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Abstract

Converging evidence shows that GD3 ganglioside is a critical effector in a number of apoptotic pathways, and GM1
ganglioside has neuroprotective and noötropic properties. Targeted deletion of GD3 synthase (GD3S) eliminates GD3 and
increases GM1 levels. Primary neurons from GD3S2/2 mice are resistant to neurotoxicity induced by amyloid-b or
hyperhomocysteinemia, and when GD3S is eliminated in the APP/PSEN1 double-transgenic model of Alzheimer’s disease
the plaque-associated oxidative stress and inflammatory response are absent. To date, no small-molecule inhibitor of GD3S
exists. In the present study we used sialidase from Vibrio cholerae (VCS) to produce a brain ganglioside profile that
approximates that of GD3S deletion. VCS hydrolyzes GD1a and complex b-series gangliosides to GM1, and the apoptogenic
GD3 is degraded. VCS was infused by osmotic minipump into the dorsal third ventricle in mice over a 4-week period.
Sensorimotor behaviors, anxiety, and cognition were unaffected in VCS-treated mice. To determine whether VCS was
neuroprotective in vivo, we injected kainic acid on the 25th day of infusion to induce status epilepticus. Kainic acid induced a
robust lesion of the CA3 hippocampal subfield in aCSF-treated controls. In contrast, all hippocampal regions in VCS-treated
mice were largely intact. VCS did not protect against seizures. These results demonstrate that strategic degradation of
complex gangliosides and GD3 can be used to achieve neuroprotection without adversely affecting behavior.
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Introduction

The central nervous system is enriched with glycosphingolipids

that bear anionic sialic acids in the outer leaflet of the plasma

membranes of cells [1]. Sialic acids are a family of nine-carbon

sugars that are generally found as part of glycoconjugates, mostly as

terminal components like a(2–3) or a(2–6) links to hexoses or a(2–8)

links to other sialic acids [2]. Important gangliosides in the central

nervous system include GM1, GD1a, GD1b, GT1b, and GD3

(Fig. 1). Among these, GD3 and GM1 have received the most

attention due to their involvement in cell death and neuroprotec-

tion, respectively. The role of GD3 as a critical mediator of

apoptosis induced by Fas, ceramide, and amyloid-b (Ab) is well

documented [3–5]. In contrast, GM1 ganglioside is neuroprotective

in vitro and in a number of lesion models [6–11], and has been used

therapeutically to treat patients with Parkinson’s disease [12–14].

Given the broad range of activity of both GM1 and GD3,

experimental approaches that simultaneously decrease GD3 and

elevate GM1 may have additive neuroprotective effects. There are

several ways to achieve this in vivo. Targeted deletion of St8sia1, the

gene that codes for the ganglioside biosynthetic enzyme GD3

synthase (GD3S), eliminates GD3 and elevates levels of GM1 as the

constitutively normal amount of ganglioside synthesized is converted

to a-series rather than b-series gangliosides (Fig. 1a). Primary

neurons lacking GD3S are resistant to cell death induced by

exogenous Ab or hyperhomocysteinemia, and in vivo the deletion

nearly eliminates Ab and associated neuropathology and improves

memory in a mouse model of Alzheimer’s disease [15]. An alternate

to disrupting biosynthesis is to enhance degradation. Sialidases

hydrolyze sialic acid linkages on gangliosides, and can be used to

degrade complex gangliosides and GD3 while increasing GM1.

Although the neuroprotective effect of sialidase has not been assessed

in vivo, Yang et al. [16] showed that chronic peripheral infusion of a

sialidase from Clostridium perfringens enhanced spinal axon regenera-

tion in peripheral nerve grafts after injury. This is consistent with the

known effects of exogenous GM1 on nerve repair [17].

The present study was conducted to determine whether

intracranial administration of sialidase would be neuroprotective

against kainate-induced lesions. We used a sialidase isolated from

Vibrio cholerae because it produces a ganglioside profile similar to

that of GD3S deletion. Specifically, V. cholerae sialidase (VCS)

cleaves the glycosidic linkages between terminal sialic acids of

complex gangliotetraose gangliosides GD1a, GD1b, and GT1b, to

yield increased levels of endogenous GM1 (Fig.1b; [18–20]). GD3

is also hydrolyzed by VCS. Thus the primary difference between

VCS-treated and GD3S-null neural tissue is that GD1a is lacking

in VCS-treated tissue, resulting in greater elevations of GM1 than

in tissue lacking GD3S (Fig. 1c; [15,21]).

