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Aggregation of α-Synuclein, possibly caused by disturbance of proteostasis, has been
identified as a common pathological feature of Parkinson’s disease (PD). However, the
initiating events of aggregation have not been fully illustrated, and this knowledge may
be critical to understanding the disease mechanisms of PD. Proteostasis is essential in
maintaining normal cellular metabolic functions, which regulate the synthesis, folding,
trafficking, and degradation of proteins. The toxicity of the aggregating proteins is
dramatically influenced by its physical and physiological status. Genetic mutations may
also affect the metastable phase transition of proteins. In addition, neuroinflammation,
as well as lipid metabolism and its interaction with α-Synuclein, are likely to contribute to
the pathogenesis of PD. In this review article, we will highlight recent progress regarding
α-Synuclein proteostasis in the context of PD. We will also discuss how the phase
transition status of α-Synuclein could correlate with different functional consequences
in PD.
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INTRODUCTION

Parkinson’s disease (PD) is a common progressive neurodegenerative disorder that affects 1–3% of
the aging population (Pringsheim et al., 2014; Kalia and Lang, 2015). The clinical symptoms of PD
include resting tremor, rigidity, bradykinesia and postural instability (Jankovic, 2008). One of the
neuropathological hallmarks of PD is reduced dopaminergic neurons in the substantia nigra (SN)
pars compacta, which causes striatal dopamine deficiency (Obeso et al., 2010; Poewe et al., 2017;
Hyung Ho Yoon and Jeon, 2018). Another pathological feature is intraneuronal inclusions, such as
Lewy bodies and Lewy neurites in residual dopaminergic neurons. The major constituent of Lewy
body is aggregated α-Synuclein (Spillantini et al., 1997; Wakabayashi et al., 2013). Abnormally
folded proteins may present with different forms, such as small oligomers, aggregates, and complex
inclusions; accumulation of misfolded proteins contributes to the progression of neurodegenerative
diseases including PD (Hetz and Mollereau, 2014). Proteostasis is essential in maintaining normal
cellular metabolic functions that regulate the synthesis, folding, trafficking, and degradation of
proteins. The toxicity of the aggregating proteins is dramatically influenced by the physical and
physiological status. In addition, genetic mutations may affect the metastable phase transition of
proteins. In addition to playing a central role in the neurodegenerative process of PD, α-Synuclein
contributes to the initiation and persistence of inflammatory responses—another important
feature of PD. Also detected in Lewy body aggregates in post-mortem brain tissues are lipid vesicles
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and membrane fragments (Shahmoradian et al., 2019),
suggesting that lipid metabolism may be implicated in PD.
In this review, we will highlight recent progress in the research
area regarding α-Synuclein proteostasis and its role in the
pathogenesis of PD. We will also discuss how phase transition
and posttranslational modification (PTM) of α-Synuclein may
correlate with different functional consequences. Additionally,
we will take into account neuroinflammation and lipid
metabolism and discuss its interaction with α-Synuclein in
the context of PD (Figure 1).

α-SYNUCLEIN PLAYS A CENTRAL ROLE
IN THE NEURODEGENERATIVE PROCESS
OF PARKINSON’S DISEASE

Homeostasis of α-Synuclein in PD
α-Synuclein is the major component of intraneuronal protein
aggregates in patients with PD and plays a key function in the
progression of this disease (Poewe et al., 2017). Intracellular
homeostasis of α-Synuclein is maintained under intrinsic
surveillance mechanisms including the ubiquitin-proteasome
system (UPS) and lysosomal autophagy system (LAS). LAS
seems to be more important than UPS in clearing the
oligomeric assemblies. A recent study showed that inclusion
formation is dependent on the concentration of α-Synuclein,
whereas clearance of inclusion is mediated by the autophagy
pathway, as revealed by quantitative measurement of the
formation and clearance of α-Synuclein inclusions in a
yeast model of PD (Perrino et al., 2019). Accumulation of
α-Synuclein is largely associated with the impairment of
these degradation systems (Xilouri et al., 2013). In turn,
abnormal proteins can directly or indirectly interfere with
the UPS mechanisms and further affect the function of
related pathways, leading to irreversible changes in neuronal
protein homeostasis and degeneration (Cookson, 2009;
Sato et al., 2018).

