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Abstract: While cell fusion demonstrates an important pathway during tissue development and
regeneration of distinct organs, this process can also contribute to pathophysiological phenotypes
during tumor progression. Hybrid cell formation after heterofusion between cancer cells and various
other cell types within the tumor microenvironment is observed in vitro and in vivo. In particular,
mesenchymal stroma/stem-like cells (MSC) perform diverse levels of communication with cancer
cells by exhibiting anti- and pro-tumorigenic effects. During these cellular interactions, MSC can
eventually fuse with cancer cells. Thereby, the newly generated disparate hybrid populations display
aneuploidy associated with chromosomal instability. Based upon a subsequent post-hybrid selection
process (PHSP), fused cancer cells can undergo apoptosis/necroptosis, senescence, dormancy, or a
proliferative state by acquisition of new properties. Consequently, PHSP-surviving hybrid cancer
cells demonstrate altered functionalities within the tumor tissue. This is accompanied by changes in
therapeutic responsiveness and a different metastatic behavior. Accordingly, enhanced tumor plasticity
interferes with successful therapeutic interventions and aggravates patient prognoses. The present
review article focusses on fusion of MSC with different human cancer cells, in particular breast cancer
populations and resulting characteristics of various cancer hybrid cells. Moreover, some mechanisms
of cancer cell fusion are discussed together with multiple PHSP pathways.

Keywords: cancer cell fusion; mesenchymal stroma/stem cells; tumor heterogeneity; aneuploidy;
post-hybrid selection process

1. Introduction

Cell fusion represents a physiological process that is required during development of certain tissues.
This includes the fusion of myoblasts to form multinucleated myocytes in muscle fibers during the
development of muscle tissue. Fusion of fetal trophoblasts occurs to evolve syncytiotrophoblasts during
the formation of placenta barrier and tissue [1,2]. These processes of homofusion as characterized by
the fusion of cells from the same population are also termed autofusion. Conversely, heterotypic fusion
or heterofusion describes hybrid formation of different cell types [3]. Fusion of different mononuclear
precursor cells provides an example for heterofusion contributing to osteoclast formation for the
maintenance, repair, and remodeling of bone tissue [4]. These normal development-associated fusion
processes are tightly regulated. Alternatively, the formation of hybrid cells can also occur spontaneously
by so called “accidental cell fusion”. This apparently unconstrained process is supported by transient
establishment of a fusion-permissive environment, including acidic pH, hypoxia, accumulation of
damage-associated molecular patterns, and membrane lipids destabilizing ions and peptides [5,6].

In addition to developmental properties, cell fusion is also involved in regenerative activities.
Following transplantation of bone marrow cells, including bone marrow-derived mesenchymal
stroma/stem-like cells (MSC) to appropriate tissues, cell fusion can be observed with skeletal muscle
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cells, cardiomyocytes, hepatocytes, and Purkinje cells [7]. While cell fusion of two somatic cells results
in tetraploidy, physiological processes with regenerative requirements can take advantage of tetraploid
cell populations with preferably mesenchymal origin. In particular, fusion processes can contribute to
regeneration of liver tissue [8].

Conversely, cell fusion can also display the basis for pathophysiological developments such
as cancer. Although fusion processes during neoplastic degeneration are considered rare events,
their actual frequency may be much higher according to postulated “hidden” fusions [9]. Whereas cell
fusion can generate aneuploidy, chromosomal instability, and DNA damage, these pathways cause
multiple genetic aberrations and potentially new or altered neoplastic development [10].

Cancer cell fusion is observed with distinct cell types, including leukocyte-tumor cell
fusions [11] or macrophage-tumor cell fusions. These include, e.g., lung cancer, gastric cancer,
brain metastases of melanoma, different tumors of the breast, and bone marrow-derived cells [2,12–16].
Another predominant fusion partner in tumor tissue is represented by MSC [17–19].

