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Abstract

The data related to many medical, environmental and ecological variables are often mea-

sured in terms of angles wherein its range is defined in [0,π). This type of data is referred to

as axial or half circular data. Modeling based on half circular data has not received its due

share of attention in statistical literature. In this paper, we introduce a new half circular distri-

bution based on inverse stereographic projection technique on modified Burr−III distribution,

called the half circular modified Burr−III (hcMB−III) distribution. The basic properties of the

proposed distribution are derived. It is common observation that while estimating the param-

eters of a model, one usually adopts maximum likelihood estimation method as the starting

point. In this paper, we consider seven frequentist methods of estimation, besides using

maximum likelihood method for estimating the parameters of the hcMB−III distribution.

Monte Carlo simulations are performed for investigating the performances of the considered

methods in terms of their biases and mean square errors using small, medium and large

sample sizes. Finally, one data set related to posterior corneal curvature of the eyes of 23

patients, is analyzed to check potentiality of the newly proposed model.

Introduction

Circular data analysis is a specific statistical branch that lies somewhere between linear data

analysis and spherical data analysis. Circular or directional data is used for measuring observa-

tions arising in the fields of meteorology, biology, medical sciences etc. Circular data is mea-

sured in degrees and radians. It can also be considered as a point on a circle of unit radius, or a

unit vector in a plane. For better comprehension of circular data, it can be regarded as being

distributed on the circumference of a unit circle. Circular distributions are of great significance

in modeling of cross-bedding data [1], studying paleo-currents [2] measuring wind directions

[3], Analysis of time patterns in crime incidence [4], analyzing mother’s day celebrations [5]

among various fields. Other significant reviews on circular distributions with their properties

can be found in [6–13].

Developing a probability density function for angles has proven to be a challenging assign-

ment for statistician and practitioners. Numerous useful circular models possibly generated by
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a variety of mechanisms from known probability distributions on the real line or on the plane.

A few common methods include:(1) By wrapping a linear distribution around the unit circle

(2) through characterizing properties such as maximum entropy (3) an offset method (4) a ste-

reographic projection method that identifies points on the real line with those on the circle

circumference.

None of these methods and models concentrate on the semi-circular or the axial data.

Sometimes the angular data are given as modulo π. Some examples are as follows: (i) the long

axis of particles in sediments or the optical axis of a crystal (rather than a direction) (ii) a sea

turtle example, where a sea turtle appears from the ocean in quest of a nesting site on dry land

(iii) given the angles of initial heading and departure, to trace the debris of aircraft lost prob-

lem, semi-circular models are essentially. Thus, we do not require full circular model in such

data and is noted by [14], that highlighted this issue and provided some methodology for con-

structing distributions suitable for modeling these types of data.

There has been little development in the area of half/semi circular distribution. A few more

examples of semi-circular data is available in [15]. [16] investigated the semi-circular normal

distribution, [17] derived a family of the semi-circular Laplace distributions for modeling

semi-circular data by simple projection. [14] constructed some half-circular distributions by

applying inverse stereographic projection. Other examples of semi-circular distributions that

are generated by inverse stereographic projection can be seen in [18–30].

Motivated by this rationale, In this paper, our objective is to obtain a new distribution,

called the half-circular Modified Burr−III distribution (hcMB−III) wherein observations lie on

a half circle, i.e., in the range [0, π) using the inverse stereographic projection and to derive

some of its basic mathematical properties. Next we evaluate and study the behavior of eight dif-

ferent classical estimators for the unknown parameters of the proposed hcMB−III distribution

namely, maximum likelihood estimators (MLEs), least-squares estimators (LSEs), weighted

least-squares estimators (WLSEs), maximum product of spacings estimators (MPSEs),

Cramèr-Von Mises estimators (CVMEs), percentile estimators (PCEs), Anderson-Darling

estimators (ADEs) and Right-tail Anderson-Darling estimators (RTADEs). As it is tedious to

compare the performances of these estimators theoretically, we conduct extensive simulations

for assessing the performances of the said estimators, in terms of their bias and mean squared

error(MSE). The novelty of this study is that so far no study has been carried out on hcMB−III

distribution or any other half circular distribution using all these estimation methods. A few of

the above mentioned researches focus on parameter estimation for derived semi-circular dis-

tributions. The focus was primarily given on derivation of trigonometric moments and prop-

erties related to trigonometric moments.

The hcMB−III has density that is symmetrical, negatively and positively skewed. The hazard

rate of hcMB−III is bathtub and increasing. The flexible nature of the hazard rate function of

the hcMB−III distribution will help to serve as the best alternative model to the current models

for modeling half-circular real data encountered in diverse fields of life.