Structure Feature of α-Synuclein Underlies
the Pathogenesis of PD
α-Synuclein is normally expressed at high levels in neurons
and possibly in oligodendrocytes in the CNS (Asi et al.,
2014; Mehra et al., 2019). It is an intrinsically disordered
protein that exists in both a soluble and a membrane-bound
form in neurons (Mehra et al., 2019). The structure of α-
Synuclein includes three domains. N-terminal region (1–60 Aa)
that enables the protein to bind to membranes, contains
seven conserved repeat sequences which form an amphipathic
α-helix (Davidson et al., 1998). Non-amyloid component (NAC;
61–95) containing a highly hydrophobic motif that regulates
the oligomerization and fibrillogenesis process is necessary for
aggregation of α-Synuclein. The C-terminal tail (96–140) is
involved in nuclear localization as well as interactions with
other proteins, small molecules, and metals (Eliezer et al., 2001;
Ulmer et al., 2005). The pathological gain of neurotoxicity
related to α-Synuclein involves multiple biological processes.
Initially, soluble α-Synuclein monomers form oligomers, then

gradually accumulate into insoluble mature fibrils; eventually,
α-Synuclein aggregates into large insoluble fibrils which is more
toxic to neurons and can cause cell death and progressive
motor impairment (Melki, 2015; Peelaerts et al., 2015; Mor
et al., 2016; Karpowicz et al., 2019; Ma et al., 2019). The
fibrillar form of α-Synuclein assemblies is capable of promoting
aggregation of monomeric α-Synuclein in vitro and this
phenomenon can spread across cells in a prion-like fashion
in cell cultures and animal models (Karpowicz et al., 2019;
Ma et al., 2019).

Phase Transition of α-Synuclein and Its
Potential Role in the Pathogenesis of PD
Phase separation occurs when single-phase complexes divide
into a concentrated phase and a diluted phase. Eukaryotic
cells use phase transition strategies to facilitate the formation
of membraneless intracellular territories (Verdile et al., 2019).
Through weak intermolecular interactions, multivalent proteins
reach a solubility limit to form liquid condensates (Banani et al.,
2017; Shin and Brangwynne, 2017). Several proteins undergoing
phase transition include intrinsically disordered regions (IDRs).
The IDRs often contain prion-like domains (PLDs) and low
complexity domains (LCDs; Hughes et al., 2018; Maharana et al.,
2018; Wang et al., 2018). Further, the N-terminal domain of α-
Synuclein that mediates the aggregation process has two LCDs,
indicating that α-Synuclein may, under appropriate conditions,
undergo phase separation (Guerrero-Ferreira et al., 2018;
Li et al., 2018).

α-Synuclein in monomeric ensembles can exist as distinct
conformational phases (Jónsson et al., 2012). Aggregation
of abnormally folded proteins is generally considered as a
sequential oligomerization process, adding monomers to the
already formed nuclei (Serio et al., 2000). The process of
aggregation displays an initial lag phase in which precursor
clusters assemble spontaneously. To examine such early steps
in aggregation, Narayanan et al. (2019) developed a quantitative
methodology that employs super-resolution imaging of fixed
cells and light-sheet imaging of living cells. They found that
mammalian cells have precursor clusters even under normal
growth conditions, suggesting that early aggregates behave
like condensates.

