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We demonstrate the use of a phase-only spatial light modulator for the measurement of transverse spatial
distributions of coincidence counts between twin photon beams, in a fully automated fashion. This is
accomplished by means of the polarization dependence of the modulator, which allows the conversion of a
phase pattern into an amplitude pattern. We also present a correction procedure, that accounts for
unwanted coincidence counts due to polarization decoherence effects.

S
patial variables of photon pairs have proven to be a useful tool to investigate quantum entanglement and
quantum information1, particularly due to their high-dimensional nature2–4, capacity for quantum state
engineering5–7, and application to quantum communication8,9 and quantum imaging10–13. Spatial correla-

tions can be measured by digitizing the detection planes and obtaining a raster graphic of the correlations. This
kind of measurement can be accomplished by raster-scanning single-pixel detectors in the transverse plane14–17,
using single-photon sensitive CCD cameras18–22, with other methods such as compressed sensing23, or using
interferometric techniques24,25, for instance. These methods involve reconstructing the marginal probability
distributions associated to the spatial variables.

The spatial light modulator (SLM) has revolutionized the types of operations that can be implemented on the
spatial variables of the field. In general, the SLM applies a user-defined position-dependent phase S(x, y) on the
incident wavefront. In this way, it is possible to engineer high-dimensional entangled states26 and also implement
a number of quantum logic gates27 in the spatial variables. Particular interest has been payed to the orbital angular
momentum degrees of freedom, where SLM’s have been used to test entanglement28 and Bell’s inequality29 as well
as mutually unbiased bases in six dimensions30, and to simulate stronger-than-quantum correlations31. An
interesting aspect of certain types of SLMs is the fact that they can be polarization-dependent, imprinting a phase
on the field for–say–horizontal (H) polarization and doing nothing when the polarization is vertical (V).
Considering both the polarization and spatial degrees of freedom, the action of the SLM can be described by
the operator

S~ Vj i Vh j6Iz Hj i Hh j6eiS x,yð Þ, ð1Þ

where I is the identity. Using this coupling, quantum logic gates between polarization and spatial parity qubits
have been implemented32, a qubit coupled to a chaotic quantum harmonic oscillator has been studied33, a single
photon and classical channels have been multiplexed in a few-mode fiber34, spatial moments have been measured
directly35, and an optical integration algorithm has been performed36. In Ref. [37], quantum tomography was
performed on the polarization qubit for constant homogeneous phases of the SLM, showing that the SLM
implements S with a fidelity of about 92%. The imperfect fidelity is due primarily to a slight decoherence of
the polarization induced by the SLM. This decoherence can have a detrimental effect on quantum logic gates, and
needs to be corrected in some situations36.

Here we show that the coupling between the polarization and the spatial degrees of freedom (DOF) can be
used to perform spatial raster-scanning of a wavefront with the SLM. In this procedure, a phase slit is
scanned across the SLM. This allows one to characterize the spatial profile of the field on the SLM in a fully
automated fashion. In our measurements we observe spatially inhomogenous background counts, resulting
from imperfections in the SLM. This reduces the visibility or constrast of the reconstructed pattern. We then
develop a model for the background counts that originate from the polarization decoherence of the SLM. All
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parameters from the model can be experimentally determined.
Using this model, we can account for the decoherence in such a
fashion that the background counts are discarded, thus increasing
the contrast of the coincidence distributions.

Raster Scanning with the SLM
Many experiments require the reconstruction of the two-photon
coincidence distribution P(xs, xi) as a function of the positions xs

and xi of the signal (s) and idler (i) photons. Traditionally, this has
been done by scanning detectors equipped with slit apertures in the
transverse plane, using micrometers or stepper motors, as in Refs.
[15,17]. More recently, digital micromirrors4 or single-photon
sensitive CCD cameras18–20 have been used. As an alternative
method, we propose to exploit the polarization properties of the
SLM. The method consists of producing a series of phase-slit
images on the SLM, which are converted into amplitude slits
through post-selection of the polarization state of light. This allows
for fully automated scanning. To produce a phase pattern with the
SLM, an 8 bit (0–255) greyscale image g(x, y) is programmed onto
its LCD screen using a computer. An incoming field receives a
phase S(x, y) 5 2pg(x, y)/256. To perform a linear scan in the
x-axis of the signal beam, we program the SLM with a sequence of
N greyscale images In composed of phase slits (n 5 0.. N 2 1) of
width D where the phase pattern is given by

an xsð Þ~
0 for nDƒxsƒ nz1ð ÞD,

p elsewhere:

�
ð2Þ

In other words, we program a zero-phase slit of width D on the
SLM in the region defined above, while all other regions have
phase p. A similar phase is applied to the idler beam i, so that
we have bm(xi), defined in the same way. We consider the two-
photon state obtained from spontaneous parametric down-conver-
sion (SPDC) in the paraxial and monochromatic approximations1:

Yj i~
ð ð

dxsdxiy xs,xið Þ xs,zj is xi,zj ii, ð3Þ

where jxj, 1æ refers to a single photon state in the position repre-

sentation and with the diagonal polarization state: zj i~ 1
. ffiffiffi

2
p� �

Hj iz Vj ið Þ. Applying the SLM operation S, on both signal and
idler beams and projecting onto the j1æsj1æi joint polarization
state, the coincidence detection probability is

P n,mð Þ~
ðnz1ð ÞD

nD

dxs

ðmz1ð ÞD

mD

dxi y xs,xið Þj j2: ð4Þ

In this way, the entire N 3 N two-photon coincidence distribution
can be reconstructed. The spatial resolution of this method
depends upon the slit width D. On the one hand, for large slit
width, the reconstructed distribution P(n, m) is strongly discre-
tized, which can cause problems when one wishes to estimate
entanglement38,39. On the other hand, when the slit width D is
narrow, unwanted background counts that appear due to imper-
fections in the operation of the SLM become increasingly more
relevant, as we will see explicitly below. In the next section we
describe a model for the origin of these background counts and
present a post-processing method to reduce them, greatly increas-
ing the fidelity with the true coincidence distribution.