The contents of this article are structured as follows. In Section 2, we introduce the hcMB

−III distribution and present its cumulative distribution and probability density function

(pdf). In the same section, we also present its hazard rate function, sub models of hcM−BIII

distribution and uni modality will also be discussed briefly. In Section 3, we discuss various

distributional properties like trigonometric moments, characteristics function, skewness and

kurtosis of the proposed model. Section 4 demonstrates eight classical methods of estimation

to estimate hcMB−III parameters. In Section 5, we perform simulation studies to see the per-

formance of maximum likelihood, maximum product spacings, least squares, weighted least

squares, percentiles, Cramèr-von-Mises, Anderson-Darling and Right tailed Anderson-Dar-

ling. In Section 6, the usefulness of the hcMB−III distribution is illustrated by using the data of
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posterior segment of the eyes of 23 patients. Finally, some concluding remarks are given in

Section 7.

The hcMB−III distribution

Several lifetime models have recently been developed and utilized to model data in a variety of

fields. A system of twelve kinds of distribution functions based on generating the Pearson dif-

ferential equation was developed by [31]. The function of density has a variety of forms that

are applicable to a wide range of applications [32]. Some recent developments in Burr family

of distributions are Burr X Pareto distribution [33], Weibull Burr XII distribution [34], Burr

III-Marshal Olkin-G family [35], Unit generalized log Burr XII distribution [36], Unit Burr-

XII distribution [37] and Burr XII-moment exponential distribution [38].

The Burr XII distribution is a frequently used variant of the Burr distribution system. Burr

−III is the inverse distribution of Burr−XII. For the purpose of statistical modeling, the Burr

III distribution has been used in a variety of contexts. For applications of this distribution in

various fields one can refer to [39–45]. The cumulative distribution function (cdf) of Burr−III

distribution is

FðXÞ ¼ f1þ x� bg� a; x; a;b > 0: ð1Þ

where α, β are the shape parameters.

In recent past, a new generalization of the Burr−III distribution, called the modified Burr

III (MB−III) distribution was proposed by [46]. The cumulative distribution function (cdf) of

MB−III distribution is given by

FðXÞ ¼ f1þ gx� bg�
a
g; x; a;b; g > 0: ð2Þ

where α, β, γ are the shape parameters of MB−III distribution.

Modified Burr−III distribution has attracted many researchers due to its tractable proper-

ties. [47] studied the transmuted modified Burr III. Characterization of transmuted modified

Burr III distribution was done by [48]. [49] developed MBIII-G Family of distributions based

on odds ratio of any baseline distribution. The application of Modified Burr III distribution in

reliability analysis was done by [50]. [51] originated the McDonald modified Burr–III. [52]

developed Cubic rank transmuted modified Burr III-Pareto. Moreover, [53] came up with

Unit MB−III distribution. MB−III is a sub model of modified Dagum distribution by [54].

[55] proposed Extended Marshall-Olkin Burr−III distribution.

The Half circular modified burr−III (hcMB−III) distribution can be obtained by applying a

transformation θ = 2tan−1(x), θ �(0, π). Let m(θ) = tan (θ/2). By using inverse stereographic

projection, the pdf of the hcMB−III distribution is given by g(θ) = |m0(θ)|f[m(θ)].

we have

j m0

ðyÞ j¼j
1

2
sec2ðy=2Þ j¼

1

1þ cosðyÞ

and

f ðmðyÞÞ ¼ ab tan
y

2

� �� �� b� 1

1þ g tan
y

2

� �� �� b
( )� ag� 1
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Consequently, the pdf of hcMB−III (α, β, γ) is given by

gðyÞ ¼
ab

2
sec2 y

2

� �

tan
y

2

� �� �� b� 1

1þ g tan
y

2

� �� �� b
( )� ag� 1

; 0 < y < p: ð3Þ

The cdf of hcMB−III distribution is given as

GðyÞ ¼ PðY � yÞ ¼ Pð2tan� 1X � yÞ

¼ PðX � 2tan� 1ðy=2ÞÞ ¼

Ztanð
y=2Þ

0

FðxÞdx

GðyÞ ¼ 1þ g tan
y

2

� �� �� b
( )� ag

ð4Þ

Since we do not decide shapes of the density and hazard rate function analytically, we plot

them based on some selected parameters value to see their possible shapes. The shape of hcMB

−III distribution for various values of (α, β, γ) are presented in Figs 1 and 2 demonstrates cir-

cular presentation of hcMB−III distribution and it’s cumulative distribution function. Differ-

ent values of parameters show the flexibility of hcMB−III distribution such as negatively

Fig 1. Linear presentation of hcMB−III density.

https://doi.org/10.1371/journal.pone.0261901.g001

Fig 2. Circular presentation of hcMB−III distribution with its cdf.

https://doi.org/10.1371/journal.pone.0261901.g002
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skewed, symmetric and positively skewed. Therefore, the hcMB−III distribution is quite flexi-

ble and can be applied to various data sets.