To further shed light on the early events of aggregation
formation of α-Synuclein, recent studies showed that liquid-
liquid phase separation of α-Synuclein precedes aggregation by
using in vitro reconstitution and cellular models. Liquid-like
droplets of α-Synuclein generated in vitro eventually transition
from a liquid to a solid form that contains oligomers and
fibrils. Consistently, some aggravation-related factors like
low pH, phosphomimetics, and familial PD mutations also
promote α-Synuclein liquid-liquid phase separation and
its subsequent maturation. Furthermore, in vivo evidence
demonstrated that liquid droplets of α-Synuclein transform
into perinuclear aggresomes under oxidative stress. The
phase transition of natural unstructured α-Synuclein and
its transformation to an aggregated disease-associated
state is closely correlated with the pathogenesis of PD
(Ray et al., 2019).
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FIGURE 1 | Dynamic regulation and phase transition of α-Synuclein are involved in the pathogenesis of Parkinson’s disease (PD). α-Synuclein consists of three
domains and can undergo post-translational modifications (PTMs) such as phosphorylation, SUMOylation, nitration, and O-GlcNAcylation. The transition of
α-Synuclein from a monomeric to oligomeric state and further to fibrils is related to the pathological gain of toxicity in PD. Intracellular homeostasis of α-Synuclein is
maintained under the surveillance of the ubiquitin-proteasome system (UPS) and lysosomal autophagy system (LAS). Accumulation of α-Synuclein will take place
when these degradation systems are damaged. α-Synuclein aggregates could impair mitochondrial functions in human dopaminergic neurons, by altering calcium
homeostasis. Different forms of α-Synuclein could activate microglia through different receptors and downstream pathways, leading to inflammatory responses that
contribute to neurodegeneration.

TOXICITY OF THE AGGREGATING
PROTEINS IS DRAMATICALLY
INFLUENCED BY ITS PHYSICAL AND
PHYSIOLOGICAL STATUS

α-Synuclein also undergoes substantial PTMs (Zhang et al.,
2019), which include phosphorylation, SUMOylation, Nitration,
and O-GlcNAcylation, et al. Toxicity and aggregation of
α-Synuclein are largely related to these PTMs.

α-Synuclein can be phosphorylated at serine 129;
phosphorylation at this position is toxic and can enhance
the formation of α-Synuclein oligomers and accelerate neuronal
loss. α-Synuclein can also be modified by PIAS2 that adds a small
ubiquitin-like modifier (SUMO) at lysine residues. However,
how SUMOylation may influence the property of α-Synuclein
remains inconclusive and seemingly contradictory results have

been reported. Rott et al. (2017) showed that SUMOylation
can promote α-Synuclein aggregation, and meantime inhibit
α-Synuclein ubiquitination and reduce its degradation. In
contrast, Krumova et al. (2011) reported that SUMOylation can
inhibit α-Synuclein aggregation and promote protein solubility.
Further studies are needed to address this issue.

Oxidative stress may be another contributor to the
pathogenesis of PD. Widespread accumulation of nitrated
α-Synuclein in inclusions have been detected by using antibodies
specific to nitrated tyrosine residues of α-Synuclein (Giasson
et al., 2000). Further studies showed that four locations of
tyrosine are susceptible to nitration (Y39, Y125, Y133, and Y136;
Giasson et al., 2000; Schapira and Jenner, 2011; Bose and Beal,
2016). Abundant evidence suggests that nitration of α-Synuclein
is implicated in the toxicity of aggregates. Nitration of Y-39
speeds up the oligomerization of α-Synuclein. Interestingly,
a mutation of this site to cysteine residue leads to high levels
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of fibrillation (Zhou and Freed, 2004; Danielson et al., 2009).
Nitrated α-Synuclein in the form of a monomer or dimer
accelerates fibril formation and can seed the fibrillation of
unmodified α-Synuclein. Further study showed that nitration-
induced α-Synuclein oligomerization involves interactions
between the N- and C-terminal regions of different α-Synuclein
molecules. Nitration on the N- or C-terminal regions impact
the order of oligomerization; for example, only dimers are
formed when Y39 is not available for nitration (Burai et al.,
2015). Another study showed that nitration of α-Synuclein can
stabilize the formation of lower molecular weight oligomers,
resulting in decreased fibril formation (Hodara et al., 2004).
In all, nitration may be part of the complicated regulatory
mechanisms that control the proteostasis of α-Synuclein
(Burai et al., 2015).