2. MSC Functionality and Tumor Interactions

Important functionalities of MSC in adult human tissues include repair mechanisms
and regenerative activities. MSC exhibit immune-modulatory capabilities, paracrine effects,
and antimicrobial functions during various physiological processes. These multiple functionalities
are based at least in part on the heterogeneity of MSC populations, although characteristics and
the biological role of this MSC diversity remain only partially understood. Primary MSC can be
derived from perivascular regions with distinct properties according to the various originating
adult organs and tissues whereby superior in vitro growth potential and regenerative capacity are
observed in MSC populations from neonatal materials such as placenta or umbilical cord [20].
According to this heterogeneity, MSC are characterized by a set of minimal criteria like in vitro plastic
adherence, migratory activity [21], differentiation along mesenchymal phenotypes, distinct surface
marker expression [22,23], and specific stem cell features such as self-renewal capacity. Other cell
types displaying closely related marker expression like fibroblasts and pericytes complicate
discrimination, although these cells represent a more maturated phenotype as compared to MSC.
Heterogeneous primary MSC are thus suggested to represent a mixture of different interdependent
stroma types [24], together with some subpopulations displaying stem-like characteristics. These enable
in vitro culture maintenance for a limited time as compared to constitutively proliferating MSC-like
cells representing a cell source with permanently reproducible properties [25,26].

Whereas invasive tumor growth promotes tissue damage, MSC are also recruited to the
pro-inflammatory environment of tumors to stimulate repair activities. Thereby, MSC perform a large
variety of indirect and direct cell–cell interactions with neighboring tumor-associated cell populations,
which confer MSC-mediated tumor-inhibitory and tumor-promoting properties. These opposing
MSC functionalities can be displayed simultaneously in the same tumor tissues and strongly depend
on local conditions within the tumor microenvironment. In fact, the circumstances are determined
by the availability, concentration, and synergy of stimulating factors acting within a small region
of the MSC vicinity. Based upon the surroundings in distinct compartments of the tumor tissue,
heterogeneous activation of MSC then regulates slowed tumor growth in certain areas while other tumor
parts are induced for strong proliferation that is consistent with the often observed inhomogeneous
tumor growth [27].

3. MSC and Cancer Cell Fusion

3.1. Different Hybrid Cancer Cell Lines Following Fusion with MSC

Among others, MSC also support tumor neovascularization and are involved in cancer cell
fusion. Cell fusion exhibits chromosomal instabilities and subsequent DNA rearrangements that can
create various new recombinations with lethal outcome or acquisition of new properties. Similar to
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physiological fusion processes, cancer cell fusion also suggests an initial production of tetraploid hybrid
cells. Further modification of this unstable situation can result in additional forms of aneuploidy or
polyploidy of the cancer hybrid populations and increase tumor heterogeneity. Previous work has
listed several established human cancer cell lines that were derived from biopsies of different tissues
and tumor entities demonstrating aneuploidy that likely evolved from previous cancer cell fusions [28].
This hypothesis is supported by a model in which tetraploid cells emerge early in carcinogenesis as tumor
precursors and develop into aneuploid neoplastic cells with aberrant chromosome numbers [29,30].

Although human MSC display no signs of spontaneous transformation in vitro, a small number
of derailed MSC may evolve within a population after autofusion. Cell fusion can also contribute to
mesenchymal cell differentiation [31]. Several studies provide evidence that sarcoma tumor types
originate from aberrant MSC. Sarcomas can be discriminated in rigid bone tumors and soft tissue
tumors whereby Ewing sarcoma represents a mixture of both displaying a poorly differentiated
tumor arising in both bone and soft tissues. Sarcomas often represent the tissue type associated
with differentiation potential of MSC including osteo-, lipo-, and chondrosarcoma. These sarcomas
frequently display chromosome and gene translocations, and several sources indicate an origination
from MSC-like populations [32].

During intense cell–cell communication within the tumor stroma, including a mutual exchange
of factors, microvesicles/exosomes, and parts of the plasma membrane by trafficking nanotubes
or by trogocytosis, MSC eventually can also fuse with various cancer cell types. In particular,
breast cancer cell fusion and subsequent generation of breast cancer hybrid/chimeric cells (Figure 1) is
observed during close interaction of cancer cells with MSC in the tumor microenvironment [33–35].
Accordingly, the generation of new breast cancer hybrid cells is associated with the acquisition of new
cellular properties. A variety of different breast cancer hybrid cells could be identified following in vitro
fusion of benign neoplastic MCF10A cells or aggressive triple negative MDA-MB-231 breast cancer
cells with different individual MSC populations (Table 1). Of interest, the five different populations of
MDA-MSC hybrid cells (isolated from spontaneous cell fusions of MDA-MB-231 with different MSC)
briefly termed MDA-hyb1 to MDA-hyb5 display distinct morphologies (Figure 1), altered tumorigenic
properties, and metastatic behavior.
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Table 1. Different hybrid cancer cell lines following spontaneous fusion with individual hUC-MSC.