Consider zy ¼ 1þ g tan y

2

� �� �� b
and the hazard function of hcMB−III distribution is defined

as

hðyÞ ¼
absec2 y

2

� �
tan y

2

� �� �� b� 1z
� ag� 1

y

2 1 � z
� ag

y

� � ð5Þ

The hazard function of hcMB−III distribution for some parametric values are given below

in Fig 3 shows that failure rate function can be increasing and bathtub shaped. Therefore,

hcMB−III distribution can be applied to various data sets.

Three sub models of modified burr III distribution were listed by [46]. Hence, hcMB−III

also have three sub models named as hc-Generalized Inverse Weibull (hc-GIW), hc-Burr III

distribution and hc-Log Logistic (hc-LL) distribution. The cdfs of sub models of proposed

model are listed in Table 1 along with their hazard functions.

Mode of hcMB−III distribution is derived by taking log of the probability density of

hcMB−III distribution.

M ¼ log
�
ab

2
sec2 y

2

� �

tan
y

2

� �� �� b� 1

1þ g tan
y

2

� �� �� b
( )� ag� 1

ð6Þ

Fig 3. Plot of the hcMB−III hazard rate.

https://doi.org/10.1371/journal.pone.0261901.g003

Table 1. Cdfs and hazard functions of the sub models of hcMB−III distribution.

Model F(θ) h(θ)

hc-Burr III f1þ tan y

2

� �� �� b
g
� a

ab

1þcosðyÞ :
tan y

2ð Þf g
� ðbþ1Þ

1þ tan y
2ð Þð Þ

� b
� �� 1

1þ tan y
2ð Þð Þ

� b
� �a

� 1

hc-GIW
exp � g a tan y

2

� �� �� 1
� �b

� �
gbab tan y

2ð Þf g
� b� 1

exp � g a tan y
2ð Þð Þ

� 1
� �� b

h i

ð1þcosðyÞÞ 1� exp � g a tan y
2ð Þð Þ

� 1
� �� b

h in o

hc-Log Logistic 1

1þab tan y
2ð Þf g

� b ba� 2b tan y
2ð Þf g

� 1

ð1þcosðyÞÞ 1þab tan y
2ð Þð Þ

� b
� �

https://doi.org/10.1371/journal.pone.0261901.t001
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and to find mode put

@M
@y
¼ � bþ sec yð Þð Þcosec yð Þ þ

bðaþ gÞcosecðyÞ

gþ tan
y

2

� �� �b

2

6
6
6
4

3

7
7
7
5
¼ 0 ð7Þ

Since it is apparent that the equation has not an explicit solution in the general case. Conse-

quently, we discuss it empirically:

1. 8 γ distribution is bimodal as α, β! 0.

2. for 0.82< β< 1.32 distribution is uni modal and bimodal other wise as α, γ! 0.

3. for α< 79 distribution is uni modal and bi modal other wise as β, γ! 0.

Characteristics function and properties related to trigonometric moments

of hcMB−III distribution

The characteristic function of a half/semi-circular model with pdf g(θ) is defined as

�ðyÞ ¼ E½eipy� ¼
Z p

0

eipygðyÞdy; p 2 Z ð8Þ

�ðyÞ ¼
ab

2

Zp

0

eipysec2 y

2

� �

tan
y

2

� �� �� b� 1

1þ g tan
y

2

� �� �� b
( )� ag� 1

dy ð9Þ

The characteristic function defined above also called the pth trigonometric moment. Since

θ and θ + 2π represents the same direction so it is necessary to restrict p to integer value.

Characteristics function of hcMB−III distribution is presented graphically in Fig 4 for α = 1.5,

β = 3.5, γ = 3.5 is as follows:

The trigonometric moments of the distribution are given by ϕ; ±1, ±2, ±3, � � �, where

�p ¼ ap þ ibp ð10Þ

and

ap ¼ E½cosðpyÞ� ¼
Z p

0

cosðpyÞgðyÞdy ð11Þ

and

bp ¼ E½sinðpyÞ� ¼
Z p

0

sinðpyÞgðyÞdy ð12Þ

being the pth order cosine and sine moments of the random angle θ, respectively and are

required to study distribution characteristics.