O-GlcNAcylation is a dynamic process, in which GlcNAc is
transferred by O-GlcNAc transferase (OGT) from UDP-GlcNAc
to the serine and threonine residues, and subsequently removed
by O-GlcNAcase (OGA; Hart et al., 2007). α-Synuclein can
be O-GlcNAcylated at nine different positions (Marotta et al.,
2015). Proper O-GlcNAcylation of certain proteins prevents
their aggregation, and loss of this modification is a contributing
factor in the development of neurodegenerative diseases. It
has been verified that the O-GlcNAcylation of α-Synuclein
stabilizes the monomeric state of proteins and alters the
structure of α-Synuclein aggregates (Marotta et al., 2015;
Zhang et al., 2019). In general, O-GlcNAcylation inhibits the
aggregation of α-Synuclein. Furthermore, α-Synuclein with
three O-GlcNAc modifications can prevent the aggregation of
unmodified proteins. O-GlcNAcylation of α-Synuclein peptide
also inhibits the toxicity of extracellular α-Synuclein fibrils
(Levine et al., 2019).

THE ORDER OF OLIGOMERIZATION AND
TOXICITY

The transition of α-Synuclein from a monomeric to oligomeric
state leads to a pathological toxic function in PD. α-Synuclein
as monomers interacts and regulates ATP synthase to augment
the efficiency of ATP production under physiological conditions
(Ludtmann et al., 2016). In contrast, α-Synuclein in the state of
beta sheet-rich oligomers interacts with mitochondrial proteins
such as ATP synthase and disturbs complex I-dependent
functions. Interaction with oligomers induces oxidation of
the beta subunit of ATP synthase and peroxidation of
mitochondrial lipid. These events further augment the likelihood
to form permeability transition pore (PTP) which is toxic to
cells (Ludtmann et al., 2018). α-Synuclein fibrils also cause
neurotoxicity and cell death by activating nitric oxide synthase
(NOS), leading to DNA damage and polymerase-1 (PARP-1)
activation. Reciprocally, PAR accelerates the fibrillation of α-
Synuclein (Kam et al., 2018). It seems that different states of
α-Synuclein exert various, even opposing effects in cells. The
soluble monomers are harmless, whereas oligomers and fibrils
are toxic, although the extent of toxicity may be different.
Exactly how the order of oligomerization and change of the

configuration may impact on the toxicity of α-Synuclein requires
further studies.

