
Computational and Structural Biotechnology Journal 20 (2022) 5296–5308
journal homepage: www.elsevier .com/locate /csbj
Identification of mild cognitive impairment subtypes predicting
conversion to Alzheimer’s disease using multimodal data
https://doi.org/10.1016/j.csbj.2022.08.007
2001-0370/� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
E-mail address: kikuchi@gi.med.osaka-u.ac.jp (M. Kikuchi).

1 The data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (adni.loni.usc.edu). Thus, the investigato
the ADNI contributed to the design and implementation of the ADNI and/or provided data but did not participate in the analysis or writing of this report. A complete
ADNI investigators can be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_ apply/ADNI_Acknowledgement_List.pdf.
Masataka Kikuchi a,b,⇑, Kaori Kobayashi a,c, Sakiko Itoh a, Kensaku Kasuga d, Akinori Miyashita d,
Takeshi Ikeuchi d, Eiji Yumoto e, Yuki Kosaka e, Yasuto Fushimi c, Toshihiro Takeda f, Shirou Manabe f,
Satoshi Hattori g,h, Alzheimer’s Disease Neuroimaging Initiative 1, Akihiro Nakaya i, Kenichi Kamijo c,
Yasushi Matsumura f

aDepartment of Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
bDepartment of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Chiba, Japan
cMedical Solutions Division, NEC Corporation, Tokyo, Japan
dDepartment of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
eBiometrics Research Laboratories, NEC Corporation, Kanagawa, Japan
fDepartment of Medical Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
gDepartment of Biomedical Statistics, Graduate School of Medicine, Osaka University, Osaka, Japan
h Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
iDepartment of Genome Data Science, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
a r t i c l e i n f o

Article history:
Received 29 March 2022
Received in revised form 3 August 2022
Accepted 3 August 2022
Available online 22 August 2022

Keywords:
Alzheimer’s disease
Mild cognitive impairment
Decision trees
a b s t r a c t

Mild cognitive impairment (MCI) is a high-risk condition for conversion to Alzheimer’s disease (AD)
dementia. However, individuals with MCI show heterogeneous patterns of pathology and conversion
to AD dementia. Thus, detailed subtyping of MCI subjects and accurate prediction of the patients in whom
MCI will convert to AD dementia is critical for identifying at-risk populations and the underlying biolog-
ical features. To this end, we developed a model that simultaneously subtypes MCI subjects and predicts
conversion to AD and performed an analysis of the underlying biological characteristics of each subtype.
In particular, a heterogeneous mixture learning (HML) method was used to build a decision tree-based
model based on multimodal data, including cerebrospinal fluid (CSF) biomarker data, structural magnetic
resonance imaging (MRI) data, APOE genotype data, and age at examination. The HML model showed an
average F1 score of 0.721, which was comparable to the random forest method and had significantly
more predictive accuracy than the CART method. The HML-generated decision tree was also used to
classify-five subtypes of MCI. Each MCI subtype was characterized in terms of the degree of abnormality
in CSF biomarkers, brain atrophy, and cognitive decline. The five subtypes of MCI were further catego-
rized into three groups: one subtype with low conversion rates (similar to cognitively normal subjects);
three subtypes with moderate conversion rates; and one subtype with high conversion rates (similar to
AD dementia patients). The subtypes with moderate conversion rates were subsequently separated into a
group with CSF biomarker abnormalities and a group with brain atrophy. The subtypes identified in this
study exhibited varying MCI-to-AD conversion rates and differing biological profiles.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Background ized by the deposition of amyloid-beta (Ab) protein and tau protein
Worldwide, 55 million people are affected by dementias,
including Alzheimer’s disease (AD) dementia, which is character-
within the brain, and the number of affected individuals continues
to increase [1]. Experimental drugs for AD have failed to prevent or
slow cognitive decline in people with AD in clinical trials [2].
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Although these drugs do not demonstrate excellent clinical efficacy
in patients with late-stage AD, they could potentially be effective
for the treatment of patients with early-stage AD or mild cognitive
impairment (MCI), which makes it critical to identify the popula-
tion of patients who will progress to late-stage AD. However, indi-
viduals with MCI show heterogeneity in patterns of pathology, and
MCI does not always convert to AD dementia. Detailed subtyping
of MCI can reduce heterogeneity in the individuals and increase
statistical power for accurate prediction of the patients in whom
MCI will convert to AD dementia. This may support new trial
designs and enable the efficacy of drugs to be evaluated with small
numbers of patients in clinical trials.

Petersen and Morris, who focused on the heterogeneity of MCI
in early times, classified MCI into four clinical subtypes based on
memory impairment [3]. This classification system divides MCI
into amnestic and nonamnestic MCI, each further divided into a
group with impairment in a single cognitive domain (single-
domain MCI) and a group with impairments in multiple cognitive
domains (multiple-domain MCI). It has been reported that amnes-
tic MCI, regardless of whether it is single- or multiple-domain MCI,
comparatively highly converts to dementia, mainly AD dementia,
at a rate of 10 % to 15 % per year [4]. Recent studies based on neu-
ropsychological tests or brain imaging data identified other MCI
subtype classification systems in which different subtypes of MCI
have different conversion rates to AD [5–9]. However, these classi-
fication systems are based on a single feature. Subtyping using data
with multiple features (i.e., multimodal data) may provide a more
detailed classification system, which may predict conversion to AD
more accurately.

Machine learning approaches help to generate models for pre-
diction and classification (e.g., subtyping) using multimodal data.
In particular, nonlinear models such as deep learning have been
shown to be useful for prediction and classification with high accu-
racy in various fields, including the medical field [10,11]. However,
it is difficult to interpret which criteria serve as the basis for pre-
dictions made by applied nonlinear models. This is because there
is a trade-off between the predictive accuracy and the inter-
pretability of the model [12]. Linear models based on a single deci-
sion tree allow the criteria for prediction or classification to be
visualized, contributing to interpretability. However, due to the
trade-off mentioned above, while linear models are superior in
interpretability, they generally have lower prediction accuracy
than nonlinear models.

