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Strain Hhs.015T (Saccharothrix yanglingensis sp. nov.), an antagonistic endophytic Saccharothrix actinomycete isolated from roots
of cucumber plants, exhibited a broad antimicrobial spectrum in vitro and was active as a biocontrol against plant diseases in
field trials. The SSY medium was used for production of antimicrobial metabolites by strain Hhs.015T. However, this medium is
too expensive for large-scale production. In this study, an alternative culture medium, based on agricultural waste products (e.g.,
apple pomace), was optimized. The results showed that the alternative medium contained 15 g apple pomace, 4 g rapeseed meal,
0.1 g KH2PO4, and 0.6 g MgSO4 · 7H2O in 1 L distilled water. This medium reduced the material costs by 91.5% compared to SSY
medium. Response surface methodology (RSM) was used to investigate the influence of environmental variables on production
of compounds of antimicrobial metabolites. The optimal conditions achieved were initial pH 7.0, medium volume of 90 mL in
250 mL flasks, rotary speed of 100 rpm, temperature 25◦C, and inoculation volume of 15.8%. The antimicrobial activity was
increased by 20% by optimizing the environmental parameters. The results obtained allow an efficient production of components
with antimicrobial activity by strain Hhs.015T on a large scale at low costs.

1. Introduction

In recent years, the increasing prevalence of infectious
diseases resistant to chemotherapy has caused an urgent need
to discover and develop new antibiotics. In this context,
rare actinomycetes appear as a promising source of new
antibacterial and antifungal compounds. Strain Hhs.015T,
isolated from roots of cucumber plants, belongs to Sac-
charothrix actinomycete [1, 2]. The isolate showed a broad
antimicrobial spectrum in vitro against plant pathogenic
(e.g., Valsa ceratosperma and Phytophthora capsici) and non-
plant pathogenic fungi, for example, Candida vulgaris [3].
In field experiments, fermentation supernatant of Hhs.015T

showed effective biocontrol to tomato leaf mould caused
by Fulvia fulva [4] and apple tree valsa canker caused
by Valsa ceratosperma [5]. Up to date, many bioactive
secondary metabolites have been reported from cultures
of Saccharothrix. These include for instance, tetrazomine
[6], mutactimycin [7], and dithiolopyrroloe antibiotics [8].

These metabolites are characterised by diverse chemical
structures and may be suitable because of their wide range of
activity in agriculture to control fungal diseases in cultivated
plants and domestic animals.

Production of secondary metabolites by microorganisms
differs qualitatively and quantitatively depending on the
strains and species of microorganisms used as well as on
their nutritional and cultural conditions [9]. And as fermen-
tation moves into lower-value, higher-volume substrates, it
becomes necessary to maximize the efficiency and minimize
costs by using waste by-products to complete effectively with
traditional high-value, low-volume compounds [10].

In recent years, more and more attention was paid to
agricultural pomaces such as apple pomace, wheat/rice bran,
corn steep liquor, and peanut meal, for their use as raw
materials in the production of high value products [11–13].
Crop pomaces are annually renewable sources of energy.
Approximately 3.5 billion tons of agricultural pomaces are
produced per annum in the world. But utilization of these
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pomaces was limited due to low protein content and poor
digestibility [14]. Studies on optimization of the produc-
tion of antimicrobial active compounds using agricultural
pomaces have been reported comparatively seldom.

The objective of the present study was to produce
an alternate culture medium using agricultural waste as
medium component and optimize fermentation conditions
of the strain Hhs.015T in order to greatly reduce the
production cost and improve the formation of components
with antimicrobial activity.

2. Materials and Methods

2.1. Culture Media. SSY liquid medium consisted of: 20 g
soybean powder, 10 g sucrose, 5 g soluble starch, 2 g yeast
extract, 2 g protease peptone, 2 g NaCl, 1 g CaCO3, 0.5 g
MgSO4·7H2O, 0.5 g KH2PO4, and 1 L double distilled (dd)
water. SSY solid medium was prepared by adding 10 g agar
to the liquid medium. In addition, the following media were
used: PDA (200 g potato, 20 g dextrose, and 10 g agar in 1 L
dd water), and PD (200 g potato and 20 g dextrose in 1 L
dd water). All cultural media, plates, and flasks used in the
experiments were autoclaved at 121◦C for 30 minutes.