PROTEOSTASIS OF α-SYNUCLEIN AND
INFLAMMATION CONTRIBUTE TO EARLY
PATHOGENESIS OF PARKINSON’S
DISEASE

Microglia are the major abundant CNS-specific immune cells
that participate in the maintenance of brain homeostasis
through mediating inflammation and/or phagocytosis. Chronic
microgliosis is considered a pathological feature of PD, and the
levels of inflammatory factors secreted by microglia correlate
with the progression of PD (Labzin et al., 2018). Different forms
of α-Synuclein exhibit distinct effects in triggering microglial
phagocytosis and inflammation. Rather than oligomers of α-
Synuclein which only induce upregulation of IL-1β (Krashia
et al., 2019), fibrillar α-Synuclein is able to elicit strong
pro-inflammatory responses in a microglial cell line (Gustot
et al., 2015; Hoffmann et al., 2016; Zhou et al., 2016). Fibrillar
α-Synuclein can activate NLRP3 inflammasome which leads
to the cleaving of pro-inflammatory cytokines, such as IL-1β
and IL-18 (Zhou et al., 2016; Chatterjee et al., 2020; Haque
et al., 2020). Also, using a rat model that overexpresses human
α-Synuclein, Krashia et al. found that α-Synuclein-induced
inflammation precedes nigral degeneration, and administration
of resolving D1, a potent lipid mediator that can resolve
inflammation to promote restoration of tissue homeostasis,
prevents neuronal dysfunction and motor deficits (Krashia
et al., 2019). Multiple receptors and pathways are responsible
for inducing pro-inflammatory responses in microglia in PD
(Table 1). Both TLR2 and TLR4, whose expression levels are
increased in PD patients and MPTP-administrated models, can
be activated by α-Synuclein to induce sterile inflammation in
PD (Kaur et al., 2017; Ferreira and Romero-Ramos, 2018).
The oligomer of α-Synuclein can bind to the P2X7 receptor
to activate the PI3K/AKT pathway in BV2 cells, a microglial
cell line. α-Synuclein aggregates can also be internalized
in autophagosomes via FcγR on microglia, which leads to
activation of NF-kB pathway (Cao et al., 2012). CD36 is
possibly involved in α-Synuclein-induced microglial activation
but the mechanism remains elusive (Ferreira and Romero-
Ramos, 2018). Prostaglandin E2 receptor subtype 2 (EP2) on
microglia seems to play a critical part in neurotoxicity caused
by α-Synuclein aggregation, based on in vivo and in vitro
evidence (Jin et al., 2007). Aggregated nitrated α-Synuclein
can induce ROS production from microglia, which is inhibited
by blockade of potassium channels (Thomas et al., 2007). In
turn, activated microglia and inflammation might promote
α-Synuclein misfolding and aggregation. Wang et al. (2016)
reported that inflammation-induced caspase 1 activation directly
cleaves wild-type α-Synuclein, and the truncated α-Synuclein is
more prone to aggregation and leads to toxicity in a neuronal PD
cellular model. The effect of immune cells and inflammation on
the spread of prion-like α-Synuclein remains largely unexplored.
On the one hand, spread of α-Synuclein is determined by the
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dynamic net sum of seeding, propagation, and phagocytosis of
fibrillar α-Synuclein, and microglia are beneficial in a sense
that they can facilitate clearance of α-Synuclein aggregates
and damaged neurons. On the other hand, inflammation-
induced reactive species might have a negative influence on
the conformation changes of α-Synuclein; but the detailed
mechanisms require further investigation.

THE ROLE OF LIPID METABOLISM AND
ITS INTERACTION WITH α-SYNUCLEIN IN
THE PATHOGENESIS OF PD

Accumulating evidence has suggested that lipid metabolism and
its interaction with α-Synuclein are implicated in many aspects
of PD pathogenesis. Upon binding of α-Synuclein to synthetic
lipid membranes in an in vitro test, α-Synuclein undergoes a
structural transition from random coil to alpha-helical secondary
conformation (Davidson et al., 1998). α-Synuclein binds to small
vesicles containing acidic phospholipids preferentially instead of
to those with a net neutral charge. The membrane-bound form
may have a higher aggregation propensity than the cytosolic
form, and membrane-bound α-Synuclein can generate nuclei
which are able to seed the more abundant cytosolic form (Lee
et al., 2002). Interaction with the membrane is in agreement
with the proposed biological functions of α-Synuclein, such
as regulation of synaptic plasticity. The binding affinity of
α-Synuclein to model membranes is much higher when the
membrane is in a fluid phase vs. in a gel phase (Galvagnion
et al., 2016). The solubility, but not the fluidity, determine the
magnitude by which membrane prompts fibril formation of α-
Synuclein (Galvagnion et al., 2016). This evidences demonstrated
that the chemical properties of lipids determine the balance
between functional and deleterious interactions of α-Synuclein
with lipid membranes, allowing for a deeper understanding of
how this interactionmay contribute to neurodegeneration. These
data implicate a possible way of involvement of inflammation
in aggregate formation since inflammation-induced reactive
species can directly alter the property of membranes. Another
factor that may influence membrane property is aging. Hallett
et al. reported, in the aging brain, an aberrant association
between α-Synuclein and dopamine vesicular membrane,
which was concurrent with synaptic destabilization (Hallett
et al., 2019). However, overexpression of α-Synuclein without
lipid deregulation does not result in the otherwise observed
abnormality, suggesting that the aberrant association is lipid-
dependent (Brekk et al., 2018). Lipid trafficking also seems to
be involved in PD pathogenesis. Lipids are transported by Rab
proteins. Chung et al. (2009) found that Rab3b is more highly
expressed in A10 vs. A9 dopaminergic neurons, which could be
one reason accountable for the relatively greater vulnerability
of A9 neurons compared with A10 neurons; overexpression of
Rab3b in A9 neurons in rats confers a protective effect and leads
to improved motor functions in a PD model. In another study,
overexpression of a different Rab protein, Rab1a, normalizes
expression of α-Synuclein in patient neurons on a genetic
background of SNCA triplication, possibly through enhanced
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trafficking to lysosomes (Mazzulli et al., 2016). The study points
out an interesting approach to cope with the accumulation of α-
Synuclein in PD.