To overcome these problems, we introduced a heterogeneous
mixture learning (HML) method. HML is a type of hierarchical mix-
ture of experts [13–15] that integrates multiple learners using a
single decision tree. HML divides individuals into similar groups
based on various features of the individuals and generates appro-
priate predictive models for each group. Using HML has several
advantages, including the following: (1) the decision tree facilitates
an understanding of how individuals are classified into their sub-
types, (2) HML naturally prunes more complex branches of a deci-
sion tree, and (3) HML shows predictive accuracy comparable to
that of nonlinear models [16], providing a more compact decision
tree than those produced by other decision-tree-based methods. In
this study, we applied the HML method to construct a versatile
classification system of MCI based on multimodal data, namely,
five brain region volumes, cerebrospinal fluid (CSF) biomarkers,
including Ab and tau, and genomic data on the apolipoprotein E
(APOE) gene. Our HML model produced more interpretable and
higher or comparable predictive accuracy than other decision-
tree-based methods. We also characterized the subtypes of MCI
identified by HML, including their conversion to AD dementia over
time.
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2. Materials and methods

2.1. ADNI dataset

The data used in this study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) [17]. The ADNI was
launched in 2003 as a public–private partnership led by Principal
Investigator Michael W. Weiner, MD. The primary goal of the ADNI
is to test whether serial magnetic resonance imaging (MRI) and
positron emission tomography (PET) data and the analysis of other
biological markers and clinical and neuropsychological assess-
ments can be combined to characterize the progression of MCI
and early AD. The ADNI dataset contains data from a large number
of cognitively normal (CN), MCI, and AD dementia patients
recruited from over 50 different centres in the US and Canada, with
follow-up assessments performed every 6 months. Institutional
review boards approved the study procedures for the institutions
involved in the establishment of the ADNI dataset, and written
informed consent was obtained from all participants whose data
were used in the ADNI dataset.

This study considered data from 941 subjects (at baseline),
comprising 305 CN subjects, 480 MCI subjects, and 156 AD de-
mentia patients, that were included in a publicly available data-
set of the ADNI called ADNIMERGE. The dataset included 309
participants (97 CN individuals, 144 MCI subjects, 68 AD demen-
tia patients) from the ADNI 1 project and 632 participants (208
CN individuals, 336 MCI subjects, 88 AD dementia patients) from
the ADNI GO/2 project. All subjects had records of CSF biomarker
data, structural MRI data, APOE genotype data, and age at exam-
ination. The AD dementia patients and the MCI subjects were
diagnosed mainly by neuropsychological tests (Mini–Mental
State Examination (MMSE), Clinical Dementia Rating–Sum of
Boxes (CDR-SB), and Wechsler Memory Scale Logical Memory
II). The AD dementia patients who were analysed in this study
had AD dementia or Alzheimer’s clinical syndrome diagnosed
based on clinical diagnostic and neuropsychological test out-
comes without assessments of the levels of pathological markers
such as Ab or tau protein. Table 1 shows a summary of each
group.
2.2. ADNI measures

We generated models using the following five CSF biomarkers,
five brain volumes, APOE genotype, and age at examination (sec-
tions 2.2.1–3). The other data shown in sections 2.2.4–6 were used
to characterize each subtype.
2.2.1. CSF biomarkers
The CSF biomarkers comprised the following five measures: Ab

(1–42) peptide levels, total tau (tTau) protein levels, phosphory-
lated tau (pTau) protein levels, the tTau/Ab(1–42) ratio, and the
pTau/Ab(1–42) ratio. The levels of Ab(1–42), tTau, and pTau were
obtained from the ADNI; these data were initially acquired using
Roche Elecsys� immunoassays (Roche Diagnostics GmbH, Penz-
berg, Germany). We calculated the tTau/Ab(1–42) ratio and pTau/
Ab(1–42) ratio based on the levels of these three CSF biomarkers.
The CSF biomarkers were obtained as quantitative variables, but
the level of each was often represented by a string containing an
inequality sign when the biomarker level reached the upper limit
or was below the detection limit of the immunoassays. In these
cases, we treated ‘‘>1700” for Ab(1–42) as 1,700 pg/mL and
‘‘>130000 for tTau as 1,300 pg/mL. Similarly, ”<800 and ‘‘>12000 for
pTau were treated as 8 pg/mL and 120 pg/mL, respectively.



Table 1
Summary of sample characteristics at baseline.

CN MCI AD dementia

N 305 480 156
Age in years, mean ± SE 73.7 ± 0.328 71.8 ± 0.339 74 ± 0.666
Sex (Female:Male) 162:143 200:280 69:87
Education year, mean ± SE 16.3 ± 0.151 16 ± 0.127 15.5 ± 0.214
CSF Ab(1–42) (pg/mL), mean ± SE 1226 ± 25.27 964.2 ± 19.94 644.6 ± 22.97
CSF tTau (pg/mL), mean ± SE 238.4 ± 5.128 287.4 ± 6.264 373.8 ± 11.1
CSF pTau (pg/mL), mean ± SE 21.9 ± 0.529 27.9 ± 0.693 37.3 ± 1.18
tTau / Ab(1–42), mean ± SE 2.33e-01 ± 9.01e-03 3.86e-01 ± 1.32e-02 6.51e-01 ± 2.45e-02
pTau / Ab(1–42), mean ± SE 2.19e-02 ± 9.78e-04 3.82e-02 ± 1.43e-03 6.52e-02 ± 2.55e-03
Whole-brain volume / ICV, mean ± SE 6.94e-01 ± 2.52e-03 6.83e-01 ± 2.28e-03 6.45e-01 ± 3.37e-03
Hippocampus volume / ICV, mean ± SE 5.01e-03 ± 3.37e-05 4.5e-03 ± 3.74e-05 3.84e-03 ± 5.27e-05
Brain-ventricular volume / ICV, mean ± SE 2.14e-02 ± 5.9e-04 2.45e-02 ± 5.87e-04 3.05e-02 ± 9.25e-04
Entorhinal cortex volume / ICV, mean ± SE 2.58e-03 ± 2.16e-05 2.33e-03 ± 2.19e-05 1.86e-03 ± 3.48e-05
WMH volume, mean ± SE 4.03 ± 0.429 5.02 ± 0.385 4.75 ± 0.539
APOE e4 carriers (%) 81 (26.6%) 239 (49.8%) 108 (69.2%)

