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Global gene expression analysis has been a major tool for urothelial carcinoma subtype discovery. 
This approach has revealed extensive complexity both in intrinsic features of the tumor cells and in 
the microenvironment. However, global gene expression cannot distinguish between gene expression 
signals originating from the tumor cells proper and from normal cells in the biopsy. Here, we use a 
large cohort of advanced urothelial carcinomas for which both gene expression data and extensive 
immunohistochemistry are available to create a supervised mRNA expression centroid classifier. 
This classifier identifies the major Lund taxonomy tumor cell phenotypes as defined by IHC. We apply 
this classifier to the independent TCGA dataset and show excellent associations between identified 
subtypes and genomic features. We validate a progressed version of Urothelial-like A (UroA-Prog) 
that shows FGFR3 mutations and CDKN2A deletions, and we show that the variant Urothelial-like C is 
almost devoid of FGFR3 mutations. We show that Genomically Unstable tumors are very distinct from 
Urothelial-like tumors at the genomic level, and that tumors classified as Basal/SCC-like all complied 
with the established definition for Basal/SCC-like tumors. We identify the Mesenchymal-like and Small-
cell/Neuroendocrine-like subtypes, and demonstrate that patients with UroB and Sc/NE-like tumors 
show the worst overall survival.

Molecular classification of bladder cancer has been a central issue during recent years, and it has become 
increasingly clear that this tumor type is a far more complex disease than previously recognized1,2. So far, four 
classification systems have been described. Damrauer et al.3 presented a two-tiered system, later extended to 
include three classes, the Luminal, Basal, and Claudin-low classes4. MDA presented a three-tiered system, later 
extended to include five classes, the Luminal, Luminal-p53, Basal, Basal-p53 classes, and the “double negative” 
class of tumors5,6. TCGA produced a four-class system with groups referred to as I-IV7 while the Lund group 
presented a six-class system based on global mRNA expression, Urothelial-like, Genomically Unstable, Epithelial 
Infiltrated, SCC-like/Mes-like, SCC-like/UroB, and Sc/NE-like8. Most published investigations are based on 
tumor biopsies from muscle-invasive tumors. However, Hedegaard et al.9 defined three major molecular sub-
types of non-muscle-invasive tumors, and the original Lund classification cohort10 was composed of two thirds 
non-muscle-invasive tumors. Classification of muscle-invasive tumors poses a special problem because they are 
to large extent communities of tumor, immunological and stromal cell types. Consequently, it is difficult to make 
definite statements on the existence of particular tumor cell phenotypes based on global gene expression analyses 
only. To resolve this discrepancy, Sjödahl et al.11 assembled a series of >300 advanced tumors from which both 
global gene expression analyses (mRNA) and tissue microarrays (TMA) were generated. By the use of extensive 
immunohistochemical (IHC) analyses and a large panel of protein markers Sjödahl et al.11 showed that tumors 
with specific tumor cell phenotypes may diverge or converge with respect to gene expression clusters. In most cases 
the divergence/convergence could be attributed to infiltrating non-tumors cells. This challenges the objectives for 
classification and question what a given tumor subtype name signify; a tumor cell phenotype or a community of 
cells. In the present investigation, we start by constructing an mRNA classifier that captures the full complexity 
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of the Lund Taxonomy IHC defined tumor cell phenotypes, including their respective immune and stromal infil-
trated counterparts. The classes include Urothelial-like (UroA-Prog, UroB, UroC), Genomically Unstable (GU), 
Basal/SCC-like, Mesenchymal-like (Mes-like), and the Small-cell/Neuroendocrine-like (Sc/NE-like) subtypes11. 
We apply this classification scheme to the independent TCGA cohort of mainly muscle-invasive tumors, and 
find an excellent association with previously described class defining gene signatures, gene mutations, genomic 
alterations, and expression of transcription factors. This validates and demonstrates the biological relevance of 
the Lund Taxonomy.

Results
Deriving a tumor cell phenotype oriented mRNA based classifier for bladder cancer.  To arrive at 
a tumor cell phenotype directed mRNA based classifier, we made use of previously published data11 for which both 
mRNA profiling and IHC analyses were available. In this previous study, we first grouped tumor cases according 
to global gene expression profiling, and then applied extensive IHC using antibodies for twenty-five proteins to 
refine the classification. This revealed several discrepancies between the actual tumor cell phenotypes, as deter-
mined by IHC, and their grouping by global gene expression profiling. Thus, tumors of identical tumor cell phe-
notypes could end up in different gene expression clusters, whereas in other cases, tumors of different tumor 
cell phenotypes would form a single gene expression cluster. We refer to this as divergence and convergence at 
the global gene expression level. Here we use a supervised classification approach on the Sjödahl et al. data to 
construct an mRNA-based classifier to identify IHC determined tumor cell phenotypes of urothelial carcinoma 
(Fig. 1, Supplementary Fig. 1). This approach differs from standard procedures where unsupervised clustering 
methods are applied to global gene expression to identify groups of tumors. This new mRNA-based classifier, the 
LundTax classifier, accomplishes the same as extensive IHC analyses and is hence tumor cell phenotype directed. 
The classifier was trained to identify the Urothelial-like (Uro), including the related UroA-Prog, UroB, and UroC, 
the Genomically Unstable (GU) and Basal/SCC-like (Ba/Sq), the less frequent Mesenchymal-like (Mes-like), and 
Small-cell/Neuroendocrine-like (Sc/NE-like) subtypes, as well as their infiltrated counterparts. To validate that 
this classifier de facto identifies biologically relevant and coherent tumor cell phenotypes, we applied it to the 
independent 407 TCGA samples of advanced urothelial carcinomas. The TCGA cohort was, accordingly, classi-
fied into 42% Uro, with the subgroups UroA-Prog, UroB, UroC and Uro-Inf, into 14% GU with the subgroups GU 
and GU-Inf, into 27% Basal/SCC-like with the subgroups Ba/Sq and Ba/Sq-Inf, into 9% Mes-like, and to 5% Sc/
NE-like. In addition, a small group, 3%, too infiltrated to be classified was identified. This LundTax classification 
of the TCGA data is the basis for the subsequent analyses.