CROSSTALK BETWEEN α-SYNUCLEIN
AND MITOCHONDRIAL DYSFUNCTION

Multiple studies have demonstrated that α-Synuclein aggregation
and mitochondrial dysfunction are both important in
the pathogenesis of PD. Accumulating data showed that
α-Synuclein aggregation and mitochondrial defects may
have a bidirectional interaction. α-Synuclein interacts with
mitochondria by specifically binding to the TOM20 receptor,
inhibiting mitochondrial protein import machinery, and
impairing mitochondrial functions (Di Maio et al., 2016).
α-Synuclein aggregation in mitochondria impairs complex
I in human dopaminergic neuronal cells, consequently
interfering with mitochondrial functions (Devi et al., 2008).
Additionally, it was suggested that soluble, prefibrillar
α-Synuclein, but not α-Synuclein monomers, impairs the
retention of Ca2+ in mitochondria, and induces mitochondrial
depolarization and swelling, leading to Ca2+ dependent
mitochondrial dysfunction (Luth et al., 2014). On the other
hand, mitochondrial defects result in oligomerization and
accumulation of α-Synuclein, which in turn aggravates the
dysfunction of mitochondria. Growing evidence suggests the
involvement of α-Synuclein in the dynamics of mitochondria,
such as mitochondrial fission, fusion, and mitophagy.
Overexpression of α-Synuclein in Caenorhabditis elegans
and cultured cells reduces mitochondrial fusion, resulting
in fragmentation of mitochondria (Kamp et al., 2010).
And these fusion deficits and mitochondrial fragmentation
are rescued by overexpression of PINK1, PARKIN or DJ-1
(Kamp et al., 2010). However, the detailed picture illustrating
the interaction between α-Synuclein accumulation and
mitochondrial dysfunction remains obscure and requires
further investigation.

MECHANISMS UNDERLYING THE
CONNECTION BETWEEN α-SYNUCLEIN
ACCUMULATION AND GENETIC
FACTOR-ASSOCIATED PD

The majority of PD are sporadic, and around 5–10% of
PD are familial, presenting with monogenic forms of the
disease (Rocha et al., 2018). More than 20 PD-related
genes have been identified, including SNCA, leucine-rich
repeat kinase 2 (LRRK2), glucocerebrosidase (GBA), PINK1,
DJ-1 and Parkin (Li et al., 2014; Kalinderi et al., 2016;
Balestrino and Schapira, 2018).

Studies showed that accumulation of insoluble α-Synuclein
plays a significant role not only in the neurodegenerative process
of sporadic PD but also in familial PD; the interaction between
α-Synuclein and mutant genes contributes to neuronal death,
dysfunction, and loss of connectivity (Stojkovska et al., 2018).
The genetic mutations are mostly involved in α-Synuclein

aggregation or clearance pathways, often leading to early-
onset PD.