2.2. Microorganisms and Culture Conditions. Strain
Hhs.015T was kept on SSY solid medium at 4◦C. For
spore production, the strain was transferred to SSY solid
medium plates and incubated for 7 days in darkness at 28◦C.
The spores produced on the plates were used for inoculation
of the liquid fermentation media. Two spore cakes (diameter
4 mm) of strain Hhs.015T were prepared to inoculate a
250-mL flask containing 50 mL SSY medium. The flasks
were incubated at 28◦C on a rotary shaker at 150 rpm for
48 hours in darkness. For optimization of an alternative
culture medium, submerged fermentation was carried out in
250-mL flasks containing 50 mL different test fermentation
media. These flasks were inoculated with 10% (v/v) of the
spore culture and incubated in darkness at 28◦C on a rotary
shaker at 150 rpm for 5 d. For optimization of fermentation
conditions, the experiment was carried out according to
the experimental design. After fermentation, all of the test
fermentation broths were centrifuged at 11,086× g for
10 minutes; the supernatants (test samples) were used to
evaluate the antimicrobial activity.

Candida vulgaris as the target microbe was kept on
PDA medium at 4◦C and was cultivated in PD liquid
culture medium in darkness at 28◦C on a rotary shaker
at 150 rpm for 2 days. Then, C. vulgaris culture medium
(108–109 spores/mL) was kept at 4◦C for the assay of
the antimicrobial activity in the fermentation supernatant
produced by Hhs.015T.

2.3. Testing the Effect of Carbon, Nitrogen, and Microelement
Sources in the Medium on the Production of Antimicrobial
Active Components. In order to investigate the effect of the
carbon and nitrogen sources on the antimicrobial activity
produced by strain Hhs.015T, SSY medium was used as a
basal medium for the following optimization studies. Various

single and complex carbon or nitrogen sources (Tables 1
and 2) were used to replace the carbon and nitrogen sources
in the SSY medium, while all other components were kept
constant.

In the selection of proper microelements, all of the
microelements in SSY medium were replaced by one
microelement at different concentrations. The antimicrobial
activity was evaluated by measurement of inhibition zones of
the target organism after 24 hours of incubation at 30◦C (see
Section 2.5). The prices of the different carbon and nitrogen
sources are listed in Tables 1 and 2.

2.4. Experimental Design and Optimization. The alternative
culture media were optimized according to orthogonal tests.
In the orthogonal tests, an L1645 experimental design was
employed for 4 independent variables each at 4 levels. A
total of 16 experiments were carried out simultaneously, each
experiment with three replicates. The variables involved in
the study and their concentrations were given in Table 3.

The optimization of the fermentation conditions was
carried out according to the central composite tool (CCD)
of RSM (Response Surface Methodology) using MINITAB 14
software (Minitab Inc., 2003) for selected five environmental
factor parameters [15, 16]. The crucial factors involved in
the study and their concentrations are given in Table 4. A
total of 32 experiments were carried out simultaneously
(Table 5), with experiments 2, 4, 6, 8, and 17 as five replicates
of the central point. Relative effects of two variables on
response were identified from contour plots. An optimum
value of the variables for maximum antimicrobial activity
was determined by response optimizer tool of the software.

2.5. Assay for Antimicrobial Activity. The antibacterial assay
was carried out using the Oxford Cup method in 20-
cm-diameter Petri dishes. After autoclaving, 100 mL PDA
medium were cooled to 40–50◦C, and 1% (v/v) of the C.
vulgaris suspension (108–109 spores/mL) was added to the
PDA medium. After the medium in the Petri dishes solidi-
fied, the autoclaved Oxford cups were put onto the medium
surface and 200 μL of the testing samples (supernatants)
were added into the cups. One Petri dish was one replicate.
The antimicrobial activity was evaluated by measuring the
diameter of translucent inhibition zones after incubating the
dishes 24 hours at 30◦C.

2.6. Data Calculation and Analysis. The data from the
orthogonal tests were analyzed by SAS software (Stat Soft,
Inc., Tulsa, USA). The optimum value of the variables
for the maximum antimicrobial activity was obtained by
range analysis (Table 6). Range of every variable can roughly
explain the effect of every variable on the antimicrobial
activity. The range of every variable was calculated according
to the following equation:

Xij =
Xij
n

, n = 4, j = 1, 2, 3, 4,

Ri = Xij max − Xij min, i = 1, 2, 3, 4,

(1)
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Table 1: Effect of various carbon sources replacing starch and sucrose in SSY medium on antimicrobial activity of strain Hhs.015T to
Candida vulgaris incubated 24 hours at 30◦C on PDA medium.