Methods

Subjects
Subjects were 18 wild-type B6C3F1/J mice (Stock #100010)

obtained from Jackson Laboratories (Bar Harbor, ME). Mice were

housed in an AAALAC-approved vivarium with a 12-hour light/

dark cycle and free access to food and water throughout the study.
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All procedures were approved by the Institutional Animal Care

and Use Committee permit number 1697.

Vibrio cholerae sialidase (VCS)
A dose of 0.5 U/ml VCS was chosen based on data from Yang

et al. [16], and dissolved in artificial cerebrospinal fluid (aCSF).

The composition of aCSF was 150.0 mM Na, 3.0 mM K, 1.4 mM

Ca, 0.8 mM Mg, 1.0 mM P, and 155.0 mM Cl. For each mouse

receiving VCS, 2.0 ml of the enzyme was diluted in 166.0 ml of

aCSF. VCS and aCSF were sterilized using a 0.2-mm filter before

use. The minipump delivered 6 ml of infusate per day for 28 days,

at a constant rate of 0.25 ml/hour.

Surgery
Mice were anesthetized using a cocktail of ketamine (100 mg/

kg) and xylazine (10 mg/kg), and an incision made at the midline.

Osmotic mini-pumps (#1004 Alzet, Inc., Cupertino, CA) were

filled with VCS (n = 10) or aCSF (n = 8) and implanted in the

Figure 1. Effects of V. cholerae sialidase (VCS) and GD3S deletion on ganglioside biosynthesis and hydrolysis. (a) The ganglioside
biosynthetic pathway; the four major brain gangliosides are circled. Gangliosides are synthesized by sequential addition of sialic acid residues to a
sphingosine backbone. GD3 synthase (GD3S) converts GM3 to GD3, and is ultimately responsible for synthesis of all of the b-series gangliosides.
GD3S2/2 mice lack the b-series gangliosides including the apoptogenic GD3 and two of the four major brain gangliosides. Levels of GM1 and GD1a
are elevated in GD3S null mice, as constitutively high levels of Lac-Cer are converted to a-series rather than b-series gangliosides [15]. (b) Vibrio
cholerae sialidase (VCS) hydrolyzes the sialic acid a2–8 (red) linkages, and terminal a2–3 linkages (red, underlined). Internal a2–3 linkages (blue) are
unaffected by VCS. Thus GD1b, GT1b, and GD1a, are converted to GM1. In addition, the apoptogenic GD3 is degraded. (c) Ganglioside degradative
pathway; the four major brain gangliosides are circled. VCS hydrolyzes three of the four major brain gangliosides into GM1. In addition, GD3
ganglioside is degraded. The resulting brain ganglioside profile is similar to that induced by GD3S elimination except that GD1a is also hydrolyzed
and levels of GM1 ganglioside are much higher [21]. Abbreviations: Gal, galactose; Glc-Cer, glucosylceramide; Lac-Cer, UDP-galactose-
glucosylceramide (lactosyl ceramide); GalNac, N-acetylgalatosamine; NeuAc, N-acetylneuraminic acid (sialic acid).
doi:10.1371/journal.pone.0029285.g001
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subscapular space. Polyethylene tubing attached to the pump

traversed subcutaneously to an indwelling 30-gauge cannula

terminating in the dorsal third ventricle (D3V) using coordinates

for from Hof et al. [22], modified for B6C3F1 mice in pilot

surgeries.

Behavior
This was the first study of intracranial administration of VCS,

and thus its effects on normal behaviors were unknown. Because

our investigations are focused on the translational potential of

VCS, we first wanted to ensure that the novel agent did not

adversely affect normal behavior. To this end we conducted a

comprehensive battery of behavioral tasks. Before surgery, mice

were trained to proficiency on a battery of sensorimotor tasks

including rotorod, horizontal beam, inverted screen, rope climb,

wire hang, and locomotor activity, as previously described [23–

27]. Mice were matched to treatment groups based on pre-surgical

locomotor activity (distance) data and assigned to VCS or aCSF

groups. Starting on the third day following surgery, mice

completed a comprehensive battery of behavioral tasks to measure

sensorimotor function, anxiety, and spatial learning and memory.