and

α−p = E[cos(−pθ)] = E[cos(pθ)] = αp

β−p = E[sin(−pθ)] = −E[sin(pθ)] = −βp

jαpj� 1, jβpj� 1.
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Putting p = 1, we get 1st order trigonometric moments as

a1 ¼
ab

2

Z p

0

cos yð Þsec2
y

2

� �

tan
y

2

� �� �� b� 1

1þ g tan
y

2

� �� �� b
( )� ag� 1

dy ð13Þ

b1 ¼
ab

2

Z p

0

sin yð Þsec2 y

2

� �

tan
y

2

� �� �� b� 1

1þ g tan
y

2

� �� �� b
( )� ag� 1

dy ð14Þ

The direction μ is called the mean direction; the mean direction of hcMB−III distribution is

defined as

m ¼ tan� 1
b1

a1

� �

ð15Þ

α1 and β1 are defined in Eqs (13) and (14). The mean resultant length (MRL) of hcMB−III dis-

tribution is defined as and denoted by ρ

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
1
þ b

2

1

q
ð16Þ

α1 and β1 are defined above and mean resultant length (MRL) is invariant under rotation.

A useful measure of dispersion on the circle is the circular variance. Circular variance of

hcMB−III distribution is defined as

u ¼ 1 � r ¼ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
1
þ b

2

1

q
ð17Þ

Where 0� υ� 1, ρ denotes the MRL and α1 and β1 are defined above.

Fig 4. Graphical display of real and imaginary parts of characteristics function of hcMB−III distribution.

https://doi.org/10.1371/journal.pone.0261901.g004
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Circular standard deviation of hcMB-III distribution is defined as

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� logða2
1
þ b

2

1
Þ

q

ð18Þ

α1 and β1 are defined above and circular standard deviation measures the average direction

from mean direction.

Circular skewness of hcMB-III distribution is defined as

g1 ¼
b
�

2

ð1 � rÞ
3
2

ð19Þ

b
�

2
is 2nd trigonometric moment about mean and circular kurtosis measures the kurtosis of cir-

cular distribution.

Circular kurtosis of hcMB-III distribution is defined as

g2 ¼
a�

2
� r4

ð1 � rÞ
2

ð20Þ

a�
2

is 2nd trigonometric moment about mean and circular kurtosis measures the kurtosis of cir-

cular distribution.

Using expressions in [9, 56] and the first two trigonometric moments, the characteristics

of stereographic hcMB−III distribution presented above are calculated numerically and

are presented in the S1 Appendix, by using Mathematica 12.0 for some parametric values of

hcMB−III distribution. Following results are obtained.

(i) Circular measures for fixed α and β increase in γ the mean direction becomes positive.The

resultant length is close to 0.5. Values of skewness and kurtosis show that the hcMB− III

distribution is positively skewed and platykurtic.

(ii) Circular measures for fixed α and γ increase in β the mean direction constant (zero). The

resultant length rapidly increases as β increases. Values of skewness and Kurtosis show that

the hcMB− III distribution is symmetric and platykurtic.

(iii) Circular measures for fixed β and γ increase in α the mean direction decreases. The resul-

tant length is close to 1. Values of skewness and kurtosis shows that the hcMB− III distribu-

tion is positively skewed and platykurtic.

Parameter estimation of hcMB−III distribution

In this section, eight different estimation methods are used to estimate the unknown parame-

ters of the hcMB− distribution, such as the maximum likelihood (ML), ordinary least square

(OLS), weighted least square (WLS), percentile (PC), maximum product spacing (MPS), Cra-

mer-von-Mises (CVM), Anderson-Darling (AD) and Right-tail Anderson Darling (RTAD).

we compare their performance on the basis of simulated samples from the hcMB−III distribu-

tion. The details are as followings.

Maximum likelihood estimates

The method of maximum likelihood is the most frequently used method of parameter estima-

tion. The method’s success stems no doubt from its many desirable properties including con-

sistency, asymptotic efficiency, invariance and simply its intuitive appeal. The log-likelihood
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function for the vector of parameters z = (α, β, γ) of the hcMB−III distribution is

‘ zð Þ ¼ n log aþ n logb � n log 2þ 2
Xn

i¼1

log sec
yi
2

� �� �

þ

� b � 1ð Þ
Xn

i¼1

log tan
yi
2

� �� �

þ
� a

g
� 1

� �
Xn

i¼1

1þ g tan
yi
2

� �� �� b
" # ð21Þ

The resulting partial derivatives of the Eq (21) are:

@L
@a
¼
n
a
�

1

g

Xn

i¼1

log 1þ g tan
yi
2

� �� �� b
" #

ð22Þ

@L
@b
¼
n
b
�
Xn

i¼1

log tan
yi
2

� �� �

þ ðaþ gÞ
Xn

i¼1

tan yi
2

� �� �� b
log tan yi

2

� �� �

1þ g tan yi
2

� �� �� b ð23Þ

and

@L
@g
¼
a

g2

Xn

i¼1

log 1þ g tan
yi
2

� �� �� b
" #

þ
� a

g
� 1

� �
Xn

i¼1

tan yi
2

� �� �� b

1þ g tan yi
2

� �� �� b ð24Þ

The MLEs of unknown parameters cannot be derived analytically from the above normal

equations because of convoluted non-linear expressions. Therefore, the iterative methods can

be used to obtain the estimated values of the unknown α, β and γ simultaneously.