Carbon sources
Diameter of

inhibition zones
(mm)

Price
(RMB/Kg)

supplier
Contents of
carbon %

Glucose 18.65 a 14 Fuchen Chemical Company, Tianjin <99.2

White sugar 18.33 a 4.5 Farmer’s Market, Yangling, Shaanxi 90.25

Brown sugar 17.86 ab 5 Farmer’s Market, Yangling, Shaanxi 80.32

Apple pomace (hydrolyzate) 17.45 ab 0.6 Juice factory, Qianxian, Shaanxi 15.08

Starch 16.21 ab 28 Fuchen Chemical Company, Tianjin <98.5

Control (Starch+ sucrose) 15.28 bc 29 Fuchen Chemical Company, Tianjin <98.5

Bran 13.15 c 1.2 Farmer’s Market, Yangling, Shaanxi 16.23

Black 7.78 d 0

Vinegar residue (hydrolyzate) 7.75 d 0.6 Farmer’s Market, Yangling, Shaanxi 10.15

Note: Inhibition zones with the same letter showed no significant difference analyzed by SAS statistics systems. The portion of carbon sources was about 1.5%
(w/v). The control medium was the SSY medium. The Black had no starch and sucrose in SSY medium.

Table 2: Effect of various nitrogen sources replacing soybean powder, yeast extract, and protease peptone in SSY medium on antimicrobial
activity of strain Hhs.015T to Candida vulgaris incubated 24 hours at 30◦C on PDA medium.

Nitrogen sources
Diameter of

zones of
inhibition (mm)

Price
(RMB/Kg)

supplier
Contents of

nitrogen

Rapeseed meal
(hydrolyzate)

19.59 a 0.6 Farmer’s market, Yangling Shaanxi 1.67%

(NH4)2HPO4 17.32 ab 30 Fuchen Chemical Company, Tian Jin 20.31%

Cotton dregs
(hydrolyzate)

17.20 ab 0.6 Farmer’s market, Yangling Shaanxi 3.1%

Control (soybean
powder + yeast extract +
protease peptone)

17.05 ab 245 Fuchen Chemical Company, Tian Jin 10%

(NH4)2SO4 16.75 ab 32 Fuchen Chemical Company, Tian Jin 17.92%

Fish meal (hydrolyzate) 16.91 ab 6 Farmer’s market, Yangling Shaanxi 3.33%

Black 16.49 ab 0 0

Urea 15.57 bc 2 Fuchen Chemical Company, Tian Jin 35.84%

NaNO3 13.11 bc 22 Fuchen Chemical Company, Tian Jin 17.92%

NH4NO3 0.00 d 28 Fuchen Chemical Company, Tian Jin 35.84%

Note: Inhibition zones with the same letter showed no significant difference analyzed by SAS statistics systems. 1.5% (w/v) of apple pomace was used as the
carbon source replacing starch and sucrose in SSY medium except the control. The portion of nitrogen sources was about 0.7% (w/v). The control medium
was the SSY medium. The Black: without soybean powder, yeast extract, and protease peptone in SSY medium

where Xij is the average value of the j level of one variable
in line, i, n is the number of replications of every level of one
variable in one line. Ri is the difference of the maximum and
the minor average value of all of the levels of one variable in
line i.

The experimental results of RSM were fitted with the
response surface regression procedure. In developing the
regression equation, the test variables were coded according
to the equation:

xi =
(
Xi − Xi

)

Xi
, i = 1, 2, 3, . . . , k, (2)

where xi was the independent variable coded value, Xi was
the independent variable real value, Xi was the independent

variable real value on the centre point, and Xi was the step
change value. The response variable (antimicrobial activity
unit) was fitted by a second-order model in order to correlate
the response variable to the independent variables. The
general form of the second degree of polynomial equation
is: Y = b0 +

∑
i bixi +

∑
i

∑
j bi jxix j +

∑
biix

2
i , where Y was

the measured response, b0 was the intercept term, bi, bi j , and
bii were the measures of the effects of variables xi, xixj , and
x2
i , respectively. The variable xixj represents the first-order

interaction between xi and xj (i < j).
The statistical analysis of the model was performed in

the form of analysis of variance (ANOVA). This analysis
included the Fisher’s F-test (overall model significance), its
associated probability P(F), correlation coefficient R, and
determination coefficient R2 that measured the goodness of
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Table 3: Experimental range and levels of the independent variables
of orthogonal design for the optimization of strain Hhs.015T

alternative cultural medium.

Variable Parameter Range and levels

A Apple pomace 1.5% 2.0% 2.5% 3.0%

B Rapeseed meal 0.1% 0.2% 0.3% 0.4%

C MgSO4·7H2O 0.06% 0.07% 0.08% 0.09%

D KH2PO4 0.01% 0.02% 0.03% 0.04%

Table 4: Variances and levels of the optimization of strain Hhs.015T

fermentation conditions using Response Surface Methodology.