All mice performed the tasks in the same order, as listed below.

Sensorimotor. Mice were first placed in commercially-

available activity monitors (MED-Associates, Inc., Georgia, VT)

for a 60-min. session, as previously described [23–33]. The activity

monitors measured 27627 cm, with 16 infrared photocell beams

equally spaced in the x and y axes of the horizontal plane, 1 cm

from the floor of the monitor. An additional vector of 16

photobeams was situated 5 cm above the floor to track rearing.

Balance, coordination, and agility were assessed using the

rotorod, horizontal beam, and rope-climb tasks. Rotorod testing

was conducted using a Rotamex-5 rotorod (Columbus Instru-

ments, Columbus, OH). After a single practice trial, mice were

trained for three trials per day for 3 consecutive days to balance on

a rotating rod 3 cm in diameter. The rotation speed increased

from 0 to 80 RPM over a 5-min. period. If a mouse fell within 15 s

it was given a second opportunity. In some cases mice would grasp

the rod and rotate around with it. In this case the time at which

the first rotation occurred was noted, and latency to fall or to the

first rotation was the measure of interest. The horizontal beam task

required the mouse to traverse a 0.64-cm wide, 80-cm long beam.

Mice were motivated by a 25-watt white light bulb at the starting

platform, and reinforced with entry into a dark box on the other

side of the beam. Mice were placed on the 5-cm2 starting platform,

and latency to initiate (all four paws on the beam), latency to

traverse, and number of paw slips were recorded. The rope climb

involved a similar avoidance of a 25-watt white light bulb and

escape into a dark box. Mice were placed on the 1.5-cm-diam.

rope facing down to start the trial. Latency to turn around and

latency to climb the 25 cm into the dark box were recorded.

Anxiety. The day after sensorimotor assessment, two

commonly-used anxiety tests were conducted as previously

described [15,27,33–35]. Data from both tasks were collected

using macros written for the public domain software NIH Image

[36–37]. The elevated plus maze comprised four arms, 30 cm long

66 cm wide, elevated 40 cm off the floor. The two ‘‘closed’’ arms

had clear acrylic walls 15 cm high. The other two arms were

‘‘open’’ (without walls), but had 1-mm ridges along the edge to

help mice hold on without falling. Mice were placed gently in the

central area (868 cm) at the intersection of the four arms at the

beginning of the 5-min. session. An image was taken every

0.5 sec., and classified as being in open or closed arms or in the

central area. Dependent measures of interest were percent closed-

arm entries and time on closed arms as a percentage of time on all

arms, i.e., excluding time in the central area.

Approximately 2 hours following the plus-maze test, mice were

placed in the periphery of a large round open field, 92 cm in

diam., made of white polyethylene with 30-cm walls. An overhead

camera captured images at a rate of 2 frames per sec. for the 5-

min. session, during which mice were allowed to explore freely.

The position of the mouse in each frame was classified as being in

one of three virtual zones of approximately equal area: the center

(53.2 cm diam.), periphery (8.4 cm from the wall), and an

intermediate zone (the area between the periphery and center).

Latency to exit the periphery, latency to enter the center, and time

in each zone were variables of interest.

Cognition. Spatial learning and memory were assessed in a

water maze, 118 cm in diam, starting the day after anxiety

testing. The water ranged from 22.5–23.0uC and was made

opaque using non-toxic white tempera paint. A clear acrylic

platform 10 cm in diam. was submerged 0.5 cm below the

surface of the water. Water maze testing was conducted in three

phases: reference memory, repeated reversals, and scopolamine

challenge. First, standard reference-memory training was

conducted as previously described [15,27,32–34,37–40]. In this

task, mice were trained to find the hidden platform using the

visuo-spatial extra-maze room cues, with four massed trials per

day and a 20-sec. intertrial interval (ITI). The platform location

did not change during the course of training, but the starting

location varied from trial to trial. Mice not finding the platform

within 90 sec. were placed gently on the platform for the

duration of the ITI. Swim paths were recorded and converted to

swim distances, escape latencies, and search error. Search error is

the cumulative distance from the platform recorded each second,

and is often a more sensitive indicator of water-maze learning

than traditional measures of distance and latency [27,33,34,41].