Validation of the LundTax classification in the TCGA data using gene expression data.  We 
used previously established subtype specific gene signatures to validate the centroid classification of the TCGA 
cohort. As infiltrating non-tumorous cells affect the overall gene expression profiles, we first examined estab-
lished stromal and immune signatures12. As expected, subgroups classified as infiltrated, indicated with the suffix 
“Inf ” in Fig. 2, show the strongest infiltration by stromal and immune cells as determined by the strength of the 

Figure 1.  Classification of the TCGA cohort into LundTax tumor cell phenotypes. (A) The Lund advanced 
bladder cancer cohort (n = 307) was first grouped by global gene expression profiling. The samples were then 
stratified further into specific tumor cell phenotypes using IHC with antibodies for 25 proteins11. Top panel: 
Hierarchical clustering on global mRNA data. Bottom panel: Schematic view of how tumor cell phenotypes 
relate to the respective mRNA cluster. (B) The same data as in panel A but reordered based on tumor cell 
phenotype. Using this grouping and mRNA gene expression data, a 12-group tumor cell phenotype centroid 
classifier (LundTax) was produced. (C) The TCGA bladder cancer dataset (n = 407) arranged according to the 
LundTax centroid classifier.



www.nature.com/scientificreports/

3SCienTifiC REPOrTS |  (2018) 8:3737  | DOI:10.1038/s41598-018-22126-x

respective gene signatures. We next used two established gene signatures for urothelial-cell differentiation spe-
cifically expressed by Uro and GU tumors11,13. The first signature includes the regulatory factors PPARG, FOXA1, 
GATA3, and ELF3 (Fig. 2B), the second includes the differentiation genes UPK1A, UPK1B, UPK2, UPK3A, and 
KRT20 (Fig. 2C). These signatures indicate a correct classification of Uro and GU cases by the classifier. UroB 
shows lower levels of the differentiation genes, consistent with biological progression towards a Basal/SCC-like 
tumor cell phenotype10. We applied a previously published scoring system based on the expression of FGFR3, 
CCND1, E2F3, RB1, and CDKN2A to distinguish Uro from GU cases (Fig. 2D)11,14,15. The Uro and GU subtypes, 
as identified with the classifier, showed the expected subtype specific scores, high in Uro and low in GU tumors. 
Supporting this conclusion is the expression of the FGFR3 gene signature composed of genes associated with 
FGFR3 gene mutations, known to show high expression in Uro and low expression in GU cases10 (Fig. 2E).

We then used the consensus definition for the Basal/SCC-like subtype, KRT5 and KRT14 high, and FOXA1 and 
GATA3 low expression, to identify the Basal/SCC-like cases16. The KRT5 and KRT14/FOXA1 and GATA3 expres-
sion ratio clearly identified the category of tumors classified as Ba/Sq and Ba/Sq-Inf by the LundTax centroid clas-
sifier as being Basal/SCC-like (Fig. 2F). The same tumors also express specific genes involved in keratinization, 
further validating the results of the classifier13 (Fig. 2G). In addition, the Ba/Sq and Ba/Sq-Inf tumors express 
CDH3 (P-Cadherin)11 and EGFR, but not ERBB2 or ERBB317 further supporting this conclusion (Fig. 2H and I).  

Figure 2.  Validation of the LundTax classifier in the TCGA cohort. Cases in the TCGA cohort were grouped 
according to the LundTax classifier. Eleven gene signatures were then used to identify different tumor related 
features. (A) Stromal and immune cells signatures. Stromal and immune score bars show the estimated scores 
for tumor purity based on the ESTIMATE tool12. High score (red) indicate high-level infiltration; low score 
(blue) indicate low-level infiltration. (B) Transcription factors involved in urothelial cell differentiation13. (C) 
Cytokeratin and uroplakin genes10. (D) Genomic circuit genes14 that distinguish the GU subtype from the 
Uro subtype. Circuit ratios were calculated for each sample as RB1 + FGFR3 + CCND1 − E2F3 − CDKN2A 
using log2 mRNA expression values. High ratio (red) indicate Uro, low ratio (blue) indicate GU. (E) The 
FGFR3 gene expression signature10. (F) Expression of the KRT5, KRT14, FOXA1, and GATA3 genes, defining 
the Basal/Squamous-like (Ba/Sq) molecular subtype16. Ba/Sq ratios were calculated for each sample as 
KRT5 + KRT14 − FOXA1 − GATA3 using log2 mRNA expression values. High ratio (red) indicate a Ba/Sq 
subtype, low ratio (blue) indicate non-Ba/Sq subtype. (G) Keratinization gene signature13. (H) The cell adhesion 
genes EPCAM, CDH1, and CDH3. (I) The expression of the receptor tyrosine kinases EGFR, ERBB2 and 
ERBB3. ERBB ratios were calculated for each sample as EGFR-ERBB2-ERBB3 using log2 mRNA expression 
values high ratio (red) indicate EGFR expression >ERBB2 and ERBB3 expression, low ratio (blue) indicate the 
opposite. Gene expression color codes; red, high expression; green, low expression. Vertical lines separate major 
molecular subtypes; dotted lines separate subgroups of subtypes. Subtype abbreviations as in Fig. 1.
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The most characteristic feature of the Mes-like group of tumors is tumor cell expression of VIM and ZEB2, mark-
ers for a mesenchymal phenotype. However, as stromal cells also express high levels of VIM and ZEB2, mRNA 
analysis of whole biopsies are uninformative in this case. Still, the Mes-like group differs from both Uro and 
GU tumors by showing low expression of FOXA1 and GATA3, and from the Basal/SCC-like group by showing 
low KRT5 and KRT14 expression (Fig. 2F). Similarly, Sc/NE-like cases show low expression of KRT5, KRT14, 
FOXA1, and GATA3, but differ from Mes-like subtype by rarely being infiltrated by immune or stromal cells 
and by expressing EPCAM (Fig. 2H). The classified Sc/NE tumors also showed high expression of CHGA, SYP, 
and ENO2 (Fig. 2J). Taken together, by applying previously described subtype specific gene signatures, we show 
that the tumor cell phenotype trained LundTax classifier identifies established molecular subtypes of urothelial 
carcinoma at high precision.