Cancer Cell Line
Fusion Partner

hUC-MSC
Fusion Partner

Hybrid Cancer
Cell Line

mRNA
Microarray Data References

MDA-MB-231 MSC051212 MDA-MSC-hyb1 GSE100551 [34]
MDA-MB-231 MSC051212 MDA-MSC-hyb2 GSE100551 [34]
MDA-MB-231 MSC290115 MDA-MSC-hyb3 n.d. [36]
MDA-MB-231 MSC290115 MDA-MSC-hyb4 n.d. [36]
MDA-MB-231 MSC030816 MDA-MSC-hyb5 GSE157199

SK-OV-3 MSC081113 SK-MSC-hyb1 GSE117411 [37]
SK-OV-3 MSC081113 SK-MSC-hyb2 GSE117411 [37]

MCF10A MSC060616 MCF10A-MSC-hyb1 GSE106756 [35]
MCF10A MSC060616 MCF10A-MSC-hyb2 GSE106756 [35]

3.2. Enhanced and Reduced Tumorigenicity of Hybrid Cancer Cell Lines after Fusion with MSC

Previous work demonstrated that MDA-hyb1 and MDA-hyb2 cells express different short
tandem repeat DNA profiles, pronounced telomerase activities, and increased proliferative capacities,
compared to their parental cells. Further characterizations revealed that MDA-hyb2 represent a more
MSC-like phenotype than MDA-hyb1. In a xenograft mouse tumor model, these two cancer hybrid
cell types also developed a rapidly enhanced tumor growth compared to MDA-MB-231 cells [34].
Although microarray-based mRNA profiling demonstrated a marked up-regulation of genes promoting
an epithelial-mesenchymal transition, this was accompanied by significantly elevated formation of
distal organ metastases in MDA-hyb2 and even more in MDA-hyb1 cells. For example, MDA-hyb1 cells
had developed metastases in lung, liver, spleen, heart, and kidney in most of the animals at a time
when metastatic growth in the parental MDA-MB-231 breast cancer cells still remained undetectable
and appeared much later. This is in line with previous concepts suggesting cancer cell fusion a
potential mechanism for tumor metastases [16]. MDA-hyb1 and MDA-hyb2 cells also demonstrated
increased sensitivity to a variety of chemotherapeutic compounds [34]. Other fusion partners of
breast cancer cells include tumor-associated macrophages. These fusion processes in vitro and in vivo
demonstrated acquisition of macrophage-like properties in the hybrid cancer cells, including expression
of the transmembrane adapter protein DAP12 and the macrophage-specific scavenger receptor CD163,
which was also detectable in cancer cells of clinical tumor specimen [38,39].

MDA-hyb3 and MDA-hyb4 cells were also isolated by single cell cloning, although after
spontaneous fusion of MDA-MB-231 cells with a different MSC population (Table 1). In vitro studies
demonstrated a higher proliferative capacity of MDA-hyb3 than MDA-hyb4 cells. When MDA-hyb3
cancer hybrid cells started in vivo tumor development following initial subcutaneous injection by
using the mouse xenograft tumor model, however, growth of tumors progressed much more slowly
and heterogeneously than among MDA-MB-231 cells. Cancer cell spreading to distal organs was
limited during MDA-hyb3-induced tumor growth, with no detectable metastases in lung and kidney,
respectively [36]. These findings indicate retarded tumor development, with reduced formation of
metastases by MDA-hyb3 cells in comparison to the parental MDA-MB-231 cells. Therefore, in contrast
to MDA-hyb1 and MDA-hyb2 breast cancer hybrids, MDA-hyb3 and MDA-hyb4 populations increase
tumor heterogeneity by exhibiting reduced tumorigenic properties as compared to their parental
counterpart. Although chemotherapeutic responsiveness of MDA-hyb3 and MDA-hyb4 cells and
potential cancer stem-like properties still require further examination, these opposite properties of
different breast cancer hybrids underscore an altered tumor plasticity after cancer cell fusion of the
same breast cancer cells (MDA-MB-231) with different individual MSC populations.