Swim speed and the amount of time spent in the periphery (8 cm)

of the pool were recorded as controls for non-cognitive water-

maze behaviors. Seven reference-memory sessions were

conducted, followed by a probe trial 24 hours later in which

the platform was removed and mice were allowed to swim freely

for 60 sec. The amount of time spent in each quadrant as well as

distance from the former platform location were recorded. The

distances from the platform were used to calculate the amount of

time spent over the 10-cm diam. former platform location, as well

as two larger annuli of 25 and 40 cm centered on the former

platform location.

Approximately 2 hours following the probe trial, the first session

of repeated reversals water-maze training was conducted,

following procedures described by Savonenko et al. [42]. In this

version of the task, the platform location changed every day, and

mice were given 10 trials per day to find the new location. All

other aspects of the task were identical to those in the reference-

memory version. On the fourth daily session mice were injected

with saline, followed on subsequent sessions by injections of

scopolamine as described below.

Drug preparation and administration
All drugs were dissolved in physiological (0.9%) saline and

injected in a volume of 10 ml/kg of body weight. Injections of

scopolamine hydrobromide, scopolamine methylbromide, and

saline were given subcutaneously, and kainic acid intraperitone-

ally. On the fourth day of repeated-reversals testing in the water

maze, a saline injection was given 30 min. before the session to

ensure that reaction to the injection procedures did not adversely

affect performance. Starting the following day, a dose-effect curve

was established with scopolamine hydrobromide at doses of 1.0

Neuroprotective Effects of V. cholerae Sialidase
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and 3.2 mg/kg body weight injected 30 min. before the water-

maze session. One daily repeated-reversals session was conducted

without an injection following every scopolamine dose, to ensure

that performance had returned to proficient levels. To control for

peripheral anti-muscarinic activity, the quaternary control

methylscopolamine (scopolamine methylbromide) was adminis-

tered at a dose of 3.2 mg/kg body weight 2 days following the last

scopolamine injection.

Kainic acid injections
On the 25th day of aCSF or VCS infusion, mice were injected

with kainic acid,10 mg/kg of body weight. If mice did not reach

status epilepticus within 45 min. of the injection, an additional

dose was given. Once a mouse reached status epilepticus, no

further injections were given. This escalating regimen, adapted

from Hellier et al. [43], was used to minimize mortality

associated with high doses of kainic acid [44]. All mice reached

status epilepticus after 2–4 injections, with no differences between

aCSF- and VCS-treated mice. Mice were observed continuously

from the first injection until seizures abated. The entire

experiment was video-recorded and the number and duration

of seizure bouts scored offline using the modified Racine scale

[45–46]. The motor seizures were characterized by unilateral

forelimb clonus with lordotic posture (stage III), bilateral

forelimb clonus and rearing (stage IV), and bilateral forelimb

clonus with rearing and falling (stage V). The motor seizures

subsided gradually thereafter and were not apparent 6 hours

after initial status epilepticus. Mice were given free access to a

hydrated, nutritive gel (Transgel) and subcutaneous injections of

lactated Ringer’s solution (5 ml/day) for 3 days after kainate

injections.

Histology and immunohistochemistry
Mice were sacrificed 3 days following the kainic acid injections.

Under brief isoflurane anesthesia mice were perfused transcar-

dially, first with saline and then with 4% paraformaldehyde for

30 min. Brains were removed and fixed overnight in the same

fixative, and then 40-mm coronal sections were taken throughout

the extent of the hippocampus for histological analysis. Ganglio-

side changes were visualized using monoclonal antibodies

targeting GD3, GD1a, GD1b, GT1b, and GM1 (G2005-66,

G2004-90A, G2004-90B, & G2006-90A, US Biological, Swamps-

cott, MA; 370696-1, Northstar Bioproducts, Cambridge, MA) and

visualized using a FITC-conjugated goat anti-mouse secondary

antibody (F-2761, Invitrogen, Carlsbad, CA). Although cholera

toxin subunit B is often used to label GM1, it is non-specific [47].