Abbreviations are as follows: CN, Cognitively normal; MCI, Mild cognitive impairment; AD, Alzheimer’s disease; CSF, Cerebrospinal fluid; Ab, Amyloid-beta; tTau, Total tau;
pTau, Phosphorylated tau; ICV, intracranial volume; WMH, White matter hyperintensity; APOE, Apolipoprotein E; SE, Standard error.
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2.2.2. Structural MRI
Structural MRI data were obtained from the ADNI dataset for

the following five markers: whole-brain volume, brain-
ventricular volume, hippocampal volume, entorhinal cortex vol-
ume, and white matter hyperintensity (WMH) volume. We nor-
malized these volumes as fractions of the intracranial volume
(ICV). WMH volumes were calculated based on coregistered T1-,
T2-, and proton density-weighted structural MRI images. The
ADNIMERGE dataset included results from a 1.5 T MRI scan in
the ADNI 1 and a 3.0 T MRI scan in the ADNI GO/2. Cortical recon-
struction and volumetric segmentation were performed by the
University of California San Francisco with FreeSurfer image anal-
ysis suite (version 4.3 for 1.5 T MRI scans and version 5.1 for
3.0 T MRI scans). The scan data were processed cross-sectionally
using the 2010 Desikan-Killany atlas. The acquisition parameters
were as follows: an inversion time of 1,000 ms (1.5 T MRI) and
853–900 ms (3.0 T MRI); repetition time of 2,400 ms (1.5 T MRI)
and 2,300 or 3,000 ms (3.0 T MRI); flip angle of 8�; field of view
of 240 � 240 mm2; in-plane resolution of 192 � 192 (1.25 � 1.2
5 mm2) (1.5 T MRI) or 256 � 256 (0.94 � 0.94 mm2) (3.0 T MRI);
and slice thickness of 1.2 mm [18]. We combined these data
because the difference between 1.5 T and 3.0 T did not significantly
affect the prediction of AD conversion (p = 0.970, likelihood ratio
test; Supplemental information).

2.2.3. APOE genotype
APOE genotyping data were obtained from blood DNA samples

from each individual using an APOE genotyping kit. APOE has 3
alleles (e2, e3, and e4) and 6 genotypes (e22, e23, e24, e33, e34,
and e44). We focused our analysis on the number of e4 alleles, as
the e4 allele is broadly known to be a risk factor for AD.

2.2.4. Composite scores of cognitive domains
We obtained the composite scores of four cognitive domains

(memory, executive function, language, and visuospatial function)
from the ADNI dataset. These scores were constructed based on a
bifactor model [19,20]. Detailed protocols for these composite
scores are available for download at https://ida.loni.ucla.edu/.

- The composite score for memory was calculated based on the
following tests: the word lists from the three forms of the Alz-
heimer’s Disease Assessment Scale–Cognitive Subscale (ADAS-
Cog), the word lists from the two forms of the Rey Auditory Ver-
bal Learning Test (RAVLT), the three-word recall items from the
MMSE, and Logical Memory scores.
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- The composite score for executive function was calculated
based on the following tests: the category fluency tests for ani-
mals and vegetables, the Trail Making Test (parts A and B), the
Digit Span Backwards test, the Wechsler Adult Intelligence
Scale–Revised (WAIS-R) Digit Symbol Substitution Test, and five
clock-drawing items (circle, symbol, numbers, hands, time).

- The composite score for language was calculated based on the
following tests: a neuropsychological battery (including three
language-related tests), the MMSE (including eight language
tasks), the ADAS-Cog (including three different language tasks),
and the Montreal Cognitive Assessment (MoCA) (including six
language items).

- The composite score for visuospatial function was calculated
based on the following tests: a neuropsychological battery
including five tests related to copying a clock, the construc-
tional praxis test from the ADAS-Cog, and the copy design test
in the MMSE.

2.2.5. CSF markers of neuronal injury and the inflammatory response
We obtained data on the CSF levels of the following markers

from the ADNI dataset: the neuronal injury marker Visinin-like
protein-1 (VILIP-1); the synaptic dysfunction markers
Synaptosomal-associated protein, 25 kDa (SNAP-25) and Neuro-
granin (NGRN); and the inflammation marker YKL-40. The levels
of VILIP-1, SNAP-25 and NGRN were obtained using the Erenna�

immunoassay system (Singulex Inc., Alameda, CA, USA). The levels
of YKL-40 were obtained using a MicroVue YKL-40 ELISA (Quidel,
San Diego, CA, USA). We analysed the marker levels at baseline
in 62 MCI subjects with data on all four markers.
2.3. Prediction model and subtyping

2.3.1. HML model
We applied HML to subtype MCI subjects. HML constructs a

decision tree and generates a predictive model at each leaf node,
and each leaf node can be regarded as a subgroup (i.e., subtype)
with similar characteristics [14,15]. As described in section 2.3.3,
HML simultaneously estimates the parameters for a decision tree
and the prediction models using the expectation–maximization
(EM) algorithm based on the factorized information criterion
(FIC), which is an estimator specific to HML (Supplemental infor-
mation). A program for HML was provided by NEC Corporation
(Tokyo, Japan).

https://ida.loni.ucla.edu/
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2.3.2. Decision tree in the HML model
We had observation data xN ¼ x 1ð Þ; � � � ; x Nð Þ, where x 2 RD; N is

the number of individuals; and D is the number of dimensions in
x (variables considered in the study), which, for this study, was
equal to 12 (i.e., 5 CSF biomarkers, 5 brain volumes, APOE genotype,
and age at examination). HML was used to create a decision tree in
which the gating nodes were nonleaf nodes and the expert nodes
were leaf nodes (Figure S1). The i-th gating node gi assigns an indi-
vidual as input data x nð Þ to an appropriate expert node for predic-
tion based on the rule x ci½ � < ti, where ci and ti are the index of a
variable and a threshold, respectively, in a gating node gi. A binary
logistic regression model was used in the expert nodes. The predic-
tion model in the j-th expert node is presented in the following
equation:

p yNjxN;/j

� � ¼ 1

1þ exp �/T
j xN

� � ð1Þ

Let us denote the classification target as yN ¼ y 1ð Þ; � � � ; y Nð Þ,
where y nð Þ corresponds to x nð Þ and /j indicates a weight vector of
parameters in the j-th expert node.
Fig. 1. Procedures for 5-fold cross-validation (CV) to estimate mode
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2.3.3. Estimation of parameters by EM-like iterative optimization
To obtain a decision tree model via HML, we needed the param-