Variables Parameter −2 −1 0 1 2

pH X1 2.0 4.5 7.0 9.5 12

Medium volume (mL) X2 30 60 90 120 150

Rotary speed (rev/min) X3 0 50 100 150 200

Temperature (◦C) X4 15 20 25 30 35

Inoculation volume (%) X5 8 11 14 17 20

Note: xi = coded value of the variable Xi. X1= (pH − 7 )/2.5; X2 = (Medium
volume− 90)/30; X3 = (Rotary speed− 100)/50; X4 = (Temperature – 25)/5;
X5 = (Inoculation volume − 14)/3.

fit of the regression model. The analysis also included the
Student’s t-value for the estimated coefficients and associated
probabilities, P(t). For each variable, the quadratic models
were represented as contour plots.

3. Results

3.1. Screening the Components in the Alternative Culture
Medium for Fermentation of Strain Hhs.015T . The results
indicated that the carbon sources obviously affected the
synthesis of substances with antimicrobial activity by strain
Hhs.015T (Table 1). Among the various carbon sources
tested, strain Hhs.015T produced in the presence of glucose
(18.65 mm diameter of growth inhibition zones), white
sugar (18.33 mm), brown sugar (17.86 mm), apple pomace
(17.45 mm), and starch (16.21 mm) greater growth inhi-
bition zones than in the control medium (15.28 mm).
Statistical analysis indicated that the growth inhibition zones
were significantly different from the control for glucose and
white sugar, while the growth inhibition zones were not
significantly different from glucose and white sugar for apple
pomace. The inhibition zones significantly differed from
the control according to the statistical analysis. Significant
lower antimicrobial activities were found in the vinegar
residue (7.75 mm) as well as in black (7.75 mm) and bran
(13.15 mm). Taking the costs of the raw materials into
consideration, the price of apple pomace (0.6 RMB/Kg) was
much lower compared with other carbon sources showing
similar antimicrobial activity.

The results of the nitrogen sources showed that strain
Hhs.015T could utilize different forms both organic and
inorganic nitrogen sources (Table 2). Rapeseed meal favored
production of compounds with antimicrobial activity

(19.59 mm diameter of inhibition zones) but not signif-
icantly compared to the control. Also in media contain-
ing urea and NaNO3, components with low antimicrobial
activity were produced; these sources were not significantly
different from the control and other sources (e.g., ammo-
nium phosphate, cotton dregs, ammonium sulfate, and fish
meal). No antimicrobial activity was found in the medium
with NH4NO3. Thus, considering the price of raw materials
and the antimicrobial activity produced, apple pomace and
rapeseed meal were used as carbon and nitrogen sources for
further experiments.

The results showed (Figure 1) that the antimicrobial
activity produced by strain Hhs.015T enhanced in the
presence of MgSO4·7H2O concentrations increasing from
0.05% to 0.08% and KH2PO4 levels increasing from 0 to
0.01%, but the activity decreased while the concentrations of
the other microelements increased, for example, NaCl and
CaCO3 (Figure 1). Therefore, MgSO4·7H2O and KH2PO4

were chosen as the microelements for further experiments.

3.2. Orthogonal Design for the Optimization of the Alternative
Cultural Medium for Strain Hhs.015T . The effects of concen-
trations of the components in the medium on the antimicro-
bial activity were further investigated by tests of orthogonal
design. From the range analysis, the apple pomace as the
main variable affected the antimicrobial activity, indicating
that the carbon source was essential for the production of
compounds with antimicrobial activity by strain Hhs.015T.
From the results of the analysis of variance of orthogonal
design, (Table 7) showed that each single variable had no
significant effect on the antimicrobial activity (F < F0.05),
probably because in the experiments the concentration range
of every variable was defined. Finally, the optimum values of
apple pomace 15 g/L, rapeseed meal 4 g/L, KH2PO4 0.1 g/L,
and MgSO4·7H2O 0.6 g/L were determined according to the
range analysis (Table 6). The antimicrobial activity produced
in the alternative culture medium was not significantly
different from the SSY medium (Figure 2A, CK), while the
price of the materials of 0.1836 RMB/L was drastically lower
than the price of the SSY medium, 2.1624 RMB/L; thus, the
price was reduced by 91.5%.