When specific antibodies are used, GM1 expression is largely,

although not exclusively, restricted to white matter in adult central

nervous system [48–49]. To observe neurodegeneration, sections

were stained with cresyl violet (3095042, Sigma, St. Louis, MO)

and Fluoro-Jade C (AG325, Millipore, Billerica, MA). A rabbit

anti-glial fibrillary acidic protein (GFAP) polyclonal antibody

(AB5804, Millipore) was used to identify reactive astrocytes.

Statistical analyses
Most behavioral data were analyzed using one- or two-way

factorial analyses of variance (ANOVA), with treatment group

(aCSF or VCS) as a between-subjects factor. Time-series data were

Figure 2. VCS does not affect locomotor activity or anxiety. Anxiety was assessed in the open-field and elevated plus maze tasks. (a) In the
elevated plus maze, VCS- and aCSF-treated mice both spent approximately 80% of the time in the closed arms, which is normal for mice upon first
exposure to the plus maze. Closed-arm entries also did not differ by treatment. (b,c) In the open field, VCS-and aCSF-treated mice spent the same
amounts of time in the periphery, center, and intermediate zone. Their latencies to first exit the periphery and enter the central zone also did not
differ. (d) Locomotor activity, measured by the number of cm traversed over the 5-min. session, did not differ by treatment in either the elevated plus
maze or the open field.
doi:10.1371/journal.pone.0029285.g002
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analyzed using hierarchical linear modeling, with time as an

unbalanced continuous numerical repeated measure and subject

as a random nominal factor nested within treatment. Quadrant

analyses from the water-maze probe trial were conducted using

single-sample t-tests for each treatment group and quadrant

individually. Water-maze repeated-reversals data were analyzed

using mixed models, with treatment (aCSF or VCS) as a between-

subjects factor and drug condition (baseline, saline, methylscopo-

lamine, scopolamine 1.0, or scopolamine 3.2) as a repeated

measure. Trials was treated as an unbalanced continuous nominal

Figure 3. VCS does not affect spatial learning or memory. Spatial reference memory and repeated acquisition were assessed in a series of
water-maze tasks. (a) The water maze was divided virtually into zones that allowed us to determine in which quadrant the mice swam as well as
distance from the platform and time in the periphery. (b) Mice in both treatment groups learned to find the hidden platform proficiently. (c, d) Three
annular zones were used to assess memory during the probe trial—10, 15, and 40 cm in diam., all of which were outside the periphery but inside the
target quadrant. The 10-cm annulus represented the exact size and location of the platform during training. Chronic VCS treatment did not adversely
affect spatial memory on the probe trial, either measured by the traditional quadrant divisions (d) or the more sensitive annular analysis (c).
(e) Following the probe trial mice were re-trained to find the platform in a different location every day, in 10 trials. This repeated reversals testing did
not reveal any treatment differences, either at baseline or under saline. The low dose of scopolamine did not affect learning in either group, but both
groups were impaired by the 3.2 mg/kg dose. An equivalent dose of the quaternary control scopolamine methylbromide, which does not cross the
blood-brain barrier, did not significantly affect performance in either group, demonstrating that the performance under scopolamine 3.2 mg/kg can
be attributed to centrally-mediated cognitive impairments and not non-mnemonic performance factors.
doi:10.1371/journal.pone.0029285.g003
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repeated measure, nested within drug condition. Subject was

treated as a random factor nested within treatment group. Degrees

of freedom on repeated-measures analyses were corrected for

variations in sphericity using Huyn-Feldt e. To protect against

spurious Type I errors, follow-up analyses were conducted only

after a significant omnibus effect, except with comparisons having

specific a priori hypotheses. All comparisons were two-tailed with a
set at 0.05.

Results

VCS treatment did not affect exploratory locomotor activity,

balance, or coordination. Distance traveled, ambulatory time,

rearing, repetitive beam breaks, rope-climb latencies, and

horizontal beam latencies and slips were all similar between

VCS and aCSF groups [F’s,1.24; p’s..298; data not shown].