Under some regularity conditions for unknown parameters in the interior of parameter

space but not on the boundaries, the asymptotic distribution of
ffiffiffi
n
p

ĉ � c
� �

, where ψ = (α, β,

γ)t, follows multivariate normal with mean vector zero and variance-covariance matrix is

K−1(ψ) i.e.
ffiffiffi
n
p

ĉ � c
� �

� N3 0;K � 1 cð Þð Þ where K(ψ) = E[J(ψ)]. It can be noted that K cð Þ ¼

lim
n!1

n� 1J cð Þ is the unit information matrix. In fact, 100(1 − λ)% asymptotic confidence inter-

val (ACI) for each unknown parameter can be obtained by using ACIi ¼ ĉ � zl
2

ffiffiffiffiffiffiffiffi
Ĵcici

p
where

Ĵcici represents the (i, i) diagonal element of J � 1 ĉ
� �

for i = 1, 2, 3 and zl
2

is the quantile 1 � l

2

of the standard normal distribution.

Ordinary and weighted least square estimates

The least square estimators (LSE) and weighted least square estimators (WLSE) were proposed

by [57] to estimate the parameters of Beta distributions. Suppose F(x(i))denotes the distribu-

tion function of the ordered random variables X(1) < X(2) <. . .< X(n) be ordered sample of size

n from hcMB-III distribution. Then, the expectation of the empirical cumulative distribution

function is defined as

E F xðiÞ
� �h i

¼
i

nþ 1
; i ¼ 1; 2; . . . ; n:
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The least square estimates (LSEs) say, âLSE, b̂LSE, ĝLSE, of α, β and γ are obtained by minimiz-

ing

QLSE zð Þ ¼
Xn

i¼1

F xðiÞ
� �

�
i

nþ 1

� �2

ð25Þ

The variance of the empirical cumulative distribution function is defined as

V FðxðiÞÞ
h i

¼
iðn � iþ 1Þ

ðnþ 2Þðnþ 1Þ
2
; i ¼ 1; 2; . . . ; n:

Thus, the weighted least square estimates (WLSEs) say, âMPS, b̂MPS, ĝMPS, of α,β and γ are

obtained by minimizing by minimizing

QWLSE zð Þ ¼
Xn

i¼1

F xðiÞ
� �

� i
nþ1

� �2

V½FðxðiÞÞ�
: ð26Þ

Percentile estimates (PCE)

If the data come from a distribution function which has a closed form, then we can estimate

the unknown parameters by fitting straight line to the theoretical points obtained from the dis-

tribution function and the sample percentile points. This method was originally suggested by

[58, 59] and it has been used for weibull distribution and for generalized exponential distribu-

tion. In this paper, we apply the same technique for the hcMB−III(α, β, γ) distribution.

Let X(i) be the ith order statistic, i.e X(1) < X(2) <. . .< X(n). If pi denotes some estimate of F
(x(i)) then the percentiles estimates, âPC, b̂PC, ĝPC of α, β and γ can be obtained by minimizing

PC zð Þ ¼
Xn

i¼1

xðiÞ � g
1
b ðpiÞ

�
g
a � 1

n o� 1
b

� �2

; i ¼ 1; 2; . . . ; n: ð27Þ

Several estimators of pi can be used. In this paper, we consider pi = i
nþ1

.

Maximum product of spacings estimates (MPSE)

[60, 61] introduced the maximum product of spacings (MPS) method as an alternative to MLE

for the estimation of parameters of continuous uni-variate distributions. [62] independently

developed the same method as an approximation for the Kullback-Leibler measure of informa-

tion. This method is constructed on a clue that differences (spacings) between the values of the

cdf at consecutive data points should be identically distributed. [60] proved that this method is

as efficient as the MLEs and consistent under more general conditions. The geometric mean of

the differences is given as

G:M ¼

ffiffiffiffiffiffiffiffiffiffiffi
Ynþ1

i¼1

Di
nþ1

s

;

where, the difference Di is defined as

Di ¼

ZxðiÞ

xði� 1Þ

f ðxÞdx; i ¼ 1; 2; . . . ; nþ 1: ð28Þ
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The maximum product spacing (MPS) estimates, âMPS, b̂MPS, ĝMPS, of α, β and γ are obtained

by maximizing the geometric mean of the differences. Incorporating cdf of hcMB−III distribu-

tion in Eq (28) and taking logarithm of the above expression, we have

MPS zð Þ ¼
1

nþ 1

Xnþ1

i¼1

log ½FðxðiÞÞ � Fðxði� 1ÞÞ�; i ¼ 1; 2; . . . ; nþ 1: ð29Þ

where, F(x(0)) = 0 and F(x(n+1)) = 1. By maximizing MPS(z), the MPSEs âMPS, b̂MPS, ĝMPS are

attained.