3.3. Optimization of Fermentation Conditions for Strain
Hhs.015T . Applying multiple regression analysis on the
experimental data, the results (Table 5) of the CCD design
fitted with a second-order of polynomial equation:

Y = 15.7443 + 1.4375X1 − 1.6625X2 + 3.8792X3

− 2.0443X2
1 − 2.9743X2

2 − 2.2193X2
3 − 3.9943X2

4

+ 1.5313X1X5 + 1.5313X2X4,
(3)

where Y was the response (the antimicrobial activity units)
and X1, X2, X3, X4, and X5 were the coded values of the
independent variables, initial pH, medium volume in the
flask, rotary speed, temperature, and inoculation volume,
respectively.
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Table 5: Experiment design and results of the optimization of strain Hhs.015T fermentation conditions using Response Surface
Methodology.

Runs X1 X2 X3 X4 X5
Observed Valueb Predicted Value

Residual
(mm) (mm)

1 0 0 0 −2 0 5.5 −1.9 1.86

2a 0 0 0 0 0 15.3 15.7 −0.44

3 1 −1 −1 1 1 0.0 1.3 −1.29

4a 0 0 0 0 0 15.8 15.7 0.06

5 2 0 0 0 0 15.6 10.4 5.16

6a 0 0 0 0 0 17.6 15.7 1.86

7 1 1 −1 1 −1 0.0 0.9 −0.92

8a 0 0 0 0 0 15.7 15.7 −0.04

9 −1 1 1 1 −1 10.6 8.7 1.87

10 1 −1 1 −1 1 15.0 16.8 −1.78

11 1 1 1 −1 −1 0.0 1.4 −1.40

12 0 0 0 0 2 14.4 14.9 −0.49

13 1 1 1 1 1 11.4 11.6 −0.23

14 1 1 −1 −1 1 0.0 1.4 −1.37

15 −1 −1 1 1 1 12.5 11.0 1.50

16 0 0 2 0 0 14.2 14.6 −0.43

17a 0 0 0 0 0 13.6 15.7 −2.14

18 −2 0 0 0 0 0.0 4.7 −4.69

19 0 0 0 2 0 0.0 1.4 −1.39

20 −1 1 −1 −1 −1 0.0 −0.7 0.73

21 0 2 0 0 0 0.0 1.2 −1.24

22 −1 −1 1 −1 −1 7.6 7.3 0.32

23 1 −1 −1 −1 −1 0.0 2.5 −2.47

24 −1 −1 −1 −1 1 0.0 −0.4 0.36

25 −1 1 −1 1 1 0.0 −1.9 1.91

26 −1 1 1 −1 1 0.0 −1.4 1.42

27 1 −1 1 1 −1 7.6 8.9 −1.33

28 −1 −1 −1 1 −1 0.0 −0.8 0.81

29 0 0 −2 0 0 0.0 −0.9 0.89

30 0 0 0 0 0 16.0 15.7 0.26

31 0 −2 0 0 0 9.6 7.9 1.71

32 0 0 0 0 −2 13.3 12.3 0.96

Note: aExperiments 2, 4, 6, 8, 17 were five replications in the central point. bObserved value was the diameter of zones of inhibition; Candida vulgaris as
the target microbe on PDA medium in 20-cm-diameter Petri dish was inoculated 24 hours at 30◦C. One dish: one replication, the data in the table were the
average of three replications. X1 = pH; X2 = Medium volume; X3 = Rotary speed; X4 = Temperature; X5 = Inoculation volume.

The Student’s t-test and P-values were used to check
the significance of each coefficient; the results also indicated
interaction strength between each independent variable. The
results of the regression analysis were shown in Table 8. The
degree of significance (Table 8) shows that the linear term
regression coefficients of rotary speed were highly significant
as demonstrated by the P-values (PX3 = .001). Initial pH
and media volume were also significant at 5% level (PX1 =
.039, PX2 = .020). Quadratic coefficients of primary pH,
media volume, rotary speed, and temperature were highly
significant at 1% level, and showed negative effect on the
antimicrobial activity.

This model resulted in ten 2D contour plots. The few
response contour plots of the calculated model for antimi-
crobial activity were shown in Figures 3(a)–3(f) by keeping
the other three variables constant at their middle level. The
analysis of variance of regression for antimicrobial activity
was summarized in Table 8. In the case of antimicrobial
activity, this calculated model was able to explain 93.6% of
the results (Table 9). The value of the adjusted determination
coefficient (Adj R2 = 0.82) was also very high to advocate
for a high significance of the model [17]. The coefficient for
quadratic effect of pH, medium volume, temperature, and
rotary speed may be significant to some extent.
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Figure 1: Effect of microelements at different concentrations on the production of antimicrobial active compounds in the fermentation
supernatant of strain Hhs.015T to Candida vulgaris on PDA. The antimicrobial activity was determined by measuring the translucent
inhibition zones after incubating the dish 24 hours at 30◦C. Apple pomace (1.5% w/v) and rapeseed meal (0.2% w/v) were used as the
carbon and nitrogen sources. (a)–(d) were NaCl, CaCO3, MgSO4·7H2O, and KH2PO4, respectively.