LundTax classification of the TCGA cohort in relation to exome mutation data.  We identified 
mutations in 351 genes present in more than 5% of the 389 TCGA cases. Fisher’s exact test for association with 
the major classes of tumors, Urothelial-like, Genomically Unstable, Basal/SCC-like, Mes-like, and the Sc/NE-like 
identified four significant genes TP53, RB1, FGFR3 and ANKHD1 (Fig. 3A). TP53 mutations were seen in all 
subtypes but were particularly enriched in the GU subtype, present in 71% of the cases. RB1 mutations were 
also enriched in the GU subtype, seen in 37% of the cases, but also frequent in Basal/SCC-like tumors. FGFR3 
mutations were predominately seen in UroA-Prog (44%) and UroB (50%) cases, but were almost depleted in the 
UroC subtype (4%). The MutSigCV algorithm identified 30 significantly mutated genes (Supplementary Fig. S2). 
Fishers exact test of the MutSigCV significant genes did not yield any additional subtype specific associations. 
Mutations in the ANKHD1 gene did not pass the MutSigCV test. We then formed groups of genes based on 
GO-terms for “biological processes”, identified tumors with mutations in any or none of the GO-term grouped 
genes, and then performed Fisher’s exact test for subtype associations. Mutations in a total of 50 GO-term 
defined processes were found to be associated with subtype (p < 0.05, Bonferroni corrected) (Supplementary 
Table S2). Biological processes related to fibroblast growth factor receptor (FGFR) signaling were enriched in 
the Urothelial-like subtypes, whereas processes related to apoptotic signaling were depleted (Fig. 3B). Processes 

Figure 3.  Genomic profiles of LundTax molecular subtypes in the TCGA cohort. (A) Differentially mutated 
genes. Black, mutation; white, wild type; gray, no data. (B) Selected differentially mutated biological processes 
among molecular subtypes. Three major biological processes were identified, FGFR3 signaling, apoptotic 
signaling pathway by TP53, and processes involved in genomic instability including RB1. Percentages in 
parentheses indicate the fraction of the mutated samples in the whole cohort for the given GO term. GO 
terms; GO:0072148, epithelial cell fate commitment; GO:1902178, fibroblast growth factor receptor apoptotic 
signaling pathway; GO0045839, negative regulation of mitosis; GO:0030330, DNA damage response signal 
transduction by p53 mediator; GO:0072332, intrinsic apoptotic signaling pathway by p53 class mediator; 
GO:0042149, cellular response to glucose starvation; GO:0007050, cell cycle arrest; GO:0030512, negative 
regulation of transforming growth factor beta receptor pathway; GO:0071922, regulation of cohesion 
localization to chromatin; GO:0071459, protein localization to chromosomes, centromeric region; GO:0031134, 
sister chromatid bi-orientation; GO0090230, regulation of centromere complex assembly; GO:0034088, 
maintenance of mitotic sister chromatid cohesion. (C) Selected genomic imbalances significantly (p < 0.05, 
Bonferroni corrected) associated with molecular subtypes. Light brown, gain; dark brown, amplification; light 
blue, loss; dark blue, homozygous loss. (D) Distribution of 6p22 (E2F3, CDKAL1, SOX4) and 11q13 (CCND1) 
amplifications across the molecular subtypes. Color codes as in panel C. Subtype abbreviations as in Fig. 1. 
Vertical lines, separate major molecular subtypes; dotted lines, separate subgroups of subtypes.
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related to chromosomal instability were enriched in GU, Basal/SCC-like, Mes-like and Sc/NE-like cases, and 
almost absent in the Urothelial-like subtypes. We then compared the mutational burden between the major sub-
types using the complete non-silent mutation data (Fig. 4), and found GU to have the highest mutational burden. 
Taken together, gene mutations and GO-term associated patterns of gene mutations are distinctly associated with 
different molecular subtypes. Furthermore, the gene mutation data clearly delineate the Urothelial-like and the 
Genomically Unstable subtypes as two separate entities. The UroC differed from other Urothelial-like subtypes in 
one important respect, the absence of FGFR3 mutations.