Another MDA-MSC hybrid cell line briefly termed MDA-hyb5 further enlarges the
spectrum of tumor plasticity by displaying additional features during tumor development.
MDA-hyb5-induced tumors, and distal organ metastases became detectable when tumor growth and
metastatic development of the parental MDA-MB-231 cells was already terminated. Whereas neoplastic
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growth of MDA-MB-231 cells started directly after subcutaneous injection into the mice, a simultaneous
transplantation of MDA-hyb5 cells in further mice was associated with initial quiescence of several
weeks up to a half year. Following this variable period of cancer cell dormancy, MDA-hyb5 cells
started to develop tumors and organ metastases more rapidly, about twice as fast as the parental
MDA-MB-231 cells. This suggested a rapid tumor neovascularization and accelerated dissemination of
MDA-hyb5 cells after tumor initiation. Comparison of transcripts by RNA microarray analyses revealed
an elevated expression of some dormancy-associated genes in MDA-hyb5 versus MDA-MB-231
cells. These differences in gene expression also became apparent when compared to MDA-hyb3
versus MDA-MB-231 and MDA-hyb1 versus MDA-MB-231 cells, respectively. Cell populations
without any symptoms can carry dormant cancerous lesions [40]; the majority of these lesions
never progress to tumorigenic growth. These in situ tumors are controlled at least in part by the
balanced availability of pro-angiogenic growth factors like fibroblast growth factor, vascular endothelial
growth factor, platelet-derived growth factor, and IL-8, paralleled by a sufficient supply of statins as
inhibitors of tumor neovascularization, including thrombospondin, tumstatin, canstatin, endostatin,
and angiostatin. Previous findings demonstrated that accumulation of thrombospondin-1 is involved
in breast cancer dormancy [41]. Among others, further dormancy-associated genes include CXCR4
in metastasized breast cancer [42] and TGF-beta2 in prostate cancer [43]. This intermediate state can
keep cancer cells dormant in a temporary G0

′ growth arrest cycle. Cancer cells may require a transient
phase of dormancy also for, e.g., adaptation to altered microenvironmental tissue conditions during
dissemination and metastases formation, coping with chemotherapeutic drug exposure, or acquisition
of new mutations [44]. Multiple coordinated signals, however, may be required to maintain cancer
cells in quiescence accompanied by subsequent triggers to escape a transient G0

′ growth arrest cycle of
dormancy and acquire/regain proliferative capacity for tumor development/recurrence.

3.3. Potential Cancer Stem Cell-Like Properties in Hybrid Cancer Cell Populations

During MDA-hyb5 tumor explant culture an elevated drug sensitivity was observed.
This suggested ongoing functional modifications of these hybrid cancer cells during the rapid
tumor development, indicating continuous instability and an increased heterogeneity. Compared to
MDA-MB-231 cells, MDA-hyb5 cells displayed different chemotherapeutic sensitivities whereby a
detectable unresponsiveness beyond certain concentrations of chemotherapeutic agents indicated a
potential resistance within the MDA-hyb5 population. On the other hand, permanent proliferation
with self-renewal capacity and enhanced resistance to apoptotic stimuli, including anti-cancer drugs,
represent properties of cancer progenitor cells, tumor-initiating cells, and cancer stem cells [45,46].
Spontaneous fusion of certain human breast epithelial with breast cancer cells generates distinct hybrid
populations exhibiting cancer stem cell properties [47,48]. Spontaneous fusion of bone marrow-derived
MSC with lung cancer cells likewise form new hybrid cancer cell populations displaying altered
functions including cancer stem cell-like properties [49]. Normal human mammary epithelial cells as
well as patient-derived primary human breast cancer epithelial cells can also spontaneously fuse with
MSC occurring within less than 5 min [35]. Other fusion processes with MSC include human SK-OV-3
ovarian cancer cells resulting in the SK-MSC-1 and SK-MSC-2 hybrid cancer cells (Table 1) [37].