The response surfaces 2D contour could be analyzed
for determining the optimized value of the variables, but it
was difficult to analyze all these simultaneously. Finally, the
optimum culture condition was obtained as follows: initial
pH = 7.0, medium volume = 90.0 mL/250 mL plate, rotary
speed = 100 rpm, temperature = 25.0◦C, and inoculation
volume = 15.8%.

These values predict a 17.5 mm growth inhibition zone
caused by the antimicrobial activity. These optimized values
of nutrient parameters were validated in a duplicate flask
study and an average of 17.3 ± 0.25 mm growth inhibition
zone was obtained. This shows 98% validity of the predicted
model. The result proved that the production of ingredients
with antimicrobial activity had been improved by 20% when
compared with the basal fermentation conditions (14.4 ±
0.15 mm) (Figures 2A and B).

4. Discussion

Carbon sources could play an important role in the pro-
duction of compounds with antimicrobial activity of strain
Hhs.015T. Nutrition plays an important role in the onset

and intensity of secondary metabolism, not only because of
limiting the supply of an essential nutrient is an effective
means of restricting growth but also because the choice of
limiting nutrients can have specific metabolic and regulatory
effects [18, 19].

The results of this study showed that production of com-
pounds with antimicrobial activity was drastically reduced
when a carbon source such as vinegar residue or no carbon
source (black) was present in the culture medium. A similar
catabolic repression mechanism for antibiotic production
had been described for bacteria [20], suggesting that the
synthesis of the antibiotic was related to phosphoenolpyru-
vate sugar phosphotransferase system, and controlling the
concentration of carbon sources could regulate the synthesis
of antibiotics. In the optimization of the culture medium,
apple pomace was selected as the carbon source. Apple
pomace, a by-product from a juice production factory in
Qianxian, Shaanxi Province, contained numerous kinds of
nutrients, such as proteins, fats, soluble sugars, Ca, P, and
many other microelements, vitamins, and so forth [21].

For microbe growth and synthesis of the secondary
metabolites, microelements (mineral and metal ions)
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Table 6: Analysis of the results of orthogonal design (L1645) for the
optimization of strain Hhs.015T alternative cultural medium.

Runs A B C D
Diameter of zones
of inhibition (mm)

1 1.5 0.1 0.06 0.01 16.0

2 1.5 0.2 0.07 0.02 15.6

3 1.5 0.3 0.08 0.03 14.2

4 1.5 0.4 0.09 0.04 15.0

5 2.0 0.1 0.08 0.04 13.2

6 2.0 0.2 0.09 0.03 14.8

7 2.0 0.3 0.06 0.02 12.6

8 2.0 0.4 0.07 0.01 15.9

9 2.5 0.1 0.09 0.02 9.2

10 2.5 0.2 0.08 0.01 9.9

11 2.5 0.3 0.07 0.04 9.2

12 2.5 0.4 0.06 0.03 15.1

13 3.0 0.1 0.07 0.03 7.4

14 3.0 0.2 0.06 0.04 16.0

15 3.0 0.3 0.09 0.01 14.1

16 3.0 0.4 0.08 0.02 9.9

X1 15.2 11.45 14.93 13.98

X2 14.16 14.08 12.03 11.83

X3 10.85 12.53 11.80 12.87

X4 11.85 13.98 13.28 13.35

R 4.35 2.63 3.13 2.15

Note: Candida vulgaris was used as the target microbe inoculated 24 hours
at 30◦C on PDA medium in 20-cm-diameter Petri dish. One dish: one
replication, the data in the table were the average of three replications.
A, B, C, D were apple pomace, rapeseed meal, MgSO4·7H2O, and KH2PO4,
respectively. Xij is the average value of the j level of one variable in line i,
and Ri is the difference between the maximum and the minor average values
of all of the levels of one variable in line i, roughly explaining the effect of
every variable on the antimicrobial activity
Xij =

∑
Xij /n ; n = 4; j = 1, 2, 3, 4; Ri = Xij max − Xij min; i = A,B,C,D.

