Wu et al. [42], for assessing the prediction

of phi/psi angles throughout the study. According to Wu et al. the
MAE is defined as the average difference in degrees between the

predicted (P) and the experimental values (E) of all residues. MAE

measures the accuracy for continuous variables e.g. dihedral

angles and is the standard practice of evaluation of dihedral angle

prediction methods. [39,40,41,42,43]. MAE is defined by the

following formulae:

MAE~
1

N

XN
i~1

Dyi{xi D ð1Þ

where, xi and yi are the actual (observed) and predicted dihedral

angles of the ith residue and N is the total number of residues.

To test whether the obtained MAE difference while comparing

the methods is statistically significant, we applied Wilcoxon signed

rank test using coin package [47] in R statistical programming

language [48] to calculate the p-value for the comparison. We also

reported Root Mean Square Error (RMSE) and Pearson

correlation coefficient (PCC) achieved by all the methods on all

the datasets. However, it should be kept in mind that in assessing

the quality of prediction of dihedral angles, PCC appears to be a

less robust measure [40,41,42]. RMSE and PCC are defined by

the following formula:

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i~1

yi{xið Þ2
vuut ð2Þ

PCC~

PN
i~1 xi{�xxð Þ yi{�yyð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i~1 xi{�xxð Þ2
h ir

|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1 yi{�yyð Þ2

h ir ð3Þ
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where xi and yi are the actual (observed) and predicted dihedral

angles of the ith residue; �xx and �yy are the mean values of x and y,
and N is the total number of residues.

As the nature of the data is circular, we calculated the difference

between actual and predicted/mean dihedral angle as per Wu et
al. [42] for calculating both RMSE and PCC.

Results

Evaluation of Existing Methods
We evaluated the performance of existing methods on different

datasets used in the past for developing prediction method. In

addition, the performance of existing methods was also evaluated

on new or independent dataset generated in this study. We also

performed amino acid specific random based prediction as

described by Wu et al. [42] and Song et al. [39] to perform the

base line comparison of the methods with a random method. Wu

et al. took the dihedral angles randomly from amino acid specific

pool obtained using training dataset of 500 proteins and repeated

this random process 10,000 times to get a stable distribution. We

also adopted the same process for random prediction. On SPINE

X and ccPDB30 datasets, the whole respective dataset was used for

amino acid specific pool generation to obtain random prediction.

The performance of these methods on various datasets is described

below:

ANGLOR dataset. First, we evaluated the performance of

methods on ANGLOR dataset. As shown in Table 1, for dihedral

angle phi, ANGLOR, TANGLE and SPINE X achieved MAE of

28.20u, 27.80u and 24.83u, respectively between actual and

predicted phi. These results show that SPINE X performs better

than other methods. SPINE X achieved MAE of 56.70u and 9.63u
for glycine and proline, which is much better than ANGLOR

(75.1u and 15.2u) and TANGLE (84.1u and 13.6u). Both SPINE X

and TANGLE performed better than ANGLOR in case of serine

and threonine residues. TANGLE performed relatively better than

other two methods for helix forming residues. The result shows

that SPINE X performs better among all methods, but the

difference between all three methods is less than 4u (Table 1). In

case of prediction of psi angle, SPINE X performed better for

almost all residues, especially for glycine and proline residues.

ANGLOR, TANGLE and SPINE X have MAE 46.40u, 44.64u
and 38.80u respectively (Table 2). Again, TANGLE performed

better than other methods for helix forming residues. The above

results clearly indicate that SPINE X is outperforming other two

methods by a margin of around 6u. The MAE of SPINE X for phi

and psi angles on this dataset is significantly smaller than

ANGLOR with a p-value of ,,0.001 and ,,0.001 respectively,

using Wilcoxon signed rank test. With respect to random

prediction (Table 3), both ANGLOR and SPINE X performed

significantly better with MAE difference 16.5u (p-value,,0.001)

and 19.9u (p-value,,0.001) for phi and 40.8u (p-value,,0.001)

Table 3. Performance of random prediction method, in terms of MAE, on ANGLOR, SPINE X and ccPDB30 datasets for the
prediction of phi and psi dihedral angle.