LundTax classification of the TCGA cohort in relation to genomic data.  We produced genomic 
imbalance maps based on TCGA copy number data for 405 cases and performed Fisher’s exact test to identify 
genomic imbalances associated with the major subtypes. Seven gained/amplified regions 1q21, 1q23, 2p25, 3p25, 
5p, 17q11, and 18p11, and five losses/homozygous losses, 9q, 9p21, 11p, 13q14 and 22q13 showed significant 
association with the LundTax subtypes (Supplementary Fig. S3). The 2p25 and 3p25 segments were frequently 
amplified in UroC and GU cases (Fig. 3C). The 2p25 amplicon includes the YWHAQ gene that shows strong cor-
related expression with amplification (Supplementary Fig. S4). The 3p25 amplicon contains the genes PPARG and 
RAF1. Both PPARG and RAF1 showed increased expression when amplified, however, whereas RAF1 expression 
was strictly associated with gene copy changes, PPARG expression was not. Notably, several of the cases with 
amplified PPARG showed downregulation of the gene (Supplementary Fig. S4). Amplification of the 6p22 region 
showed a lower level of significance, p < 0.005 not significant after Bonferroni correction, but was particularly 
frequent in the UroC (24%), GU (26%), and the Sc/NE-like (29%) subtypes (Fig. 3D). The 6p22 amplification has 
been extensively described and includes almost invariably the E2F3, CDKAL1, SOX4 genes18. Genomic amplifica-
tions of 11q13 (CCND1) showed borderline significance, were associated with the Urothelial-like subtypes (seen 
in 16%), were almost absent in GU (<2%) (Fig. 3D), and showed a strong association with CCND1 expression 
(Supplementary Fig. S4). Loss of the long arm of chromosome 9 (9q) and the short arm of chromosome 11 (11p) 
was significantly associated with the Uro subtypes (Fig. 3C). Homozygous losses of CDKN2A (9p21) were par-
ticularly frequent in the Uro subtypes, seen in 39% of the cases, but also seen in Basal/SCC-like and Mes-like and 
Sc/NE-like tumors. However, GU tumors were almost devoid of homozygous CDKN2A losses, only seen in 5% 
of the cases (Fig. 3C). RB1 (13q14) losses occurred predominantly in GU (44%) and Basal/SCC-like cases (28%) 
(Fig. 3C). Taken together, well-known and frequently occurring genomic alteration in Urothelial carcinoma show 
a very strong association with the different molecular subtypes. In addition, both Urothelial-like subtypes and 
Genomically Unstable cases show distinct genomic profiles; Uro-cases show frequent 9q, 9p21, and 11p losses and 
11q13 amplifications whereas GU show frequent RB1 losses but almost complete absence of CDKN2A homozy-
gous losses.

LundTax classification of the TCGA cohort in relation to DNA-binding transcription factors.  
We extracted 989 DNA binding transcription factors (TFs) from the TCGA gene expression data. These were 
subjected to a QTC analysis that produced 21 clusters encompassing 94 highly correlated TFs (Supplementary 
Fig. S5). To identify QTCs with similar expression across the samples, a hierarchical clustering using the medians 
of the QTCs was performed (Supplementary Fig. S6). This identified three major patterns of expression; one 
associated with infiltration of immune and stromal cells that included factors such as FOXP3, RUNX3, TWIST1, 
and PRRX1, a second associated with Uro subtypes and GU cases (Fig. 5A and B), and a third pattern associated 
with the GU, Basal/SCC-like, Mes-like, and Sc/NE subtypes (Fig. 5C). The group of factors primarily expressed 
by Uro and GU subtypes included PPARG, GATA3, ELF3, TBX2, and TBX3, all involved in differentiation of 
the urothelium (Fig. 5A). The same genes showed almost no expression in the Basal/SCC-like, Mes-like, and 
Sc/NE-like cases, indicating a fundamentally different state of differentiation in these subtypes. This difference 

Figure 4.  Mutational burden in LundTax bladder cancer subtypes. Mutational burden based on non-silent 
mutations in the major LundTax subtypes in the TCGA bladder cancer cohort (n = 389).
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was further emphasized by the expression of members of the HOXA and HOXB gene clusters (Fig. 5B), as well 
as HOXD1, -D3, and -D4 genes. The posterior HOXD10 and -D11 genes were expressed in UroB as well as in 
Basal/SCC-like cases, reinforcing the similarity between the UroB and the Basal/SCC-like subtypes. In contrast, 
UroC was essentially negative for expression of all HOXD-genes. Transcription factors primarily expressed in GU, 
Basal/SCC-like, and Sc/NE-like cases included FOXM1 and MYBL2, as well as E2F1 and E2F2 (Fig. 5C). FOXM1 
and MYBL2 (B-MYB) interact with the MuvB complex to activate the late cycle by modulating E2F1 and E2F2 
activities19. Their expression is indicative of the more aggressive growth patterns seen in GU, Basal/SCC-like, 
and particularly in the Sc/NE-subtype. In addition, we noticed a distinct expression pattern of the MYC family 
of transcription factors; MYCL1, MYCN, and MYC (Fig. 5D). MYCL was expressed by Uro and GU cases, MYCN 
by Uro and GU cases as well as by Sc/NE-like cases, whereas MYC expression was limited to the Basal/SCC-like 
cases. Taken together, the patterns of transcription factor expression expand the notion that the LundTax tumor 
cell phenotypes differ at their underlying gene regulatory systems13.