VCS treatment also did not affect anxiety. Total arm entries,

percent closed-arm entries, and time spent on closed arms in the

plus maze were similar between groups [F’s,0.64, p’s..437;

Fig. 2a]. In the open field, the time spent in the peripheral and

central zones, as well as the latencies to exit the periphery and

enter the center, were unaffected by VCS treatment [F’s,3.96,

p’s..062; Fig. 2b–c]. The distances traveled in the two mazes, as

well as incidence of urination and defecation, were not different

between groups [F’s,2.91, p’s..106; Fig. 2d].

In the water maze, both groups of mice learned to find the

hidden platform within seven sessions, as indicated by decreasing

swim paths over sessions [F(6,110) = 28.08, p,.0001; Fig. 3b].

There were no group differences in the facility with which spatial

learning was acquired [group F(1,2) = 0.60, p = .518; Group X

Session F(6,110) = 0.60, p = .726]. There were also no group

differences when escape latency or search error was used to

measure learning [F’s,0.52, p’s..54; data not shown]. VCS

treatment did not affect swim speed or peripheral swimming in the

water maze [F’s,1.09, p’s..376; data not shown]. On the day

after the final acquisition session, mice were given a single 60-s

probe trial with no platform. During this trial, treatment groups

did not differ in the amount of time spent within 10, 25, or 40 cm

of the center of the former platform location [group F(1,2) = 0.71,

p = .490; Group X Annulus Size F(1,48) = 0.48, p = .491;

Fig. 3a,c]. Quadrant analyses showed that both groups demon-

strated selective search for the former platform location; mice in

Figure 4. VCS infusion completely degrades GD1a and b-series gangliosides. Coronal sections were stained with antibodies to the
appropriate gangliosides as described in the Methods section. VCS completely degraded three of the four major brain gangliosides (GD1a, GD1b, and
GT1b) throughout the hippocampus, including the CA1 and CA3 subfields and the dentate gyrus (DG). The apoptogenic GD3 ganglioside was also
hydrolyzed.
doi:10.1371/journal.pone.0029285.g004

Neuroprotective Effects of V. cholerae Sialidase
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each group spent significantly more than chance time in the target

quadrant [p’s,.0001], but not in the other three quadrants

[p’s..315; Fig. 3d].

Following the probe trial, mice were re-trained in the water

maze but with a different platform location. For these repeated-

reversals sessions, mice were given 10 60-sec trials to learn a new

platform location each day. After learning this mice were

challenged with the muscarinic receptor antagonist scopolamine,

or appropriate controls. Five conditions were used for data

analysis: baseline, saline, methylscopolamine 3.2, scopolamine 1.0,

or scopolamine 3.2. The last session before the saline injection was

used as the baseline. Learning was evident across all conditions, as

indicated by significant improvement in performance from the first

three to the last three trials [F’s.5.2, p’s,.03; Fig. 3e]. However,

there were no significant group or Group X Trial effects [F’s,3.4,

p’s..088]. There were also no significant main or interaction

effects across conditions, e.g., when comparing baseline vs. saline,

saline vs. methylscopolamine, or methylscopolamine vs. either of

the scopolamine doses [F’s,1.94, p’s..170].

Three days following the last water-maze session, mice were

injected with kainic acid and seizure activity was observed. There

was no difference between aCSF- and VCS-treated mice in the

latency to reach stage III (aCSF 18.061.0 min.; VCS 33.0620.1),

stage IV (aCSF 70.6615.3 min.; VCS 70.3622.0), or stage V

seizures (aCSF 87.2612.4 min.; VCS 93.7614.0). There was also

no difference in the number of seizure bouts at stage III (aCSF

6.362.0; VCS 7.861.5), stage IV (aCSF 6.661.7; VCS 7.862.1),

or stage V (aCSF 9.165.4; VCS 7.863.7). Mice were sacrificed 3

days later and brains prepared for histology and immunohisto-

chemistry. Figure 4 shows that all hippocampal subfields in VCS-

treated mice were virtually devoid of b-series gangliosides and

GD1a, consistent with published reports of the in vitro effects of

VCS on gangliosides [21]. Importantly, the apoptogenic GD3

ganglioside was also absent. In contrast, levels of GM1 ganglioside

were increased after 4 weeks of VCS infusion (Fig. 5). GM1 is

normally expressed al low levels in grey matter; after VCS

treatment, neuronal expression of GM1 was significantly elevated,

particularly in the neocortex.