eters for the gating nodes (i.e., g, c, and t) and the expert nodes (i.e.,
/). These parameters were estimated by EM-like iterative opti-
mization (Algorithm 1 in Supplemental information). In the E-
step, the variational distribution, which was derived from the
FIC, has a regularizing effect and penalizes the expert nodes that
contribute to the formation of a complex tree structure that has
more variables with small effects (Supplemental information).
In this manner, HML automatically selects an optimal decision tree
and optimal model parameters to maximize the FIC [14,15].
2.3.4. Test performance of the HML model
To test the performance of the HML model, we tested two

approaches based on the HML method. Approach 1 used the base-
line datasets fromMCI subjects who converted to ADwithin 3 years
(n = 139) and MCI subjects who did not convert to AD (n = 257) as
training, validation, and test datasets (Fig. 1). Approach 2 used the
baseline datasets from all 156 AD dementia patients and 305 CN
subjects as training and validation data and used the baseline data-
sets from MCI subjects as test data. The difference between
l parameters based on heterogeneous mixture learning (HML).
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Approach 1 and 2 is whether MCI subjects or AD and CN subjects
were used as training and validation data. On the other hand, both
approaches used MCI subjects as test data. In Approach 2, we ran-
domly sampled AD and CN subjects to match the sample size of
Approach 1 and repeated 5 independent rounds of random sam-
pling to avoid sampling bias. Each of these approaches was used
to determine a decision tree and model parameters via HML. In
the training and validation data, the classification target was
y nð Þ ¼ 1 when a subject was an MCI subject who converted to AD
dementia within three years (Approach 1) or was an AD dementia
patient (Approach 2). On the other hand, the classification target
was y nð Þ ¼ 0 when a subject was an MCI subject who did not con-
vert to AD dementia within three years (Approach 1) or was a CN
individual (Approach 2). Among all MCI subjects, 74.6 % were fol-
lowed up for more than 3 years (Figure S2). Then, only data from
MCI subjects who were followed for more than 3 years or who con-
verted to AD within 3 years were used in this test (396 of 480 MCI
subjects). In the test data for both approaches, the classification
target was y nð Þ ¼ 1 when MCI converted to AD dementia within
three years and y nð Þ ¼ 0 when there was no conversion to AD
dementia. Approach 2 assumed that MCI subjects classified as AD
would convert to AD in the future since they had already started
to exhibit AD pathology.

Using the training dataset, we first set the tree depth d to a
value ranging from two to six. Then, we estimated parameters
via HML. As mentioned above, HML optimizes the parameters
based on EM-like iterative optimization. It is well known that
EM-like iterative optimization generally converges to a local opti-
mum depending on an initial value and is not guaranteed to con-
verge to the global optimum. To avoid convergence to a local
optimum, we generated 500 models with different initial values
at each depth. We next applied the validation dataset to the
2,500 models (= 5 depths � 500 models) generated from the train-
ing data and adopted the decision tree model with the highest F1
in the validation dataset as the model with optimal parameters
(Fig. 1). We finally calculated the test performance of the model
using the test data. These procedures were repeated using a 5-
fold cross-validation (CV) approach.

(A) The procedure for Approach 1 used subjects withmild cogni-
tive impairment (MCI) that converted to Alzheimer’s disease (AD)
within 3 years (n = 139) and subjects with MCI that did not convert
to AD (n = 257). (B) The procedure for Approach 2 used AD dementia
patients (n = 156) and cognitively normal (CN) subjects (n = 305).
Approach 2 was repeated 5 times. Blue, orange, and yellow boxes
indicate training, validation, and test data, respectively.

An HML decision tree model generated from the training data
classified by nð Þ ¼ 1 (positive) or by nð Þ ¼ 0 (negative). For test perfor-
mance, the individuals with y nð Þ ¼ 1 who were predicted to be pos-
itive were defined as true positives (TPs). The individuals with
y nð Þ ¼ 1 who were predicted to be negative were defined as false
negatives (FNs). In the same way, the individuals with y nð Þ ¼ 0
who were predicted to be positive or negative were defined as false
positives (FPs) and true negatives (TNs), respectively. We calcu-
lated sensitivity, specificity, precision, accuracy, and F1 using these
four outcomes as follows:
Sensitiv ity ¼ TP
FNþFP ;

Specificity ¼ TN
FPþTN ;

Precision ¼ TP
TPþFP ;

Accuracy ¼ TPþTN
TPþFPþTNþFN ;

F1 ¼ 2Precision�Sensitivity
PrecisionþSensitivity

ð2Þ

The conversion from MCI to AD dementia in each subject is pre-
sented as a time-to-event value, that is, the number of days from
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age at baseline to age at onset. In this study, we defined the data
for the MCI subjects in whom MCI did not convert to AD dementia
during the follow-up period as censored data. The log-rank test
was performed to evaluate the differences in conversion among
the MCI subtypes. The conversion rate at time t (CRt) was calcu-
lated by the following equation:

CRt ¼ 1� CRt�1
nt � ct
nt

� �
ð3Þ

where nt is the number at risk (the number of MCI subjects) at time
t and ct is the number of individuals with MCI who converted to AD
dementia during the period from time t-1 to time t.

2.3.5. CART and random forest
We compared the prediction performance of HML with two dif-

ferent methods based on the decision tree: CART [21] and random
forest [22] methods. The test performances by each method were
calculated using the same training, validation and test datasets
used for the HML assessment based on Approach 2 (Fig. 1B). For
the CART method, we set the tree depth d to a value ranging from
two to six. The GridSearchCV function from the Python scikit-learn
package [23] optimized the following parameters in CART: the
maximum depth of the tree (2, 3, 4, 5, and 6); the criterion (the
‘‘Gini impurity” or the ‘‘information gain”); the minimum number
of samples required to be at a leaf node (1,. . .,11); the minimum
number of samples required to split an internal node (2,. . .,11);
the random state (0,. . .,101); and the strategy used to choose the
split at each node (‘‘best” or ‘‘random”). For the CART method, clas-
sification rather than regression was used for binary classification
to discriminate between AD or CN. For the random forest method,
we used the RandomForestClassifier function from the Python
scikit-learn package to implement the random forest method. We
adopted the model with the highest F1 score on a validation data-
set and calculated the test performance of the adopted model on
the test dataset.