Random PHI Prediction Random PSI prediction

Residue/Dataset ANGLOR SPINE X ccPDB30 ANGLOR SPINE X ccPDB30

ALA 40.4 34.3 33.7 83.6 82.3 83.0

CYS 44.6 42.7 42.2 88.5 88.7 88.3

ASP 47.8 42.2 41.5 84.8 83.2 83.6

GLU 40.3 33.2 33.3 83.6 78.9 80.8

PHE 43.9 40.6 40.5 88.0 89.5 89.4

GLY 88.5 87.8 88.2 87.3 88.1 88.2

HIS 49.2 46.7 46.7 89.6 88.7 87.1

ILE 34.9 32.9 32.5 88.1 88.5 88.1

LYS 44.0 38.1 38.4 85.9 84.4 85.6

LEU 34.3 30.5 30.2 87.9 85.4 86.2

MET 46.8 40.7 39.2 88.5 86.7 87.7

ASN 59.5 55.6 56.4 83.8 81.8 81.0

PRO 14.0 13.2 12.4 87.7 87.7 87.4

GLN 42.2 37.3 37.7 84.8 81.2 84.3

ARG 42.9 39.2 39.4 86.0 85.2 86.3

SER 49.7 42.8 42.1 89.7 89.9 89.7

THR 41.4 36.8 35.7 89.0 89.8 88.6

VAL 37.7 34.5 34.0 86.7 86.9 86.0

TRP 40.4 38.2 38.8 90.1 88.7 89.0

TYR 42.2 41.4 40.6 89.6 89.3 89.2

ALL 44.7 40.4 40.2 86.8 85.8 86.1

Helix (H) 36.3 32.0 32.0 82.7 78.4 80.5

Sheet (E) 44.9 44.2 43.2 90.7 93.7 92.2

Coil (C) 51.1 46.4 45.9 87.9 88.2 87.5

doi:10.1371/journal.pone.0105667.t003
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and 48.0u (p-value,,0.001) for psi respectively. For both phi and

psi dihedral angles, SPINE X has high PCC than ANGLOR,

TANGLE (as reported) and random prediction. SPINE X has

least RMSE in predicting phi dihedral angle (Table S2, S3 in File

S2).

Figure 1. Normal psi angle distribution of glycine.
doi:10.1371/journal.pone.0105667.g001

Figure 2. Psi angle distribution of glycine after shifting the angles.
doi:10.1371/journal.pone.0105667.g002
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SPINE X dataset. Next, we evaluated the performance of

methods on SPINE X dataset. SPINE X achieved MAE of 20.8u
and performed better than ANGLOR with MAE 24.31u for phi

angle. The results were more pronounced for glycine, proline,

serine and threonine residues. (Table 2). The same trend follows in

case of psi angle; SPINE X performed better for glycine, proline,

serine and threonine having MAE 46.8u, 38.17u, 39.49u and

37.18u as compared to ANGLOR with MAE 65.17u, 58.59u,
52.6u, and 49.46u respectively. Overall ANGLOR achieved MAE

of 43.52u and SPINE X achieved 33.5u (Table 2). It is evident

from the results that SPINE X performs better than ANGLOR,

especially in case of psi angle. The difference of MAE between

SPINE X and ANGLOR for phi (3.5u) and psi (10u) angles on this

dataset, corresponds to a p-value of ,,0.001 using Wilcoxon

signed rank test. Both ANGLOR and SPINE X performed

significantly better than amino acid specific random prediction

method (Table 3) with MAE difference of 16.1u (p-value,,0.001)

and 19.6u (p-value,,0.001) for phi and 42.3u (p-value,,0.001)

and 52.3u (p-value,,0.001) for psi, respectively. SPINE X has

highest PCC as compared to ANGLOR and random prediction

for phi and psi dihedral angles (Table S2, S3 in File S2).

ccPDB30 Dataset. We also evaluated the performance of

SPINE X and ANGLOR on independent ccPDB30 dataset. For

dihedral angle phi, SPINE X achieved MAE of 21.23u and

ANGLOR achieved 24.46u. SPINE X performed much better for

glycine and proline having MAE 19.33u and 5.8u, which is lower

than ANGLOR. Similarly, in case of psi angle, SPINE X achieved

MAE 17.29u and 18.45u, which is lower than ANGLOR for

glycine and proline residues respectively. SPINE X having MAE

of 35.70u performed much better than ANGLOR with MAE of

44.48u. The results clearly demonstrate the superior performance

of SPINE X over ANGLOR (Table 1, 2). Using Wilcoxon signed

rank test, the MAE difference between SPINE X and ANGLOR

for phi angle (3.3u) corresponds to a p-value,,0.001 and for psi

angle (8.8u) p-value,,0.001. Both SPINE X and ANGLOR

performed significantly better than random prediction (Table 3)

with p-values (phi,,0.001; psi,,0.001) and (phi,,0.001;

psi,,0.001) respectively. SPINE X has least RMSE and highest

PCC for phi dihedral angle on this dataset (Table S2, S3 in File

S2).