Mutations in the GBA is the single largest risk factor
associated with PD (Balestrino and Schapira, 2018). A lot
of studies have indicated a key role for α-Synuclein in the
pathogenesis of GBA-PD. GBA encodes lysosomal enzyme
GCase that catalyzes the hydrolysis of glucosylceramide
(GlcCer), and mutation of this gene normally results in
dysfunction of the autophagy-lysosomal pathway (Robak
et al., 2017). Since degradation of α-Synuclein partially
depends on autophagy, lysosomal dysfunction caused by
GBA mutation could lead to α-Synuclein accumulation and
aggregation (Vogiatzi et al., 2008). Induced pluripotent stem
cell (iPSC)-derived neurons from GBA-deficient PD patients
show a reduced GCase activity and higher levels of GlcCer
as well as α-Synuclein aggregation due to lysosomal defects
(Schöndorf et al., 2014). On the other hand, α-Synuclein
aggregation, in turn, inhibits GCase activity, and the toxic
oligomeric form of α-Synuclein is stabilized by an increased
level of GlcCer, the substrate of GCase (Mazzulli et al.,
2011). These data demonstrated that α-Synuclein and GCase
may form a bidirectional pathogenic loop, participating in
a self-propagating feedback process that eventually leads
to neurodegeneration (Mazzulli et al., 2011). In addition,
GBA mutations can elevate the level of α-Synuclein via
altered interaction with lipid membranes in addition to
lysosomal defects. It was proposed that GlcCer and another
glycosphingolipid could induce toxic conversion of α-Synuclein
(Suzuki et al., 2018). Recently, a study revealed that GBA
deficiency may impact on the formation of α-Synuclein
tetramers and related multimers (Kim et al., 2018). The major
normal structure of α-Synuclein is a folded tetramer that is
resistant to aggregation (Bartels et al., 2011). In comparison
with tetramers, the monomer of α-Synuclein tends to aggregate
and transition to insoluble deposits such as Lewy bodies
(Bartels et al., 2011). Thus, the authors concluded that the
accumulation of GlcCer due to GBA mutation destabilizes
α-Synuclein tetramers and related multimers and increases
the level of α-Synuclein monomers, eventually contributing
to α-Synuclein aggregation and neurodegeneration in PD
(Kim et al., 2018). Taken together, these studies highlight
the mechanistic connection between GBA deficiency and
α-Synuclein properties, providing unique therapeutic
opportunities for reducing neurotoxicity of α-Synuclein for
treatment of PD.

CONCLUSIONS AND PERSPECTIVES

In this review article, we summarized how phase transition,
posttranslational modifications, physical and physiological status
of α-Synuclein, inflammation, lipid metabolism, and genetic
mutations may correlate with different functional consequences
in PD (Figure 1). Proteostasis of α-Synuclein, as involved
in maintaining normal cellular metabolic functions, plays a
key role in the neurodegenerative process. The evolution and
transformation of different species of α-Synuclein significantly
affect the pathogenesis of PD.
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Further work is required to elucidate the detailed mechanisms
that regulate the proteostasis of α-Synuclein, particularly the
initiating events of aggregation. Genetic mutations involved
in early-onset familial PD may contribute to the phase
transition of α-Synuclein, especially in the early stage of
PD development; and mechanistic insight into this field
may help develop novel therapeutic strategies to target
α-Synucleinopathy. iPSC-derived dopaminergic neurons
with LRRK2 G2019S mutation present with the accelerated
accumulation of α-Synuclein. Treatment with terazosin,
which can activate phosphoglycerate kinase 1 (PGK1)
and subsequently increase cellular ATP level, reverses the
elevation of α-Synuclein (Cai et al., 2019). Importantly, a
lower frequency and slower progression of PD, and reduced
disease-related complications are found in individuals
taking the prescribed drug terazosin (Cai et al., 2019). The
molecular mechanism remains elusive but one possibility is
that ATP has property of a hydrotrope and can inhibit the
formation and facilitate the dissolving of aggregates (Patel
et al., 2017; Hayes et al., 2018). The study exemplifies that
a molecule targeting the phase transition of α-Synuclein
may slow down the progression of PD clinically. With the
discovery of more molecules/drugs that target different
aspects of α-Synuclein phase transition and with a better

understanding of the genetic regulation of α-Synucleinopathy,
new interventional opportunities are promised to emerge for
treatment of PD.
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