2.3.6. MCI subtyping
For MCI subtyping, we focused on a decision tree generated by

HML. As will be described in section 3.1, we found that the test per-
formances of Approach 2, which trained AD and CN subjects, were
better than Approach 1, which trained MCI subjects, in predicting
conversion from MCI to AD. Therefore, a decision tree for MCI sub-
typing was generated using all AD and CN subjects according to
Approach 2. We adopted the decision tree model with the highest
F1 among the 2,500 models (= 5 depths � 500 models with differ-
ent initial values) generated from AD and CN subjects. The F1 score
was calculated as the predictive accuracy of AD conversion using
all MCI subjects.

2.4. Analyses of composite scores for cognitive domains

Multiple pairwise comparisons were performed with Tukey’s
honest significant difference (HSD) test to verify the difference
between the baseline scores across different subtypes. We per-
formed linear mixed model (LMM) analyses to compare the associ-
ations between MCI subtype and cognitive function with
increasing follow-up times. Subtype 2, which is mentioned in the
following subsections, was used as the reference. The independent
variables included MCI subtype, follow-up time, and the interac-
tions between subtype and follow-up time. The covariates included
age, sex, and years of education. The composite scores for cognitive
function were used as dependent variables. The random factors
included the intercept and follow-up time. Separate models were
run for the four domains of cognitive function. We used the false
discovery rate (FDR) method to correct for multiple testing.
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3. Results

3.1. Test performance of a decision tree model obtained by HML

All test performances of Approach 2, which trained AD and CN
subjects, were higher than those of Approach 1, which trained
MCI subjects (Table 2) (see 2.3.4 in Materials and methods). These
results suggested that a clear discrimination between AD and CN
subjects (i.e., Approach 2) led to a more accurate prediction of con-
version to AD than the discrimination of a subtle difference
between subjects with MCI that converted to AD and those with
MCI that did not convert (i.e., Approach 1).

To compare the prediction performance of HML with the other
methods, we next evaluated the test performance of the CART and
random forest methods, which are recognized as traditional deci-
sion tree methods. All test performances except for the specificity
of the HML model (Approach 2) were significantly higher than
those of the CART model (Table 2). On the other hand, the HML
model showed comparable performance with the random forest
method. In addition, the comparison of model complexities
showed that the HML method resulted in significantly fewer leaf
nodes (expert nodes in HML) than the CART method; thus, the
HML method provided a more compact decision tree, improving
part of the interpretability. We did not compare the number of leaf
nodes based on the HML and random forest methods because ran-
dom forest is a method that uses multiple decision trees. These
analyses showed that HML is able to predict conversion to AD with
one decision tree that is more interpretable than conventional
methods and with the same or better performance than conven-
tional methods.

3.2. Characteristics of each subtype

We next examined the subtype of patients with MCI using a
decision tree generated by HML and characterized the identified
subtypes. The decision tree generated using Approach 2 (with
all data from 156 AD dementia patients and 305 CN individuals
in this section) had five expert nodes (Fig. 2A). This decision tree
divided subjects based on the presence or absence of APOE e4
alleles, and subjects without APOE e4 alleles were further divided
into two groups based on entorhinal cortex volume. Subjects with
APOE e4 alleles were then divided into two groups: those with
one APOE e4 allele and those with two APOE e4 alleles. Subjects
with two APOE e4 alleles were subsequently divided into two
groups based on brain-ventricular volume. Individuals included
in a particular expert node on a decision tree constitute a group
of individuals with similar features. We then used this decision
tree to classify the MCI individuals in our dataset into one of
Table 2
Test performance of each method.

HML (Approach 1) HML (Ap

Sensitivity 0.574 ± 0.079 0.765 ± 0

Specificity 0.848 ± 0.036 0.825 ± 0

Precision 0.694 ± 0.055 0.695 ± 0

Accuracy 0.760 ± 0.037 0.792 ± 0

F1 0.610 ± 0.039 0.721 ± 0

# of leaf nodes 3.8 ± 1.095 4.2 ± 0.23

Each value shows mean ± SE of performances obtained from 5-fold CV.
1Tukey’s HSD tests were performed on three groups: HML (Approach 2), CART, and rando
2The p-value between HML (Approach 2) and CART by Student’s t-test is shown.

5301
the five expert nodes. The 480 MCI subjects were divided as fol-
lows: 68 subjects were in subtype 1, 173 were in subtype 2, 188
were in subtype 3, 14 were in subtype 4, and 37 were in subtype
5 (Table 3). We compared the conversion rates of MCI to AD
dementia in the subjects in each subtype to characterize each
subtype (Fig. 2B and 2C). The Kaplan–Meier curves showed differ-
ent conversion patterns across subtypes. Notably, 67.9 % of the
MCI subjects in subtype 5 progressed to AD dementia within
three years. On the other hand, the conversion rates in subtypes
1, 3, and 4 were moderate at approximately 40 %. Subtype 2
had a comparatively low conversion rate of 10.5 %.

To provide a more detailed characterization of each subtype,
we compared the levels of 12 features used in the HML model
among the subtypes (Fig. 3). Subtype 2 showed high levels of
CSF Ab(1–42) (Fig. 3A), suggesting low deposition of Ab in the
brain. In general, in AD dementia patients, there is the abnormal
accumulation of Ab produced in the brain resulting in senile pla-
ques, which suppresses the efflux of Ab from the brain to the CSF,
and the amount of Ab in the CSF decreases. On the other hand, Ab
does not accumulate in the brain in normal subjects; thus, the
level of CSF Ab appears to be higher in normal subjects than in
AD dementia patients. The levels of CSF tau (CSF tTau, CSF pTau,
tTau/Ab(1–42) ratio, and pTau/Ab(1–42) ratio), which indicate the
degree of Ab-dependent neurofibrillary tangles, were high in sub-
types 4 and 5 (Fig. 3B-E). These biomarker patterns suggest that
individuals classified into subtypes 4 and 5 have AD pathology
in the brain. Subtype 1 had a high brain-ventricular volume
(Fig. 3F), suggesting brain atrophy. This subtype also had low hip-
pocampal, whole-brain and entorhinal cortex volumes, which is
consistent with enlargement of the ventricles (Fig. 3G-H). Low
hippocampal and entorhinal cortex volumes were also observed
in subtype 5 (Fig. 3G and 3I). Regarding WMH volumes, which
reflect white matter lesions caused by cerebral ischaemia, there
were no differences across the subtypes (Fig. 3J), implying that
most MCI subjects in this study did not present with vascular
dementia. A comparison of ages showed that subtypes 1 and 4
included older and younger MCI subjects, respectively (Fig. 3K).
Because the decision tree had gating nodes based on APOE e4
allele numbers, the MCI subjects in subtypes 1 and 2 did not have
any APOE e4 alleles, which is a genetic risk factor, while the indi-
viduals in subtype 3 and those in subtypes 4 and 5 had one and
two APOE e4 alleles, respectively (Fig. 3L).