LundTax classification of the TCGA cohort in relation to overall survival.  We downloaded overall 
survival (OS) data for 407 patients in the TCGA data set. We then divided each major tumor cell phenotype into 
their respective subgroups i.e., Urothelial-like subtypes into UroA-Prog, UroB and UroC, Genomically Unstable 
into GU and GU-Inf, and Basal/SCC-like into Ba/Sq and Ba/Sq-Inf, and tested for within tumor cell phenotype 
differences. Among the Urothelial-like, UroB showed a significantly worse prognosis than UroA-Prog and UroC 
respectively (Fig. 6A) while UroA-Prog and UroC did not differ from each other (p = 0.18). No difference was 
observed in the GU vs. GU-Inf comparison (Fig. 6B), whereas a borderline significance was obtained for the Ba/
Sq and Ba/Sq-Inf comparison (Fig. 6C). A Kaplan-Meier analysis was then performed with seven groups Uro 
(UroA-Prog and UroC merged), UroB, GU (GU and GU-Inf merged), Ba/Sq, Ba/Sq-Inf, Mes-like, and Sc/NE-like 
as separate entities (Fig. 6D). This analysis identified a bad prognosis group consisting of patients with UroB or 
Sc/NE-like tumors, with a survival probability of 0.22 at month 40, and a better prognosis group consisting of 
patients with Uro (UroA-Prog and UroC merged), Mes-like, or Ba/Sq-Inf tumors, with survival probability of 0.62 
at month 40. The survival rate for the merged Uro group was compared with the rate for the merged GU group, 
both classified as “luminal” by the UNC and MDA classification systems, and the GU group was found to have a 
significantly worse OS (p = 0.0017) (Supplementary Fig. S7). Taken together, the LundTax classification identifies 
groups of patients with significantly different overall survival rates.

UNC, MDA, and TCGA classification of the TCGA cohort in relation to LundTax classification.  
We classified the TCGA samples according to the UNC classification system using the BASE47 classifier. Overall, 
tumors with Uro or GU subtypes were classified as “luminal”, and Basal/SCC-like, Mes-like, and Sc/NE-like as 
“basal” (Fig. 7A). We then applied the UNC Claudin 40 signature to the data. This signature appeared to mirror 
the BASE47 expression profile and in fact shows a strong correlation with this signature, r = 0.92, p < 10−16 for 
genes upregulated in the Basal subtype. The majority of the Claudin-low cases were of the Ba/Sq-Inf subtype i.e., 
infiltrated Basal/SCC-like cases (Fig. 7A). The five MDA classes Luminal, Luminal-P53, Basal, Basal-p53, and the 
small group of “double negative”, were then overlaid the LundTax grouping of the TCGA data (Fig. 7B). The Ba/

Figure 5.  Transcription factor expression in the TCGA bladder cancer cohort. (A) Transcription factor gene 
clusters associated with the Uro and GU subtypes. (B) Expression of HOXA, HOXB, and HOXD families of 
transcription factors. Black horizontal line in the HOXD panel separate anterior and posterior HOXD-genes. 
(C) Transcription factor gene clusters associated with GU, Basal/SCC-like, Mes-like and Sc/NE-like subtypes. 
that include genes involved in late cell cycle regulation. (D) Expression of MYC-gene family members. Gene 
expression color codes; red, high expression; green, low expression.
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Sq and the Ba/Sq-Inf groups coincided well with the MDA Basal and Basal-p53 respectively, whereas UroB was 
classified as Basal or Basal-p53 in almost all cases. The Uro and GU cases were classified as Luminal or its infil-
trated counterpart, Luminal-p53, in almost all cases. However, very mixed classification results were obtained for 
the LundTax Mes-like and Sc/NE-like cases. The MDA “double negative” class was to a great majority included 
in the Mes-like class of tumors. We then classified the LundTax ordered cases according to the four-group TCGA 
principle (Fig. 7C). The TCGA Cluster I cases correspond well with Uro and GU cases with low infiltration, and 
Cluster II with Uro and GU cases infiltrated by immune and stromal cells. Cluster III cases correspond well with 
the less infiltrated Basal/SCC-like cases whereas Cluster IV matches with infiltrated Basal/SCC-like and Mes-like 
subtypes.

Discussion
Recent reports indicate that the major non-surgical treatment modalities for advanced UC, systemic chemo-
therapy and immune-checkpoint inhibitors, may show different response rates between molecular subtypes20,21. 
Whether these associations will hold for clinical application or not, depends on our ability to stratify tumor 
samples into relevant molecular subtypes. A major approach to identify tumor molecular subtypes has been to 
perform genome wide gene expression followed by unsupervised hierarchical clustering. One often overlooked 
caveat of this approach is that advanced tumors, and consequently the clinically most challenging tumors, are 
infiltrated by non-tumorous cells. Even if care is taken to free biopsies from infiltrating cells, many tumors are 
networks of tumor and stromal/immunological cells. Under such circumstances it may be hard to arrive at state-
ments on particular features associated with a given tumor cell phenotype i.e., the underlying tumor cells. To 
correct for this, we previously performed an extensive IHC based analysis using a large collection of tumor cell 
markers to characterize tumor cells proper11. By combining global gene expression and IHC analyses, we arrived 
at a refined classification system for urothelial carcinoma. In the present investigation, we applied a supervised 

Figure 6.  Kaplan-Meier curves for 5-year overall survival. TCGA bladder cancer cohort grouped by the 
molecular subtype based on LundTax classification. Groups with less than 20 samples (Uro-Inf, n = 18 and 
Inf, n = 14) were excluded from the analysis. (A) Five-year overall survival analysis for the Urothelial-like 
subgroups. (B) Five-year overall survival analysis for the Genomically Unstable subgroups. (C) Five-year overall 
survival analysis for the Basal/SCC-like subgroups. (D) Five-year overall survival analysis for the LundTax 
molecular subtypes. UroB was treated separately from the merged UroA-Prog/UroC group, GU and GU-Inf was 
merged into one GU group. Ba/Sq and Ba/Sq-Inf were treated as two separate entities.
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classification approach to derive an mRNA-expression based classifier that identifies IHC defined tumor cell phe-
notypes, in both a low and high infiltration context. We applied this classifier to the independent but analogous 
TCGA set of tumors and made use of the extensive genomic information attached to the samples in this cohort to 
validate the biological relevance of the obtained classification.