Together, these findings suggest spontaneous in vitro cell fusion of MSC with corresponding
cancer cells resulting in the formation of various cancer hybrid populations that display completely
different properties. Fusion of MSC with breast cancer cells is also detectable in vivo [36,50], which adds
to the clinical relevance of cancer hybrid cells in the potential diversification of tumorigenic and
metastatic behavior. In vivo cancer cell fusion would influence therapeutic regimens and patient
outcome. Nevertheless, evidence for in vivo cancer cell fusion and acquisition of new genomic
properties using transplantable cancer cell lines still represents a largely simplified model that limits
translational clinical aspects [51].
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4. Mechanisms of Cancer Cell Fusion

4.1. Molecular Signals Involved in Physiological Cell Fusion

Several methods based on cre/lox recombination or using fluorescence gene recombination
(e.g., mcherry and green fluorescent protein (GFP)) can be applied to detect cell fusion events.
Precise molecular mechanisms for cell fusion processes in general, however, remain to be elucidated.
Biophysical requirements include local membrane protrusions, which allow the two joining cell
membranes of the cellular fusion partners coming into close proximity. These contacts create
microdomains that favor overlapping of the plasma membrane lipid bilayers and cytoplasmic exchanges
between the adjacent cells. Some details for cellular hybrid formation have been unraveled in distinct
tissues such as placenta. Proteins displaying fusogenic properties as potential ligand for membranous
regions are represented by syncytin-1 and -2 predominantly found in syncytiotrophoblasts of placenta
tissue. These two proteins evolve from truncated genes originating from viral functions like the
HERV-W retroviral envelope genes [52,53] and are also expressed in various solid tumors. In addition,
alanine, serine, and cysteine selective transporter-2 ASCT 2 and major facilitator superfamily domain
containing 2A (MFSD-2A) can serve as corresponding syncytin adaptor proteins on a neighboring fusion
partner cell [52,54]. During trophoblast fusion for development of syncytiotrophoblasts, MFSD-2A has
been described as the receptor for syncytin-2 [54,55].

4.2. Signaling Events Contributing to Pathophysiological Cell Fusion

In a pathophysiological environment previous findings demonstrated that heterofusion of breast
cancer cells with endothelial cells involves endothelial-cell-associated ASCT2, which functions as a
receptor for syncytin present on breast cancer cells [56]. In addition, human SK-OV-3 ovarian cancer
cells are capable of hybrid cell formation following fusion with human MSC resulting in SK-MSC-hyb1
and SK-MSC-hyb2 hybrid populations. Of interest, the generation of these new ovarian cancer hybrid
cells was associated with a less tumorigenic phenotype displaying reduced proliferative capacity in
conjunction with a loss of tumorigenic potential [37]. Both fusion partners (SK-OV-3 and MSC, as well
as the resulting hybrid populations) exhibited expression of syncytin-2 and MFSD-2A. Although these
findings suggested the availability of a fusogenic environment similar to trophoblasts, confirmative data
are still missing that would substantiate a clear involvement of syncytins and MFSD-2A in ovarian
cancer cell/MSC fusion. This important notice became obvious during breast cancer/MSC fusion.
The neoplastic benign human MCF10A breast epithelial cells can undergo cell fusion during co-culture
with MSC by simultaneous expression of syncytins, ASCT2, and MFSD-2A, in both fusion partners,
likewise indicating fusogenic properties. Down-modulation of each of these fusogenic proteins as well
as double knockdown of syncytin-1, ASCT2 and syncytin-2, and MFSD-2A in either of the co-culture
populations, however, exhibited no significant differences in hybrid cell formation when compared
to nontargeting siRNAs or control co-cultures [35]. These surprising findings demonstrate only
minor involvement if any of the known fusogenic factors in the formation of MCF10A-MSC-hybrids,
suggesting a different mechanism. Indeed, further examination of potentially associated pathways
identified the tumor necrosis factor-alpha (TNF-α) receptor signaling cascade. MCF10A cells produce
and release markedly elevated levels of the pro-inflammatory cytokine TNF-α as compared to MSC.
Vice versa, TNFR1 and –R2 (TNF receptor-1 and -2) are expressed predominantly in different MSC
populations, in contrast to low expression levels of TNFR2 in normal HMEC (human mammary
epithelial cells) and in breast cancer cells [35]. Accordingly, MCF10A-mediated TNF-α released
contributes to heterofusion by triggering TNF receptors in MSC via TNFR1-associated death domain
protein (TRADD) downstream signaling and activation of distinct NF-kB or apoptosis/necroptosis
pathways [33,35,57]. Together the findings indicate that different molecular mechanisms favor fusion
processes depending on the local environment and the participating cellular fusion partners.