Minimum distances estimators

This section presents three estimation methods for α, β and γ based on the minimization of

the goodness−of−fit statistics. This class of statistics is based on the difference between the esti-

mate of the cumulative distribution function and the empirical distribution function [63].

Cramér-von-Mises estimates (CVME). To motivate our choice of Cramér-von-Mises

type minimum distance estimators, [64] provided empirical evidence that the bias of the esti-

mator is smaller than the other minimum distance estimators. Thus, the Cramér-von-Mises

estimates, âCVM, b̂CVM, ĝCVM, of α, β and γ are obtained by minimizing

CVM zð Þ ¼
1

12n
þ
Xn

i¼1

F xðiÞ
� �

�
2i � 1

2n

� �2

: ð30Þ

Anderson-Darling estimates(ADE). The Anderson-Darling(AD) test was developed by

[65] as an alternative to other statistical tests for detecting sample distributions departure from

normality. It is interesting to note that the Anderson-Darling test converges so quickly towards

the asymptote [65]. The Anderson-Darling estimates âAD, b̂AD, ĝAD, of α, β and γ are obtained

by minimizing the following function

AD zð Þ ¼ � n �
Xn

i¼1

2i � 1

n
logFðxðiÞÞ þ log 1 � Fðxðnþ1� iÞÞ

n oh i
: ð31Þ

Right-tail Anderson-Darling estimates (RTAD). The Right-tail Anderson-Darling

(RTAD) estimates of âRTAD, b̂RTAD, ĝRTAD, of α, β and γ are obtained by minimizing the follow-

ing function

RTAD zð Þ ¼
n
2
� 2
Xn

i¼1

F xðiÞ
� �

�
1

n

Xn

i¼1

2n � 1ð Þlog�F xðnþ1� iÞ

� �n o

ð32Þ

Simulation study for the comparison of different estimation

methods

This section presents simulation studies by using the hcMB−III distribution to assess the per-

formance of the above estimators discussed in the previous section and obtained numerical

and graphical results. We generate N = 10, 000 samples of the size n = (25, 50, 75, 100) from

hcMB−III distribution with parameter settings (α, β, γ) = {(2, 3, 4), (1, 3.5, 1), (4, 3, 4)}. The

random numbers generation is obtained by its quantile function. In this simulation study, we

calculate the empirical mean, bias and mean square errors (MSEs) of all estimators to compare

PLOS ONE hcMB−III dist, application with diff estimation methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0261901 May 17, 2022 11 / 21

https://doi.org/10.1371/journal.pone.0261901


in the terms of their biases and MSEs with varying sample size. It is noticed that 10,000 itera-

tions are sufficiently large to have stable results. The empirical bias and MSE are calculated by

(for t = α, β, γ)

dBiast ¼
1

N

XN

i¼1

t̂ i � t
� �

and

dMSEt ¼
1

N

XN

i¼1

ðt̂ i � tÞ
2

respectively. All results related to estimation were obtained by using software Mathematica

12.0. The results of simulations are shown in Fig 5 in which comparison of MSE on the basis of

different sample size and estimation is presented for different values of (α, β, γ). It is also

worth noting that MSE is reducing for large sample size. MPSE has smallest MSE for all

parameters setting as compared to other estimation methods used for comparison. LSE and

Fig 5. MSE for different sample sizes and estimation methods for different parameters values of (α, β, γ).

https://doi.org/10.1371/journal.pone.0261901.g005
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RTADE also have high MSE for all parameters. PCE has high MSE for β=3 and 3.5. Most suit-

able methods are MLE, ADE, PCE and MPSE for hcMB−III distribution.

Simulation results for hcMB−III distribution in terms of mean, bias, mean square error and

standard error is given to compare performance of different estimation methods for different

parameter settings S2–S4 Appendices.