The overall trend is summarized in the spot matrix in Fig. 3M.
Here, we considered features with a majority of MCIs exceeding
the cut-off value to be abnormal in that subtype (yellow spots in
Fig. 3M). The spot matrix characterized biological features of the
subtypes that had the conversion rates shown in Fig. 2B and 2C:
subtype 2, with no abnormalities (i.e., no yellow spots in
proach 2) CART Random forest

.011 0.682 ± 0.024
(p=0.003)1

0.725 ± 0.012
(p=0.231)1

.008 0.806 ± 0.011
(p=0.221)1

0.834 ± 0.005
(p=0.685)1

.010 0.658 ± 0.011
(p=0.014)1

0.705 ± 0.005
(p=0.710)1

.006 0.760 ± 0.008
(p=0.002)1

0.795 ± 0.003
(p=0.956)1

.008 0.663 ± 0.015
(p<0.001)1

0.713 ± 0.006
(p=0.853)1

6 26.2 ± 2.145
(p<0.001)2

–

m forest, and the p-value between HML and the corresponding algorithm is shown.



Fig. 2. The HML-based decision tree classifies the MCI subjects into five subtypes. (A) Decision tree model generated by HML. The dotted lines in each gating node represent
each threshold. The numbers in yellow and green areas of each pie chart indicate the number of subjects with CN and AD, respectively. (B) Conversion rates over time for each
MCI subtype (p = 4.62e-15 in the log-rank test). (C) Conversion rates within three years for each MCI subtype. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 3M), had a low conversion rate; subtype 1, with some brain
atrophy, and subtypes 3 and 4, with abnormalities in CSF biomark-
ers, had moderate conversion rates; and subtype 5, with both CSF
biomarker abnormalities and brain atrophy, had a high conversion
rate.
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3.3. Cognitive function in each subtype

To examine the differences in cognitive function among the
subtypes identified in the previous section and their changes over
time, we first compared the four composite scores for memory,



Table 3
Summary of each subtype.

Subtype 1 Subtype 2 Subtype 3 Subtype 4 Subtype 5

N 68 173 188 14 37
Age in years, mean ± SE 73.9 ± 0.99 71.8 ± 0.568 71.4 ± 0.529 66 ± 1.62 72 ± 0.948
Sex (female:male) 25:43 72:101 82:106 9:5 12:25
Years of education, mean ± SE 15.8 ± 0.355 16.3 ± 0.202 15.8 ± 0.206 17 ± 0.756 16.1 ± 0.452
CSF Ab(1–42) (pg/mL), mean ± SE 923.3 ± 46.37 1211 ± 32.32 852.1 ± 28.32 713.9 ± 68.01 549.7 ± 30.4
CSF tTau (pg/mL), mean ± SE 273.2 ± 17.62 235.8 ± 7.491 323.7 ± 10.54 416 ± 56.81 321.7 ± 18.28
CSF pTau (pg/mL), mean ± SE 25.9 ± 1.95 22.1 ± 0.843 32 ± 1.15 42.6 ± 6.5 31.6 ± 1.96
tTau / Ab(1–42), mean ± SE 3.53e-01 ± 2.85e-02 2.37e-01 ± 1.36e-02 4.66e-01 ± 2.2e-02 6.95e-01 ± 1.47e-01 6.25e-01 ± 3.56e-02
pTau / Ab(1–42), mean ± SE 3.4e-02 ± 3.07e-03 2.29e-02 ± 1.52e-03 4.68e-02 ± 2.38e-03 7.21e-02 ± 1.66e-02 6.13e-02 ± 3.59e-03
Whole-brain volume / ICV, mean ± SE 6.49e-01 ± 4.88e-03 6.99e-01 ± 3.63e-03 6.81e-01 ± 3.65e-03 7.24e-01 ± 8.36e-03 6.72e-01 ± 6.86e-03
Hippocampus volume / ICV, mean ± SE 3.83e-03 ± 7.68e-05 4.87e-03 ± 5.18e-05 4.49e-03 ± 6e-05 4.91e-03 ± 2.16e-04 3.87e-03 ± 8.39e-05
Brain-ventricular volume / ICV, mean ± SE 3.26e-02 ± 1.69e-03 2.21e-02 ± 8.44e-04 2.44e-02 ± 9.93e-04 1.18e-02 ± 6.66e-04 2.61e-02 ± 1.36e-03
Entorhinal cortex volume / ICV, mean ± SE 1.83e-03 ± 3.46e-05 2.59e-03 ± 2.24e-05 2.3e-03 ± 3.65e-05 2.63e-03 ± 1.42e-04 2.05e-03 ± 6.6e-05
WMH volume, mean ± SE 5.78 ± 1.17 5.48 ± 0.624 4.29 ± 0.618 4.71 ± 1.71 5.22 ± 1.25
APOE e4 carriers (%) 0 (0%) 0 (0%) 188 (100%) 14 (100%) 37 (100%)

Abbreviations are as follows: CN, Cognitively normal; MCI, Mild cognitive impairment; AD, Alzheimer’s disease; CSF, Cerebrospinal fluid; Ab, Amyloid-beta; tTau, Total tau;
pTau, Phosphorylated tau; ICV, intracranial volume; WMH, White matter hyperintensity; APOE, Apolipoprotein E; SE, Standard error.
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executive function, language, and visuospatial function at baseline
among the subtypes. Comparisons among the subtypes showed
that the three scores (the memory, executive function, and lan-
guage scores) other than the visuospatial function scores were sig-
nificantly higher in subjects with subtype 2 than in subjects with
the other subtypes (Fig. 4A, 4D, 4G, and 4J). We next examined
the trajectories of these scores during the follow-up time. We used
subtype 2 (no abnormalities) as the reference to compare the asso-
ciation between the follow-up time and each score. The memory
and executive function scores in subtypes 1, 3, 4, and 5 declined
significantly more steeply over time than those in subtype 2
(Fig. 4C, 4F, 4I and 4L; Figures S2 and S3). The relative decline in
subtype 5 consistently showed the most rapid decreases in all
scores. In addition, subtype 1 exhibited slower declines than sub-
types 3, 4, and 5, particularly for memory and executive function
scores. These results show that the rate of exacerbation of cogni-
tive decline differs depending on the subtype.
3.4. Neuronal dysfunction and the inflammatory response in each
subtype