To assess the extent of neurodegeneration and neuroinflamma-

tion 3 days following kainate injections, hippocampal tissue was

stained with cresyl violet, Fluoro-Jade C, or GFAP. Figure 6 shows

the dramatic neuroinflammatory response in all hippocampal

subfields still evident 3 days after kainate injection in aCSF-treated

mice. In contrast VCS-treated mice receiving kainic acid exhibited

significantly fewer reactive astrocytes. Figure 7 shows the

characteristic loss of pyramidal neurons in the CA3 region

following kainate injections, in mice chronically infused with

aCSF. Although kainate can induce neurodegeneration in other

hippocampal regions, it is largely restricted to CA3 within 3 days

of seizures. Fluorojade C staining illustrates ongoing neurodegen-

eration in the CA3 subfield. Some neurodegeneration is also

evident in the dentate hilar region, although to a lesser extent. In

contrast to aCSF-treated mice, chronic VCS infusions nearly

completely prevented neuronal death in the hippocampus.

Discussion

We have shown that 4 weeks of constant VCS infusion does not

adversely affect behavior, in a comprehensive battery. All aspects

of sensorimotor function, anxiety, and cognition were normal,

even when challenged with scopolamine. VCS- and aCSF-treated

mice also did not differ in terms of the latency to or intensity of

status epilepticus. However, VCS-treated mice were almost com-

pletely protected against the kainate-induced neuroinflammatory

response, and destruction of neurons in the CA3 and dentate hilar

hippocampal subfields.

This is the first report of VCS being administered intracranially.

Investigation of VCS as a potential neuroprotective agent is

warranted by reports of in vitro neuroprotection in primary neurons

lacking GD3S [15], which have a ganglioside profile similar to that

of VCS (Fig. 1). After 28 days of VCS infusion, b-series

gangliosides and GD1a were completely hydrolyzed in the

hippocampus (Fig. 4). It is counter-intuitive to think that mice

will function normally with such a substantial loss of gangliosides,

including three of the four major brain gangliosides. However, we

demonstrated previously that mice lacking GD3S exhibit normal

cognition, anxiety, and motor function despite a complete lack of

two of the four major brain gangliosides [15]. Importantly, we

showed in that paper that total ganglioside and total sialic acid

were unchanged in GD3S knockout mice because of increased

levels of GM1 and GD1a. It is plausible that the increased a-series

ganglioside compensated for some of the functions of the missing

b-series gangliosides. Similarly, GM1 levels are significantly

elevated in VCS-treated mice, even more so than in GD3S

knockout mice due to the hydrolysis of GD1a to GM1. The excess

GM1 may compensate sufficiently for GD1a, GD1b, and GT1b to

ensure proficient behavioral and cognitive function. This type of

functional substitution across brain gangliosides has been demon-

strated in vitro and in vivo in other ganglioside knockout mice [50–

53].

Although our data suggest that there may be significant

functional compensation when brain ganglioside distribution is

Figure 5. GM1 levels are significantly elevated following VCS
infusion. Expression of GM1 ganglioside is largely restricted to white
matter in the central nervous system, as exemplified by strong
immunostaining in the corpus callosum of aCSF-treated mice. After
25 days of VCS infusion, GM1 expression was increased in white matter
and the cortex, and to a lesser extent in the hippocampus.
doi:10.1371/journal.pone.0029285.g005