We point to the large heterogeneity of the Urothelial-like group of tumors, previously named “Urobasal”16. 
This group was originally described in a non-muscle-invasive setting and was shown to include two variant forms, 
the UroA and the UroB. UroA and UroB share many molecular features but UroB also express markers typical for 
a basal-like cell type e.g., KRT5 and KRT14. We have previously shown that UroA tumors express anterior HOXA 
(HOXA1-HOXA7) as well as anterior HOXB (HOXB1-HOXB8) genes22. Anterior HOXA and HOXB expression 
are related to retinoid signaling and induced differentiation23, in line with the expression of RXRA and PPARG 
as well as GATA3, FOXA1, and ELF3 in these tumors. Expression of the anterior HOXA and HOXB genes is 
maintained in the more advanced UroA, i.e., high risk T1 or ≥T2 tumors. The shared gene regulatory systems, 
as well as the shared genomic alterations, suggest that advanced UroA are progressed versions of the non-muscle 
invasive counterpart UroA, hence the name UroA-Prog. UroC, on the other hand, was first identified as a group 
of Urothelial-like tumors that cluster with Genomically Unstable tumors using global gene expression analysis11. 
However, UroC is distinct from GU by the expression of FGFR3, CCND1, and RB1, and by showing low expres-
sion of CDKN2A, features that UroC share with UroA, UroA-Prog and UroB tumors14. In addition, UroC shares 
several genomic alterations with the non-muscle invasive UroA, UroA-Prog, and UroB subtypes, such as losses 
of 9q, 11p, CDKN2A, and genomic amplifications of CCND1, indicating a strong genomic relationship. However, 
UroC was almost devoid of FGFR3 mutations. This suggests that UroC have developed along a route independent 
of any hardwiring changes of this pathway making it possible to progress towards a GU-like phenotype, under-
scored by the frequent 2p25 (YWHAQ), 3p25 (RAF1), and 6p22 (E2F3/CDKAL1/SOX4) genomic amplifications 
seen in both UroC and in GU tumors. Even though the UroA-Prog, UroB and UroC share genomic and gene 
regulatory features, they differed with respect to patient overall survival, UroA-Prog and UroC tumors showed the 
best OS characteristics in the TCGA cohort, and patients with UroB showed the worst. We have previously noted 
the bad prognosis for patients with UroB tumors10. In contrast to Urothelial-like cases, Genomically Unstable 
tumors show frequent inactivation of RB1 and high levels of CDKN2A (p16) expression. GU also showed the 
strongest enrichment for mutations in genes implicated in genomic instability, as well as the highest frequency of 

Figure 7.  Comparison with UNC, MDA, and TCGA classification systems. (A) Comparison of the LundTax 
and UNC classification calls in the TCGA bladder cancer cohort. Top bar shows the LundTax classification of 
the TCGA samples. Stromal and immune score bars show the estimated scores for tumor purity based on the 
ESTIMATE tool12. Color codes; high score (red) indicates high-level infiltration; low score (blue) indicates 
low-level infiltration. Ba/Sq ratios were calculated for each sample as KRT5 + KRT14 − FOXA1 − GATA3 using 
log2 mRNA expression values. High ratio (red) indicate a Ba/Sq subtype, low ratio (blue) indicate non-Ba/
Sq subtype. Bar indicated by “BASE47” shows classification using the BASE47 classifier3. Color codes, blue, 
Luminal; red, Basal. Bar indicated by “UNC” shows BASE47 classification with the Claudin-low 40 (BCL40)4 
classification added. Color codes; blue, Luminal; red, Basal; green, Claudin-low. In the lower panels, heat maps 
of BASE47 and BCL40 signature genes are shown. (B) Comparison of the LundTax and MDA subtypes5. Color 
codes for the MDA classification; blue, Luminal; light blue, Luminal-TP53, red, Basal; orange, Basal-TP53; 
green, Double negative. (C) Comparison of the LundTax and TCGA I-IV subtypes7. Color codes for the TCGA 
classification; green, Cluster I; blue, Cluster II; red Cluster III; pink, Cluster IV. Vertical white lines separate 
major LundTax molecular subtypes; dotted lines, separate subgroups of subtypes.
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TP53 mutations. This complies with the more complex genomic alterations seen in GU14,16. GU shares these fea-
tures with Basal/SCC-like, Mes-like, and the Sc/NE-like subtypes. In addition, GU showed the largest non-silent 
mutational burden, making it a good candidate for immune checkpoint directed treatments20,24. Taken together, 
the Urothelial-like and Genomically Unstable subtypes, both classified as “luminal” by other systems, have dis-
tinct genomic properties and should be kept as separate entities25.