Table 7: Analysis of variance of orthogonal design results for the
optimization of strain Hhs.015T alternative culture medium.

Variable Parameter Seq SSa DFb F Fc
0.05

A Apple pomace 48.179 3 1.894 3.29

B Rapeseed meal 18.958 3 0.745 3.29

C MgSO4·7H2O 24.725 3 0.972 3.29

D KH2PO4 9.884 3 0.389 3.29

Error 266.83 15

Note: The data were analyzed using the software Oea-v31-p; F < F0.05

showed that there was no significant difference in the concentration range of
every variable. aSum of squares; bDegree of freedom; cCritical value when
P = .05.

were necessary, which are an important part of
enzyme reactive centers or could maintain the structure
stability of biomacromolecules and the balance of cell
osmotic pressure. For the secondary metabolites in Phoma
sp., zinc, iron, and manganese were the most important

A

B CK

1 cm

Figure 2: The antimicrobial activity in fermentation supernatants
of strain Hhs.015T to Candida vulgaris on PDA medium in 9-
cm-diameter Petri dish. The antimicrobial activity was determined
by measuring the translucent inhibition zones after incubating
the dish 24 hours at 30◦C. A: alternative culture medium at
basal fermentation condition; B: alternative culture medium at the
optimal fermentation condition; CK: SSY medium at the basal
fermentation condition.

trace elements [22]. Yang et al. [23] found that MgSO4,
MgCl2, NaCl, KH2PO4, KNO3, and (NH4)2SO4 favored
antibiotic production by Xenorhabdus spp. D43, but
antibiotic production by addition of Zn(NO3)2 and CuSO4

decreased. In this experiment, the results showed that 0.06%
MgSO4·7H2O and 0.01% KH2PO4 were proper for strain
Hhs.015T to produce antimicrobial activity. Increasing or
reducing the concentrations of MgSO4·7H2O and KH2PO4,
the production of compounds with antimicrobial activity
by strain Hhs.015T decreased. Microelements at different
concentrations showed different effects on the microbe
physiological activity, so, the suitable concentrations
are changing depending on microbe properties and
fermentation medium [24].

The apple pomace and rapeseed meal were chosen as
two main components in the optimum culture medium for
their low market price, 598.4 RMB/t, while soybean in the
SSY medium was 3774 RMB/t in the China market. Finally,
the price of fermentation material for strain Hhs.015T was
0.1836 RMB/L in the optimum culture medium; 91.5% of
the production cost were saved compared with the SSY
medium, 2.1624 RMB/L, with similar antimicrobial activity.
Hence, there are a high possibility and feasibility to use
the modified cultural media in the scale-up fermentation of
strain Hhs.015T.

In the optimization process of fermentation conditions,
RSM proved to be a powerful tool. The approach allowed
the determination of the culture conditions that yielded the
highest antimicrobial activity by strain Hhs.015T. In this
study, there was a mutual interaction between the medium
volume and rotary speed (Figure 3(d)) to influence the

http://dict.cnki.net/dict_result.aspx?searchword=%e9%85%b6%e6%b4%bb%e6%80%a7%e4%b8%ad%e5%bf%83\&tjType=sentence\&style=\&t=enzyme+reactive+center
http://dict.cnki.net/dict_result.aspx?searchword=%e7%94%9f%e7%89%a9%e5%a4%a7%e5%88%86%e5%ad%90\&tjType=sentence\&style=\&t=biomacromolecule
http://dict.cnki.net/dict_result.aspx?searchword=%e6%b8%97%e9%80%8f%e5%8e%8b\&tjType=sentence\&style=\&t=osmotic+pressure
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Figure 3: Contour plot of antimicrobial activity produced by strain Hhs.015T (mm). (a): the effect of pH and medium volume on production
of components with antimicrobial activity. (b): the effect of pH and rotary speed on synthesis of antimicrobial active compounds. (c):
the effect of medium volume and temperature on production of antimicrobial active components. (d): the effect of medium volume and
rotary speed on production of antimicrobial active compounds. (e): the effect of medium volume and inoculation volume on synthesis of
antimicrobial active compounds. (f): the effect of temperature and inoculation volume on production of antimicrobial active components.
Because a contour plot showed only two factors; the other factors were held constant at a middle level. The darkest area indicated the contour
where the response is the highest. The range of pH was−2 (2.0),−1 (4.5), 0 (7.0), 1 (9.5), 2 (12). The range of medium volume (mL/250 mL)
was −2 (30), −1 (60), 0 (90), 1 (120), 2 (150). The range of rotary speed (rev/min) was: −2 (0), −1 (50), 0 (100), 1 (150), and 2 (200). The
range of temperature (◦C) was −2 (15), −1 (20), 0 (25), 1 (30), 2 (35). The range of inoculation volume (%) was −2 (8), −1 (11), 0 (14), 1
(17), and 2 (20).
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Table 8: Regression results from the data of central composite
designed experiments of the optimization of strain Hhs.015T

fermentation conditions.