Application

In this section, we consider the data obtained from the images of the posterior segment of the

eyes of 23 patients. This data set has also been analyzed by [22, 27, 28, 66]. The data is also

available in S1 Data. The half circular variable of our interest is the angle which measures the

posterior corneal curvature defined below. Fig 6 presents an image of the posterior segment,

where O is the intersection of the geometrical axis of the eye (horizontal line) with the line

made between the nasal and temporal scleral spurs (vertical line). The circular plot is given in

Fig 7, where it is obvious that the angles are concentrated in the first and second quadrant with

range 1.76, which confirms that the data is a random sample from a half circular distribution,

where θ 2 [0, π).

We compute MLEs and their standard errors (S.Es) in parenthesis for hcMB−III distribu-

tion, half-circular gamma distribution, half-circular Burr-XII distribution and sub models of

hcMB −III distribution are given in Table 2. For the selection of the best fit model, we compute

the estimate of likelihood ratio statistic � 2 ‘ðŶÞ, AIC, CAIC, BIC, Anderson-Darling (A�),

Cràmer-von-Mises (A�) and Kolmogorov- Smirnove (K-S) statistic along with its p-value for

all competing models. All models are evaluated at MLE by using FitdistrPlus, AdequacyMo-

del, Pracma packages in R and the results are presented in Table 3. Among all other competi-

tive models, it is noted that the hcMB−III distribution has the smallest values of � 2 ‘ðŶÞ,

AIC, BIC and CAIC. It is also noted that hcMB−III distribution has lowest value of (A�), (W�)

and K-S (p-value) which indicates that it best fits the given eye data set than other half-circular

distribution being used for comparison.

Fig 8 shows the fitted models vs hcMB−III distribution along with cdfs of all competing

models. We fitted the hcMB−III distribution using the eight estimation methods. The parame-

ter estimates for eye data set are reported in Table 4. Descriptive statistics for different esti-

mated values of hcMB−III distribution (α, β, γ) for all estimation methods are given in Table 5

and we observe that CVME has smallest variance among all others while MPSE has smallest

value of skewness. A graphical presentation of fitting above mentioned estimation methods is

Fig 6. Images of posterior corneal curvature measurement.

https://doi.org/10.1371/journal.pone.0261901.g006
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shown in Fig 9. It is evident from the tables and figures that the hcMB−III distribution pro-

vides better fit as compared to other existing models considered here.

To check the shape of the hazard function of the data set, we have used TTT (Total time on

test) plot proposed by [67] in Fig 10 indicates that the data set has increasing hazard rate. Also

see [68] for more details about parameter estimation and TTT plot. We can perceive that the

hcMB−III distribution is best fitted to empirical data Fig 11

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

270

18
0

90

0

circular plot

Fig 7. Circular plot of eye data.

https://doi.org/10.1371/journal.pone.0261901.g007

Table 2. ML estimates and S.E (in parentheses) for eye data.

Distribution ML estimates and S.E (in parenthesis)

hc−MBIII (α, β, γ) 2.698357 (2.199659) 6.649816 (2.002855) 6.286918 (7.688339)

hc−BurrIII (α, β) 1.000473 (0.2294769) 4.286727 (0.8573875) ——–

hc−GIW (α, β, γ) 0.823392 (52.211295) 1.702156 (0.2366994) 0.910867 (98.313168)

hc−LL(α, β) 1.064250 (0.084368) 4.384939 (0.80058078) ——–

hc−Gamma(α, β) 5.7177171 (1.638393) 0.193358 (0.057909) ——-

hc−Burr XII(c, k) 4.379365 (0.890822) 0.947472 (0.220552) ——–

https://doi.org/10.1371/journal.pone.0261901.t002
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Conclusions

Circular data is used in measuring observations arising in the different fields of science. Due to

the wide range of applications for half-circular data, it is still worth exploring it further. In this

paper, a new half circular distribution is proposed based on an inverse stereographic projec-

tion technique applied on the distribution of MB−III. Various properties of suggested distribu-

tion are derived. The parameter estimates are obtained by employing the eight estimation

Table 3. � 2 lðŶÞ, AIC, CAIC, BIC, A�, w�, K-S (p-values) for eye data.

Model � 2 lðŶÞ AIC CAIC BIC A� W� K-S (p-value)

hc-MBIII 19.23826 25.23826 26.50142 28.64474 0.4451791 0.067782 0.127358 (0.849687)

hc-Burr III 22.74478 26.74478 27.34478 29.01577 0.8152383 0.11913 0.183918(0.417999)

hc-GIW 37.54608 43.54607 44.80923 46.95255 2.42950 0.41253 0.27321(0.064537)

hc-Log logistic 22.14424 26.14425 26.74425 28.41524 0.74076 0.10753 0.116541(0.913587)

hc-Gamma 22.17462 26.17461 26.77461 28.4456 0.8166877 0.127228 0.169892(0.520301)

hc-Burr-XII 22.69012 26.69013 27.29013 28.96112 0.818624 0.119508 0.16551(0.55440)

https://doi.org/10.1371/journal.pone.0261901.t003

Fig 8. The fitted pdf of hcMB−III model and other models and cdf of hcMB−III model on eye data. A:Fitted densities of hcMB−III distribution and

other models on eye data. B:Estimated cdfs of hcMB−III distribution and other models on eye data.

https://doi.org/10.1371/journal.pone.0261901.g008

Table 4. Parameters estimation through different estimation methods for eye data.