To investigate the phenomena occurring in the brains of indi-
viduals belonging to each subtype, we next examined the levels
of CSF proteins reflecting neuronal injury, synaptic dysfunction,
and inflammation within the brain. CSF markers were measured
in the following subjects: 10 subjects in subtype 1, 18 in subtype
2, 26 in subtype 3, and 8 in subtype 5. These CSF markers were
not measured in any of the subjects in subtype 4. Levels of the neu-
ronal injury marker VILIP-1 and the synaptic dysfunction markers
SNAP-25 and NGRN increased across subtypes in the following
order (from lowest to highest levels): 1, 2, 3, and 5 (Fig. 5A-C).
VILIP-1 and SNAP-25 levels in subtypes 3 and 5 were significantly
higher than those in subtypes 1 or 2 (Fig. 5A and 5B). On the other
hand, the level of the inflammation marker YKL-40 was highest in
subtype 5 (Fig. 5D). These findings suggest that the accumulation
of Ab and tau proteins within the brain leads to neuronal dysfunc-
tion followed by an inflammatory response. Additionally, as we
will mention in the Discussion, CSF markers such as VILIP-1 reflect
Ab- and tau-induced neuronal cell death. Therefore, these markers
might not have been elevated in subtype 1.
4. Discussion

We classified MCI subjects into subtypes using a highly inter-
pretable decision tree. Our decision tree model predicted the MCI
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subjects in whom MCI converted to AD dementia with predictive
accuracy comparable to that of the random forest method. Further-
more, the decision tree model divided the MCI subjects into five
subtypes based on the characteristics reflected in their multimodal
data. Detailed analysis showed a relationship between the speed of
conversion to AD for each subtype and its biological characteristics,
including CSF biomarkers and indicators of brain atrophy and
inflammation.

Our final decision tree model was explained by only three fea-
tures: brain-ventricular volume, entorhinal cortex volume, and
dosage of APOE e4 alleles, even though we used various biological
data, including CSF biomarkers, brain imaging, and genomic data
(Fig. 2A). This means that we can classify MCI subjects into sub-
types by only MRI data and APOE e4 alleles genotyped from blood
without the need for lumbar puncture spinal fluid collection,
which is associated with the risk of headache and nausea. This is
due to the benefit that HML provides a sophisticated classification
system by automatically performing dimensionality reduction
from multimodal data. In addition, the decision tree divided the
subjects into three groups based on the dosage of APOE e4 alleles:
the APOE e4 noncarrier group, heterozygous carrier group, and
homocarrier group. HML was able to naturally classify subjects
according to their genetic background, suggesting that HML can
apply to other genetic diseases.

The MCI subjects were categorized into three main groups in
terms of AD conversion: MCI subjects with low conversion rates
(subtype 2), who appeared similar to CN subjects; MCI subjects
with moderate conversion rates (subtypes 1, 3, and 4); and MCI
subjects with high conversion rates (subtype 5), who appeared
similar to AD dementia patients. Our decision tree classified the
MCI subjects with two copies of APOE e4 alleles and more than
0.01575 of the normalized brain-ventricular volume into subtype
5 and predicted a high AD conversion risk. MCI subjects in subtype
5 may benefit from early intervention.

Furthermore, the group with moderate conversion rates was
separated into two groups based on the presence of CSF biomarker
abnormalities (subtypes 3 and 4) or brain atrophy (subtype 1). One
of the differences among these subtypes was the presence or
absence of APOE e4 alleles (Fig. 3L). APOE e4 alleles have been
found to lead to Ab and tau accumulation in the brain [24–27], con-
sistent with our results. Nettiksimmons et al. classified 139 cases of
amnestic MCI in the ADNI into four subtypes using MRI data, CSF
biomarker data, and serum biomarker data [28]. These subtypes
included a CN-like subtype and an AD-like subtype. In addition,
the remaining two subtypes showed moderate AD conversion
rates. Of these two subtypes with moderate conversion rates, one



Fig. 3. Features of each MCI subtype. (A) Cerebrospinal fluid (CSF) Ab(1–42) level, (B) CSF tTau level, (C) CSF pTau level, (D) tTau/Ab(1–42) ratio, (E) pTau/Ab(1–42) ratio, (F)
normalized brain-ventricular volume, (G) normalized hippocampal volume, (H) normalized whole-brain volume, (I) normalized entorhinal cortex volume, (J) normalized
white matter hyperintensity (WMH) volume, (K) age, and (L) dosage of APOE e4 alleles. The blue and red lines indicate the cut-off values based on the CN subjects and the AD
dementia patients. The adopted cut-off value was that which distinguished the CN subjects and the AD dementia patients with the highest accuracy in the ROC analysis.
Points below the blue line or above the red line represent levels similar to those observed in AD dementia patients. (M) The spot matrix shows the proportions of individuals
with features similar to those of AD dementia patients. The spot size represents the proportion of MCI subjects with values exceeding the cut-off value. Yellow indicates a
value greater than 50% of the proportion. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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subtype showed abnormal Ab and tau levels and had typical AD
features. However, the other subtype showed abnormal Ab levels
and brain atrophy but normal tau. This subtype deviates from typ-
ical AD and is similar to the subtype 1 we identified. Our results
support that MCI has heterogeneity and does not always show con-
sistent ordering to AD.
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Recently, the AT(N) system has been proposed to elucidate the
heterogeneity of AD by subdividing the pathological condition
from the viewpoint of amyloid (A), tau (T), and neurodegeneration
(N) [29]. A cohort study in Amsterdam showed that cognitive func-
tion varied across different AT(N) profiles [30]. Based on the AT(N)
system, the MCI subjects in subtype 1 were A-T-N+, the subjects in