This hypothesis is further supported by unraveled mechanisms during macrophage fusion or
myoblast fusion with a formation of multinucleated giant cells. Signaling molecules involved in the
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appearance of these fused giant cells include the guanine nucleotide exchange factors Brag2 and
Dock180 (dedicator of cytokinesis) [58]. Brag2 converts Arf·GDP to Arf·GTP, and the nucleotide
exchange activity is stimulated by phosphatidylinositol 4,5-bisphosphate. Dock180 is a Src-homology
3 protein that interacts with the adaptor protein Crk and activates Rac1 in cooperation with ELMO
(engulfment and cell motility) [59]. Rac1 represents a member of the Rho protein family of small
GTPases and is involved in the formation of cell-to-cell adhesion, whereby its activity is balanced
by the related isoform Rac1b and TGFβ [60]. These signaling complexes promote changes to the
actin cytoskeleton that could relay mechanical tension on cell membranes to facilitate fusion and the
emergence of multinucleated giant cells by hybrid cell formation [61]. These giant cells or hybrid cell
formation followed by aneuploidy and genomic instability could develop senescence or malignant
conversion (Figure 2). A small population of giant cells was also observed in a myeloid leukemia
cell model during retrodifferentiation from adherent monocyte/macrophage-like cells to non-adherent
monoblastoid phenotypes [62,63]. Alterations in the actin and intermediate filament cytoskeletal
structures modified by reversible activation of protein kinase C contribute to either cell fusion-mediated
formation of giant cells or retrodifferentiation [64–66].

5. Post-Fusion or Post-Hybrid Selection Processes (PHSPs)

Multinucleated giant cells or fused cancer hybrid cells with tetraploid or aneuploidy sets
of chromosomes undergo a post-fusion selection process or more generally a PHSP (post-hybrid
selection process) (Figure 2). Appearance of multinucleated giant cells includes the generation
of heterokaryons, whereby the parental genomes are located in different nuclei and segregated
from one another in contrast to synkaryons. Cell fusion may therefore result in both nuclear
forms of hybrids: heterokaryons or synkaryons. When bi- or multinucleated hybrids are generated
(heterokaryons), further cell cycle progression by the diverse and uncoordinated nuclear signaling
remains questionable. If these hybrid cells with segregated nuclei are capable of cell division,
resulting daughter cells can express both parental sets of chromosomes in a single nucleus also
called synkaryon [67–69]. Synkaryons can be formed directly after interaction and fusion of MSC
with epithelial cells, including cancer cells from solid tumors by reorganization of these hybrid
cells including nuclear fusion [70]. Due to DNA instabilities in initially formed cancer hybrid cells
with synkaryons, chromosomal reduction or reorganization by a PHSP also remains a necessity to
enable survival of a genetically stabilized phenotype. Accordingly, fusion-associated MSC hybrid
cell formation is accompanied by a recombination of genomic parts from both parental donors in a
nuclear hetero-to-synkaryon transition (HST), which can be associated with ploidy reduction during
subsequent cell division (Figure 2). Another type of hybrid cells can be formed by engulfment of
a target cell, e.g., via cannibalism [71] or entosis-like mechanisms [72] (Figure 2). These forms of
cell merger are associated with degradation of the target cell genome. Furthermore, cancer cell
fusion tetraploid neoplastic hybrid cells can be generated by derailed cell division mechanisms,
including mitotic cleavage failure and cytokinetic imbalances, which represent predominant pathways
for tetraploidization in vivo [73]. Aberrant DNA profiles or aneuploidy can also arise during abnormal
cell divisions such as endoreplication, endomitosis, or deregulated cytokinesis, as is observed in a
variety of different cancer types and derived cancer cell lines [28] (Figure 2). In addition, the proportion
of polyploid (including tetraploid) hybrid cells is markedly elevated during the aging process in several
tissues [74] (Figure 2).
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Figure 2. Indirect interactions between MSC and cancer cells are performed by a mutual exchange
of a plethora of soluble factors, including microvesicles and exosomes, which may also provide
therapeutic vehicles [75,76]. Moreover, direct cell–cell interactions include gap junctional intercellular
communication (GIJC), signaling via notch receptor and ligand, and exchange of cytoplasmatic
compounds and small organelles (e.g., mitochondria) via nanotubes or trogocytosis. Tight assembly
of the two plasma membranes from MSC and cancer cells provide a fusion permissive prerequisite
for subsequent hybrid cell formation. Further mechanisms add to the generation of hybrid cells,
which undergo a post-hybrid selection process (PHSP) to cope with aneuploidy and chromosomal
instabilities. (adapted from [77]).