Term Coef SE-Coef T P

X0 15.74 1.20 13.15 .000

X1 1.44 0.61 2.35 .039∗

X2 −1.66 0.61 −2.71 .020∗

X3 3.88 0.61 6.33 .000∗∗

X4 0.81 0.61 1.33 .212

X5 0.64 0.61 1.04 .321

X11 −2.04 0.55 −3.69 .004∗∗

X22 −2.79 0.55 −5.04 .000∗∗

X33 −2.22 0.55 −4.00 .002∗∗

X44 −3.99 0.55 −7.21 .000∗∗

X55 −0.53 0.55 −0.96 .358

X12 −0.11 0.75 −0.14 .890

X13 0.21 0.75 0.28 .789

X14 −0.72 0.75 −0.96 .359

X15 1.53 0.75 2.04 .066

X23 −1.29 0.75 −1.72 .113

X24 1.53 0.75 2.04 .066

X25 −0.72 0.75 −0.96 .359

X34 11.22 0.75 1.62 .133

X35 0.82 0.75 1.09 .299

X45 −0.11 0.75 −0.14 .890

Note: ∗Significant at 5%-level, ∗∗Significant at 1%-level.

Table 9: Analysis of variance for the quadratic model.

Source DFa SSb MSc F P

Regression 20 1448.98 72.449 8.04 .001∗

Linear 5 502.68 100.535 11.15 .001∗

Square 5 792.43 158.485 17.58 .000∗

Interaction 10 153.88 15.388 1.71

Residual Error 11 99.16 9.015

Lack-of-Fit 6 90.89 15.148 9.15

Pure Error 5 8.27 1.655

Total 31 1639.91

Note: Coefficient of correlation (R) = 0.968; Coefficient of determination
(R2) = 0.936; adjusted R2 = 0.82. ∗Significant at 1%-level; ∗Degree of
freedom; bSum of squares; cMean square.

production of antimicrobial active components. The optimal
medium volume in the flask and the rotary speed were
around 90 mL and 100 rpm, respectively. Our study revealed
that rotary speeds, medium volume in the flask are related
to the dissolved oxygen (DO) in shaken flasks [1]. A proper
DO level was beneficial to antibiotic production, which is
in agreement with those obtained in a 5-L fermentor. Lai
et al. [15] found that the shear effect on cell morphology
such as mycelium growth or pellet formation was found
closely influenced by the DO level and antibiotic produc-
tion was maximized under suboptimal conditions for cell
growth.

The analysis of significance of each coefficient of the
quadratic regression model indicated that initial pH and
temperature also have a significant effect on antimicrobial
activity of strain Hhs.015T. It could be observed that the
antimicrobial activity increased upon increasing the initial
pH from 2.0 to 7.0, but any further increase of pH resulted
in decreased production of antimicrobial active components
(Figures 3(a) and 3(b)). Therefore, the optimal primary
pH was around 7.0. Similarly, the optimal temperature
was around 25◦C, lower or higher temperatures reduced
the production of compounds with antimicrobial activity
(Figures 3(c), 3(e), and 3(f)). The results suggested that
the broth pH could play a crucial role in the production
of secondary metabolites; this finding is in good agreement
with previous studies using for example Xenorhabdus species
[23, 25, 26]. The authors suggested as possible reason that
the key enzymes essential for synthesis of antibiotics become
inactive at suboptimal pH-values.

5. Conclusions

From the present study, the authors conclude that apple
pomace and rapeseed meal were identified as the most
suitable medium components for low-cost production of
antimicrobial compounds by strain Hhs.015T. This is the first
report about the fermentation of Saccharothrix actinomycete
using apple pomace as the main medium component. Statis-
tical optimization methods for fermentation process could
overcome the limitations of classical empirical methods
and proved to be a powerful tool for the optimization of
conditions of production of antibiotics by strain Hhs.015T.
The optimization of the fermentation process resulted not
only in a 91.5% reduction of the costs of raw material
compared to the conventional medium but also in a 20%
higher antimicrobial activity. Furthermore, the informa-
tion obtained is considered fundamental and useful for
developing a cultivation process for efficient production of
antibiotics on a large scale.
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