Fig. 4. Cognitive function in each subtype. (A, D, G, J) Comparison of the cognitive function at baseline among subtypes. Higher composite scores in each cognitive domain
were indicative of higher cognitive function. Multiple pairwise comparisons were performed with Tukey’s HSD tests to verify the differences in scores between subtypes. (B, E,
H, K) Longitudinal changes in cognitive function by subtype. Each trajectory is indicated by a linear regression line. The error bars represent the 95 % confidence intervals. (C,
F, I, L) Cognitive decline over time compared with cognitive function in subtype 2. The bar plots represent the interactions between subtypes and follow-up time, as estimated
by the linear mixed model (LMM) with subtype 2 as the reference. *p < 0.05, **p < 0.01, ***p < 0.001.
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Fig. 5. Levels of the CSF neuronal and synaptic injury markers VILIP-1 (A), SNAP-25 (B), and NGRN (C) and the inflammatory response marker YKL-40 (D). Multiple pairwise
comparisons were performed with Tukey’s HSD tests to verify the differences in CSF levels between subtypes. *p < 0.05, **p < 0.01, ***p < 0.001.
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subtypes 3 and 4 were A+T+N-, and the subjects in subtype 5 were
A+T+N+. A recent study from the Alzheimer’s Biomarkers in
Daily Practice (ABIDE) project reported that the A+T+N- classifica-
tion has a higher percentage of APOE e4 carriers than the
A-T-N+ classification, corresponding with our finding that subtypes
3 and 4 (A+T+N-) include APOE e4 carriers but subtype 1 (A-T-N+)
does not [31].

Although subtypes 3, 4, and 5 are likely to include MCI subjects
who develop AD because they display CSF Ab and tau abnormali-
ties defining the Alzheimer’s continuum, subtype 1 may include
MCI subjects with suspected non-AD pathophysiology (SNAP) that
is marked by neurodegeneration without Ab deposition within the
brain [32]. Some of the MCI subjects in subtype 1 may develop
dementias other than AD in the future. One type of SNAP associ-
ated with the A-T-N+ classification that should be considered is
limbic-predominant age-related TDP-43 encephalopathy (LATE)
[33]. Validation using other biomarkers of neurodegenerative dis-
eases, including the TDP-43 protein, will reveal the pathology of
subtype 1 more clearly.

In summary, our results suggest that stratification by APOE e4
may be helpful in the design of clinical trials for MCI subjects.
MCI subjects without the APOE e4 allele and with progressive brain
atrophy should be excluded from clinical trials because they may
progress to neurodegenerative diseases other than AD. It is also
important to note that APOE e4 homocarriers include subjects sus-
pected of developing AD.

Subtype 1 showed relatively low levels of CSF markers of neu-
ronal and synaptic injury (VILIP-1 and SNAP-25) despite advanced
brain atrophy (Fig. 5A and 5B). Previous studies have shown that
CSF levels of VILIP-1 are associated with CSF Ab and p-tau levels,
suggesting that VILIP-1 is a marker of neuronal degeneration
related to Ab and tau pathologies [34,35]. In addition, a comparison
of CSF VILIP-1 levels among CN subjects, MCI subjects, and AD
dementia patients showed that VILIP-1 levels increased yearly only
in MCI subjects; they did not increase in CN subjects and AD
dementia patients [36]. CSF VILIP-1 levels may increase during
inflammation and neurodegeneration triggered by Ab and tau,
but they may decrease after neurons have died and brain atrophy
has occurred. Based on the findings of these studies, we concluded
that subtype 1 did not exhibit increases in the levels of these neu-
ronal degeneration markers because there were no prominent CSF
biomarker abnormalities. Additionally, our results suggested that
the MCI subjects in subtype 1 might convert to other dementias,
as discussed above, because they did not show CSF biomarker
abnormalities specific to AD pathologies.
5306
Subtypes 3 and 5 showed high levels of CSF markers for neu-
ronal and synaptic injury, namely, VILIP-1 and SNAP-25 (Fig. 5A
and 5B). The levels of these markers gradually increased with the
dosages of APOE e4 alleles, consistent with the findings of recent
studies reporting associations between these markers and APOE
e4 [37,38]. On the other hand, CSF levels of the inflammation mar-
ker YKL-40 were increased only in subtype 5 (levels were not
assessed in subtype 4) (Fig. 5D).

Our study has several limitations. First, we were not able to
analyse all MCI patients in some analyses. For example, the MCI
subjects in subtype 4 did not have the neuronal injury, synaptic
injury, or inflammation CSF markers assessed. Second, given the
correlational nature of some of our results, identification of the
underlying mechanisms will require detailed analyses using ani-
mal models. Third, our study aimed to subtype MCI using decision
trees generated by the HML model, but there is room for improve-
ment in the prediction of AD conversion by our model. To improve
accuracy, it may be useful to take into account various neuroimag-
ing modalities rather than brain volumes alone. Gupta et al. com-
bined different neuroimaging modalities, including structural
MRI, fluorodeoxyglucose-PET, florbetapir-PET AV45, diffusion ten-
sor imaging, and resting-state functional MRI, with the APOE geno-
type and showed more than 90 % accuracy discriminating AD from
CN and predicting conversion from MCI to AD [39]. Barbará-
Morales et al. proposed a new biomarker, three-dimensional brain
tortuosity, which yielded improved accuracy when combined with
other brain imaging biomarkers, including brain volume and corti-
cal thickness, and CSF biomarkers [40]. The accuracy of the HML
model would be improved by incorporating these detailed brain
image parameters.
5. Conclusion

In this study, we succeeded in classifying MCI subjects into sub-
types using highly interpretable decision trees (i.e., few leaf nodes)
generated by the HML approach. Our study identified subtypes
with characteristics similar to those of typical AD and identified
one subtype in which MCI was likely to convert to other neurode-
generative diseases. These findings imply that the inclusion of
additional pathological information can enable a more precise pre-
diction of the onset or progression of a wide variety of neurodegen-
erative diseases. Moreover, we developed a decision tree model to
predict conversion to AD dementia. Although the overall perfor-
mance of the model can potentially be improved, focusing on
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specific subtypes in which conversion to AD dementia can be pre-
dicted with the most accuracy (e.g., subtype 5, in which the predic-
tion was made with high precision) could enable more efficient
clinical trials to be conducted.
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