α β γ

ADE 2.044690 8.364370 2.703020

RTADE 1.353820 7.036390 0.790281

CVME 1.595240 7.927040 1.407220

LSE 1.560780 7.734630 1.342880

MLE 2.697290 6.649040 6.283080

PCE 5.726210 7.437220 19.17870

MPSE 2.507843 5.818691 5.982744

WLSE 1.632090 7.915530 1.513830

https://doi.org/10.1371/journal.pone.0261901.t004
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Table 5. Descriptive statistics for different parameters estimates methods.

ADE RTADE CVME LSE MLE PCE MPSE WLSE

Mean Direction (μ) -1.5111 -1.49429 -1.5042 -1.5037 -1.5491 -1.5429 -1.4953 -1.5048

Variance (υ) 0.027 0.02248 0.02218 0.0229 0.0697 0.0878 0.1266 0.023

Trigonometric Moment (α1) -0.058 -0.07474 -0.065 -0.0655 -0.0201 -0.0255 -0.0659 -0.0644

Trigonometric Moment (α2) -0.8906 -0.90337 -0.9067 -0.9041 -0.7513 -0.6947 -0.57 -0.904

Trigonometric Moment (β1) 0.97127 0.97465 0.97565 0.9749 0.93008 0.9119 0.8709 0.9749

Trigonometric Moment (β2) -0.1103 -0.13641 -0.121 -0.1213 -0.0602 -0.087 -0.0453 -0.1199

Resultant length (ρ) 0.973 0.97752 0.97782 0.9771 0.9303 0.9122 0.8734 0.9771

Skewness (γ1) 202.278 270.98 276.913 263.7 40.9367 26.855 12.657 262.3

Kurtosis (γ2) 1.50596 1.09873 1.20532 1.1657 0.87288 0.784 -0.7168 1.2121

https://doi.org/10.1371/journal.pone.0261901.t005

Fig 9. A:Fitting of hcMB−III distribution with different Estimation Methods. B: Behavior of selected estimation methods for hcMB−III distribution.

https://doi.org/10.1371/journal.pone.0261901.g009

Fig 10. TTT plot for eye data set.

https://doi.org/10.1371/journal.pone.0261901.g010
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methods. The estimation methods were compared on the basis of their Means, Average biases,

MSEs and Standard errors for different parameters settings. We perform simulation studies on

the basis of the graphical as well as numerical results to see the performances of the estimates

of hcMB− III distribution. Different properties such as mean direction, variance, trigonomet-

ric moments, resultant length, skewness and kurtosis are calculated for all eight estimation

methods. The suggested model best fits the eye data of 23 patients’ posterior corneal curvature

when compared to existing semi-circular models and sub models of hcMB− III distribution.

The potentiality of hcMB− III distribution illustrates that it is flexible, competitive and parsi-

monious. Thus, it should be included in the distribution theory to facilitate researchers and

practitioners dealing with angular data. Further, as perspective of future projects, we may

study some rigorous issues (i)Characterization of proposed model can be done by using differ-

ent methods (ii)Outliers detection. (iii)ℓ-axial half circular Modified Burr III can be studied.

(iv)Sub models of half circular distribution can be explored in detail. (v)Bayesian analysis can

be performed to study complexity of the proposed model. (vi)Bi-variate case of hcMB−III dis-

tribution may also be studied.

Supporting information

S1 Appendix. Table 6: Characteristics of hcMB−III distribution for different parameter

values.

(TIF)

S2 Appendix. Table 7: Mean, average bias, standard error and MSE for different estimation

methods for hcMB−III distribution (α, β,γ) = (2,3,4).

(TIF)

S3 Appendix. Table 8: Mean, average bias, standard error and MSE for different estimation

methods for hcMB−III distribution (α, β,γ) = (1, 3.5, 1).

(TIF)

Fig 11. Fitted pdf, cdf, qq and pp plots of the hcMB−III distribution for eye data.

https://doi.org/10.1371/journal.pone.0261901.g011
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S4 Appendix. Table 9: Mean, average bias, standard error and MSE for different estimation

methods for hcMB−III distribution (α, β, γ) = (4,3,4).

(TIF)

S1 Data. Excel file for eye data set used in data analysis.
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