Hybrid cells represent new populations that require long-term regulatory adaptation since their
formation occurs rapidly and in various cases spontaneously. Unsuccessful nuclear reorganization or
failed chromosomal restructuring results in termination of a PHSP with subsequent apoptosis/necroptosis
(Figure 2). This phenomenon is observed in the vast majority of cancer cell fusion with MSC
after single cell selection [34–37] and most probably also happens to other hybrid cell populations.
Accordingly, this substantiates that the successful PHSP-mediated development of viable cancer hybrid
cells with proliferative capacity represents a rare event. A PHSP appears to be sensitive to any kind
of interference and focused on the cell type. Indeed, previous work reported large differences in the
amount of hybrid cell formation, demonstrating an up to 10-fold increase in in vitro fusion of MSC
with benign neoplastic MCF10A cells as compared to malignant MDA-MB-231breast cancer cells as
fusion partner. In contrast to autofusion of the breast cancer cells, a 10- to 50-fold elevated heterofusion
was detectable with MSC, suggesting the involvement of different molecular signals between the
fusion partners [35].

Consequently, a PHSP requires a tightly coordinated sequence of selection steps to move the cancer
hybrid cells through various unstable but viable intermediate states of chromosomal rearrangement to
finally reach a certain level of DNA and chromosomal stability. Mechanisms still need to be elucidated
that favorize either syn- or heterokaryon formation and the kind of molecular signals that contribute to
nuclear fusion besides cellular fusion. Moreover, orchestration of survival strategies during PHSP
remains largely unknown.



Int. J. Mol. Sci. 2020, 21, 8347 9 of 13

One possible pathway of a PHSP includes a ploidy reduction, e.g., by symmetric
reduction of tetraploidy to two diploid karyotypes [78]. Alternatively, PHSP can result in
chromosomal missegregation and senescence, which may also affect MSC [74,79–81] (Figure 2).
Potential consequences of cell fusion and hybrid cell formation-mediated polyploidy, aneuploidy,
and genomic instability are discussed in a previous model [82] and include a variety of cellular
pathways. Therefore, multiple options of cancer cell development after fusion with MSC significantly
enhance associated tumor plasticity. This heterogeneity of hybrid cell tumors counteracts therapeutic
interventions and worsens patient prognoses.

6. Summary

Close plasma membrane approaches and actin/cytoskeletal restructure represent a prerequisite
to enable a fusogenic environment between cancer cells and MSC. Distinct signaling pathways in
this intermembranous space can relay a rapid but rare cell type-specific fusion event. Nuclear and
chromosomal rearrangements are performed stepwise by a PHSP displaying a clonal convergence of
the initial fusion populations by elimination, silencing, or stabilizing the surviving new hybrid cancer
cells. This reprogramming during a PHSP increases tumor heterogeneity and can also contribute to
the generation of cancer stem-like cells, which opens new avenues for further tumor development.
Cancer cell fusion with MSC, however, can also reduce tumorigenic properties, as demonstrated by
MDA-MSC-hyb3 and –hyb4 breast cancer cells and SK-MSC-hyb1 and -hyb2 ovarian cancer hybrids.
Therapeutic approaches therefore require a better understanding of molecular mechanisms underlying
a PHSP to predict and potentially regulate the outcome and functionality of hybrid cancer cells.
Comparative analysis of less tumorigenic and metastatic hybrid cancer cells with corresponding
parental cancer cells further contributes to the identification of vulnerable signaling pathways that
may provide therapeutic relevance.
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