Neuroprotective Effects of V. cholerae Sialidase

PLoS ONE | www.plosone.org 7 December 2011 | Volume 6 | Issue 12 | e29285



altered by VCS, Figures 6 and 7 demonstrate that these changes

are not without effect. More than the other three major brain

gangliosides, GM1 has long been considered to have broad

neuroprotective properties [54–59]. Exogenously-administered

GM1 attenuates lesions induced by, for example, ischemia, X-

radiation, glutamate, 6-hydroxydopamine, and ethanol [60–63]. A

number of neuroprotective mechanisms have been associated with

GM1, including increased secretion of neurotrophic factors and

activation of TrkB, and inhibition of calcium influx [64,65]. GM1

has been shown to mimic the effects of neurotrophins, and

synergize their activity, both in preventing excitotoxicity and

restoring neurite outgrowth [66–67]. Bachis et al. [57] showed that

GM1 protected primary neurons from glutamate excitotoxicity

and prevented caspase-3 activation through phosphorylation of

TrkB receptors. Similarly, GM1 has been shown to block the

excitotoxic effect of kainate by preventing the activation and

translocation of calcium-dependent protein kinase-C (PKC) and

proteases [68]. Even a brief seizure bout activates more than 1,500

genes and initiates cascades that can permanently alter hippo-

campal circuitry [44,69]. The initial necrotic events include

increase of intracellular calcium, activation of NMDA receptors

and voltage-gated calcium channels, and the release of calcium

from intracellular stores following activation of metabotropic

glutamate receptors [70]. Subsequently, elevated calcium levels

initiate apoptotic events as evidenced by activated caspase-3,

fragmented DNA, and preserved mitochondrial ultrastructural

integrity and energy metabolism [71]. Thus is it likely that the

persistently elevated GM1 induced by chronic VCS infusion

protected against excitotoxicity by inhibiting calcium influx in

kainate-injected mice.

In contrast to the putative beneficial effects of GM1 ganglioside,

GD3 ganglioside is neurotoxic [3–5,72–73]. Converging evidence

implicates GD3 ganglioside as a downstream mediator of

apoptosis. GD3 is synthesized de novo in response to Fas ligand

and ceramide, and is necessary for apoptosis induced by these

initiators [3,72–75]. Kristal and Brown [76] reported that GD3 is

both necessary and sufficient to propagate the Fas-mediated

pathway, and Copani et al. [77] showed that GD3 is required for

neuronal death induced by amyloid-b (Ab). GD3 decreases the

mitochondrial transmembrane potential and is upregulated in

response to a number of caspases; however, its induction of

apoptosis is capsase- and calcium-independent [3,76]. Although

GD3 and other b-series gangliosides were thought to be necessary

for neuronal differentiation, GD3S2/2 embryonic stem cells

undergo normal differentiation [53]. Consistent with this, GD3S

knockout mice appear normal and have a normal life span with no

overt neurological or behavioral abnormalities [15]. We have

shown that primary neurons from GD3S2/2 pups are resistant to

cell death induced by 10 mM Ab or hyperhomocysteinemia

induced by folate deficiency [15]. Like GD3S-null mice, VCS-

treated mice in the present study have a complete lack of GD3

ganglioside in the neuronal layers of the hippocampal subfields,

including CA3 (Fig. 4). This suggests that GD3 may be necessary

for kainate-induced cell death in vivo. We do not know whether the

lack of GD3 or calcium inhibition afforded by elevated GM1 was

responsible for the neuroprotective properties of VCS, or if they

both played a role. Both changes occur simultaneously and

immediately upon exposure to VCS. Teasing out the relative

contribution of these two putatively neuroprotective events may be

difficult, because reagents do not exist that will specifically affect

Figure 6. VCS prevents the neuroinflammatory response following kainic acid injection. GFAP immunofluorescence is significantly
increased 3 days following kainic acid inject in aCSF-treated mice, indicating a massive inflammatory response in the hippocampus. The reactive
astrogliosis was nearly absent in kainate-treated mice that had received chronic infusions of VCS.
doi:10.1371/journal.pone.0029285.g006
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one or the other without simultaneously affecting other ganglio-

sides, and exogenous gangliosides do not necessarily behave like

endogenous gangliosides. Taken together, these results demon-

strate that VCS induces a neuroprotective ganglioside profile

without altering normal behaviors.

The effects of kainate in the present study and in Wu et al. [6]

suggest that GM1 can take over many functions of the other

gangliosides when they are missing. This confirms and extends our

previous reports showing neuroprotection in primary neurons

lacking GD3S, and normal behavior in GD3S knockout mice [15].

The robust neuroprotection in the present study demonstrates in

principle that degradation of brain gangliosides to increase GM1

and eliminate GD3 has potential therapeutic benefit without

significant adverse behavioral effects. Given the importance of

GD3 ganglioside at the convergence of multiple cell-death

pathways, this approach may have broad applicability, and further

exploration VCS, and more efficient delivery systems, is

warranted.
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