Tumors classified as Basal/SCC-like complied with the consensus definition, KRT5, KRT14 high, and FOXA1, 
GATA3 low, in almost all cases. Furthermore, the same group expressed CDH3 (P-Cadherin) and EGFR, but not 
ERBB2/ERBB3, signifying a basal-like phenotype. We noticed a distinct antiparallel expression of the MYC fam-
ily of transcription factors where MYC was almost exclusively expressed by the Basal/SCC-like subtype whereas 
MYCL1 and MYCN were expressed in Urothelial-like and Genomically Unstable cases. The effects of the c-MYC 
oncoprotein can be pharmacologically reversed by targeting inhibitory BET bromodomain proteins, and one such 
compound (OTX015) has shown biological activity against triple-negative breast cancer26 as well as non-small 
cell lung cancer27. The specific overexpression of MYC in the Basal/SCC-like subtype combined with activity in its 
closest corresponding subtypes of breast- and lung cancer may warrant pre-clinical testing of this agent in Basal/
SCC-like bladder cancer. The Mes-like subtype was distinct from both the Uro, GU and from the Basal/SCC-like 
subtypes by not expressing any of the class defining KRT5, KRT14, FOXA1, or GATA3 genes, nor any of the class 
characteristic EGFR or ERBB2 and ERBB3 genes. In this sense, this subtype could be characterized as “multi neg-
ative”. On the other hand, the most characteristic feature of Mes-like tumor cells, tumor cell expression of VIM 
and ZEB211, is not traceable using whole biopsy mRNA expression as Mes-like tumors are infiltrated by stromal 
cells. Irrespectively, the classifier readily identified a group of tumors as Mes-like.

The Sc/NE-like class of tumors is not well characterized at the molecular level. However, as the Mes-like sub-
type, Sc/NE-like cases express low levels of the class defining KRT5, KRT14, FOXA1, and GATA3 genes, making it 
distinct from the Uro, GU, and Basal/SCC-like cases. Nevertheless, Sc/NE-like tumors are similar to GU tumors 
by showing frequent gains of 2p25 (YWHAQ), 3p25 (RAF1), and 6p22 (E2F3, CDKAL1, SOX4), as well as a strong 
activation of the FOXM1/MYBL2/E2F1/E2F2/MuvB driver of the cell cycle. In contrast to GU, the MYC gene 
family expression was limited to MYCN, a feature shared with neuroblastomas. In addition, Sc/NE-like tumors do 
not express any urothelial differentiation genes e.g., UPKs. This makes Sc/NE-like distinct from both Uro and GU 
as well as from Basal/SCC-like and Mes-like tumors. The robust identification of Sc/NE-like UC may be of unex-
pected clinical relevance; patients with small-cell or neuroendocrine histological variant tumors generally have a 
worse prognosis28 but respond well to “neuroendocrine” systemic chemotherapy regimens, e.g., the etoposide and 
ifosfamide containing IA-EP doublet29. It remains to be seen if the 5% of UC classified as Sc/NE-like according to 
our classifier would benefit similarly from a neuroendocrine treatment regime.

We argue that the underappreciated molecular complexity in invasive bladder cancer should be considered 
during clinical studies and trials. The molecular subtypes indicate that potentially targetable alterations, e.g., 
ERBB2 overexpression, may be found in different tumor subtypes17,30. Hence, it appears evident that the molec-
ular context will be of importance when evaluating results from studies that explore therapeutic targeting of 
genomic alterations. This also applies to broader therapies, such as checkpoint inhibition, due to the associations 
between molecular subtypes and key features that could influence response, such as genomic instability, mutation 
load, and the degree and composition of the infiltrating immune and stromal cells. In our view, the ability to gain 
novel therapeutic insights increases substantially with a more comprehensive biological understanding of the 
tumor material.

We have shown that an mRNA classifier based on tumor cell phenotypes defined by extensive IHC analyses 
identifies groups of tumors with coherent mRNA gene expression, genomic alterations, and gene mutation pat-
terns when applied to the independent TCGA cohort. We point to the importance of keeping the tumor cell phe-
notype approach apart from a global gene expression method. The latter does not separate signals from the tumor 
cells proper, from signals originating from infiltrating non-tumor cells. This blurs the analysis particularly as infil-
tration may vary among tumors of the same tumor cell phenotype. Highly infiltrated cases frequently converge to 
less well-defined “infiltrated” clusters of tumors. This leads to the possible necessity for a bi-nominal classification 
system consisting of the tumor cell phenotype, and its context; the context being the type and level of infiltrating 
non-tumor cells. Hence, to achieve a more accurate and complete description of bladder cancer specimens, we 
envision a system where tumor-cell phenotype is given, e.g., Basal/SCC-like, in combination with a score for 
immune- and stromal content, relieving the need for an “infiltrated” class of each subtype. Potentially, this scoring 
could be extended to include proportions of different types of immune cells31 or types of stromal cells. However, 
to accomplish this, mRNA subtype classifiers need to be trained on data sets that also contain tissue level phe-
notyping. The centroid-based classifier presented here represents the first iteration of such a next-generation 
subtype classifier.

Material and Methods
Gene expression data.  For gene expression data (GEX), TCGA Bladder Cancer (BLCA) gene-level expres-
sion data (n = 426 samples, version 2016-08-16) was downloaded from UCSC Xena hub (http://xena.ucsc.edu) as 
log2 values of the normalized RSEM counts. This data was generated from level 3 TCGA GEX files with the suffix 
“.rsem.genes.normalized_results”. Only the tumor samples (n = 407) were kept. The dataset was median re-cen-
tered. Transcription factors genes (n = 989 genes) were extracted based on TFcheckpoint32, where only the human 
genes with evidence of specific DNA binding activity and regulator function of RNA polymerase II were included.