Effect of Angle Shifting in SPINE X
The results suggest that SPINE X performs better than

ANGLOR and TANGLE for the prediction of psi angle. Amino

acid wise comparison reveals that SPINE X performs better than

ANGLOR and TANGLE especially in glycine, proline, serine and

threonine amino acids. Interestingly, both glycine and proline do

not follow the standard Ramachandran plot. In case of glycine of

ccPDB30 dataset, ANGLOR achieved MAE of 65.32u and SPINE

X has 48.03u for psi angle. It has been observed that distribution of

psi angle for glycine in helix region has a range between 255u to
210u, sheet ranges from 2180u to 2130u, 110u to 180u and coil

occurs mainly in 2180u to 2120u, 245u to 45u and 130u to 180u
as shown in Figure 1. SPINE X shifted the angles by adding 100u

Figure 3. Normal psi angle distribution of Alanine.
doi:10.1371/journal.pone.0105667.g003
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to the angles between 2100u and 180u and adding 460u to the

angles between 2180u and 2100u, thus shifting the angles from 2

180u –180u to 0u 2360u (Figure 2). SPINE X authors have

suggested that this shifting ensures that a minimum number of

angles occur at the end of the sigmoidal function, making the data

more linear and continuous, which ultimately improves the

learning by machine learning algorithms. To prove that shifting

the angles actually work or not, we developed two models, one

without angle shifting and other with angle shifting using SPINE X

dataset. It was observed that the model developed with shifted

angles has 10u lower MAE as in case of glycine (data not shown).

We also observed that shifting the phi dihedral angle improved the

MAE in case of glycine.

There are amino acids in which angle shifting does not increase

the performance because they have minimal residues in the2100u
to 2180u ranges. Thus shifting of angles makes no difference as in

the case of alanine (Figure 3). For graphs showing the dihedral

angles distribution of all 20 amino acids, please refer to File S1 and

complete details are found in (Table S4, S5 in File S2). We have

also observed in the developed models on SPINE X dataset that

angle shifting produce negligible difference for alanine (data not

shown).

Discussion

One of the advantages of prediction of dihedral angles of

residues over secondary structure state is that they can be

effectively used as restraints for building tertiary structure of

proteins. In the past, methods were developed to predict real value

of dihedral angles of residues in a protein. The assessment of the

performance of a method/technique plays a vital role in the

development of any field of science. It is important for users as well

as developers, since it allow users to find the best method for their

work and for the developers to compare their method with existing

methods. In this study, an attempt has been made to assess the

performance of existing methods in the field of dihedral prediction.

We benchmarked the performance of SPINE X and ANGLOR in

this study. The performance of these methods was evaluated on

datasets used in the past as well as on new dataset called

independent dataset generated using ccPDB server. TANGLE

method was compared with ANGLOR and SPINE X on only

ANGLOR dataset because of its reported results on this dataset

and its unavailability as standalone for benchmarking on other

datasets. Among various performance measures like PCC, MAE

and RMSE, MAE is the most widely used measure for accessing

the performance of dihedral angle prediction. The reason behind

this is the circular nature of dihedral angles while PCC is used to

measure linear dependence between observed and predicted

values. Therefore, angles predicted near the border (e.g. observed

angle 175u and predicted angle 2175u) are actually close to each

other (MAE 10u) but will lead to irregular correlation coefficient. It

was observed that SPINE X performed better than rest of the

methods, especially for psi angle. The angle shifting performed by

SPINE X for training, improves the psi dihedral angle prediction

considerably. The angle shifting improves results only for those

amino acids, which have considerable number of residues in 2

100u to 2180u range. We also observed that angle shifting of phi

angle, especially for glycine, improves the prediction performance.

The dihedral angle prediction performance can be improved if

amino acid specific dihedral angle shifting is done based upon the

amino acid dihedral angle distribution to make the training data

linear and continuous.
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