Deriving an mRNA based classifier.  The Sjödahl et al. 2017 cohort11 (GSE83586) was previously classified 
by IHC using antibodies for a large set of proteins into the Urothelial-like (Uro), including UroA-Prog, UroB, and 
UroC, the Genomically Unstable (GU), Basal/SCC-like, and the less frequent Mesenchymal-like (Mes-like), and 
Small-cell/Neuroendocrine-like (Sc/NE-like) subtypes, as well as their infiltrated counterparts. This approach 

http://xena.ucsc.edu
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firmly established the tumor cell phenotypes in each tumor independent of e.g., the presence of infiltrating 
non-tumor cells in the biopsies (Sjödahl et al. 2017). Global gene expression data for the same tumors was then 
used in a supervised fashion to build an mRNA centroid classifier that identifies the IHC-defined tumor classes. 
Gene feature selection was performed using the ClaNC R-package33, with “class” as the prior setting. Mean sub-
type expression of the selected genes were used as centroids. The reclassification accuracy was tested with increas-
ing number of selected genes per tumor group (Supplementary Fig. S1). The final centroid was constructed using 
100 genes per group where the classification recall rate plateaued and to provide redundancy when applying the 
centroid to other datasets. The centroids (Supplementary File S1) were derived using the mean expression of each 
subtype group for the 1200 selected genes.

Mutation analysis.  The mutation annotation format (MAF) file for TCGA bladder cancer cohort 
(n = 395 samples, version 2016-01-28) was downloaded from Broad Institute of MIT and Harvard (10.7908/
C1MW2GGF). This MAF file shares the gene names used in the MutSigCV tool (version 1.41)34. Only samples 
with both mutation and GEX data were kept for the downstream analyses (n = 389). For association with the 
molecular subtypes, only genes with mutation frequencies >5% (n = 351 genes) were tested by Fisher’s exact 
test. Bonferroni correction was made to correct for multiple testing. The MutSigCV tool was used to find signif-
icantly mutated genes (n = 30 genes, false discovery rate (q-value) <0.05). The gene ontology (GO) terms from 
“GO_Biological_Process” column in the MAF file were used to group gene mutations that affect the same biolog-
ical process. A biological process was considered altered when any gene associated with the process is mutated. 
Biological process that altered in >3% of cases were selected, and Fisher’s exact test was then performed to find 
any association of altered processes with the molecular subtypes.

Copy number data processing.  Segmented copy number data (Level 3, Affymetrix SNP Array 6.0 data 
without germline copy number variants) for fresh frozen TCGA bladder cancer cohort (n = 410 samples, version 
2016-01-28) was downloaded from Broad Institute of MIT and Harvard. Only tumor samples (n = 405 samples) 
were kept, and 400 samples of the cohort had GEX data. An automatic baseline estimation step was performed 
using CopyNumber450kCancer R package35. Briefly, in each sample, the highest peak in the density function of 
the segments was selected to be the baseline in that sample. Then the copy number plots were manually revised 
to check the baseline position and to determine the cutoffs for gains, deletions, amplification, and homozygous 
deletions in each sample. Estimated tumor purity from Yoshihara et al.36 and the density function of the segments 
were used to assist the determination of the cutoffs. Used cutoffs for the samples are given in the Supplementary 
Table S3. The frequently altered regions in the cohort were determined using the R packages CNTools37 and 
cghMCR38. Losses seen in more than 20%, and gains in more than 25% of the samples were included for further 
analyses (Supplementary Fig. S8 and Supplementary Table S4). After determining the frequently altered regions, 
samples were analyzed for the presence of aberrations using the following criteria; (1) for individual genes 100% 
should be altered for gains, and >50% for deletions, (2) for regions with size <5 Mbp, >75% should be altered for 
both gains and deletions, and (3) for regions with size > 5Mbp and chromosomal arms, >50% should be altered 
for both gains and deletions. The frequent altered regions were tested for association with the molecular subtypes 
by Fisher’s exact test.

Bladder cancer classification systems.  TCGA bladder cancer samples with GEX data was, in addition 
to the LundTax classification system, classified according to three additional classification systems; the University 
of North Carolina (UNC) classification system using the BASE47 and Claudin-low 40 (BCL40) classifiers3,4, the 
MD Anderson (MDA) Cancer Center classification system5, and The Cancer Genome Atlas (TCGA) classification 
system7.

Statistical analysis.  Statistical tests were performed using the R environment. Fisher’s exact test was used 
for testing the association with the molecular subtypes. Bonferroni correction was used for multiple test correc-
tion when needed. The significance threshold was 0.05 for all the statistical tests. The highly-infiltrated subtype 
(Inf) was excluded from Fisher’s exact tests. To find TFs with similar expression patterns, Quality Threshold 
(QT) clustering39 was performed. The used threshold distance was 0.4 and the size of the cluster was at least 3 
genes. Only QT clusters with expression variance >1 were kept, resulting in 21 QT clusters containing 94 TF 
genes. Clinical data for TCGA bladder cancer cohort (n = 407) was downloaded from Broad Institute of MIT 
and Harvard. (version 2016/01/28; http://firebrowse.org/?cohort=BLCA). Kaplan-Meier analysis and log-rank 
test were used for 5-year overall survival analysis. Samples grouped by their molecular subtype based on LundTax 
classification. Groups with less than 20 samples (i.e. Uro-Inf, n = 18 and Inf, n = 14) were excluded from the 
analysis.

Data availability.  All datasets used in the current study are publically available as described in the methods 
section.
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