Improved Scanning Method
Programming a constant phase w on the SLM, we can perform a

polarization rotation of the form zj i? Vj izexp iwð Þ Hj ið Þ
. ffiffiffi

2
p

,

on the incident field. Ideally, a subsequent polarization measurement
using a polarizing beam splitter would project this state onto the two
orthogonal polarization states j1æ and j2æ with probabilities P1 5
cos2(w/2) and P2 5 sin2(w/2). Therefore, measurements of P1 and
P2 give us an interference curve whose phase is defined by the SLM.
In Figs. 1a) and b) we show this kind of polarization interference as a
function of the uniform greyscale value applied to the SLM. In these
measurements, one photon was detected in the j1æ polarization state
and the other in the jVæ polarization state that is unsensitive to the
SLM, so as not to interfere with the polarization oscillations of the
other photon. In this way, these curves correspond to single-photon
interference curves, and provide information about the noise counts
that occur due to polarization incoherence.

The visibility is defined as

V~ Imax{Imin

ImaxzImin
, ð5Þ

where I is the coincidence count rate. Ideally, Imax 5 I, Imin 5 0 and
V~1. However, due to imperfections of the SLM, the visibility is
reduced. Fitting the curves with a sinusoidal function, we find
Vs~0:947+0:004 and V i~0:87+0:01 for the signal and idler

Figure 1 | SLM phase calibration curves. a) Phase calibration curve for photon s. b) Phase calibration curve for photon i.
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photons, respectively. In principle, the visibilities should be equal.
The difference between them is probably due to tiny phase fluctua-
tions in each single pixel40. This means that the average noise
depends on the effective number of pixels interacting with the beam,
and on the transverse field distribution. Therefore, differences in the
diameter and intensity distribution of the two beams, may lead to
different visibilities.

Let us define p as the probability that the modulation is succesfully
applied to a photon field. This means that, at the polarizing beam
splitter, the photon is transmitted when the SLM is set to apply a
phase zero and reflected when the SLM is set to apply a phase p. Then
we have Imax 5 pI and Imin 5 (1 2 p)I. When p 5 1, we recover the
ideal case. Substituting the expressions for Imax and Imin into Eq. 5
and rearranging, we find p~ Vz1ð Þ=2.

Let us see how these interference curves provide information
about the scanning measurements. The polarization measurement,
together with the ideal phase slit, given by the function an(xs, ys),
defines an aperture described by a rectangle function with transmis-
sion 1 in the region nD # x # (n 1 1)D and 0 otherwise. In practice,
due to the less than unity visibility, the effective aperture is a rectangle
function with transmission p in the region nD# x # (n 1 1)D and (1
2 p) otherwise. As p can be determined from the visibility V, we can
experimentally determine the value of p, and take the decoherence
into account.

Let us first describe our model for the simplified case where the
SLM surface is divided in 3 slit regions for each light beam, as shown
in Fig. 2. We denote Cij as the ideal (V~1) number of coincidence
counts when slit 1 is at position i and slit 2 is at position j. Here 1 and
2 refer to signal and idler, respectively. We define Nij as the measured
number of coincidence counts between these two regions. Ideally, for
a perfect SLM and perfect polarization optics, we would detect coin-
cidence counts only between photons incident on the phase slits, so
that Nij 5 Cij. However, due to the imperfections discussed above, we
detect coincidence counts that originate from other regions of the
SLM. The probability that a photon is detected when coming from a
zero phase region, implementing the equivalent of a slit, is given by
the p obtained from the visibility measurements, as explained above.
Likewise (1 2 p) is the probability that a photon is detected when
coming from a region modulated with phase p. Then, we see a
decrease in signal, since instead of detecting all ideal counts C11 we
detect pspiC11 # C11 of them. In addition, we detect unwanted counts
coming from different combinations of p-phase regions of the SLM.
For example, it is possible that photon s reflected from region 1 and
photon i from region 2 or 3, contributing to a background term.
Then, we expect a contribution from terms C12 and C13 that is pro-
portional to ps(1 2 pi). Similarly, terms like C22 and C23 appear with a
proportionality constant (1 2 ps)(1 2 pi). Summing up all these
events, we can relate the measured count rate N11 to the ideal count
rates as

N11~pspiC11zps 1{pið Þ C12zC13ð Þz 1{psð Þpi C21zC31ð Þ

z 1{psð Þ 1{pið Þ C22zC23zC32zC33ð Þ:
ð6Þ

Let us arrange the measured and ideal coincidence counts as column
vectors:

N~

N11

N12

N13

N21

N22

N23

N31

N32

N33

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

and C~

C11

C12

C13

C21

C22

C23

C31

C32

C33

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

: ð7Þ

We can write the measured coincidence counts N as a function of the
ideal coincidence counts C as

N~EC, ð8Þ

where the symmetric matrix

E~

a c c d b b d b b

c a c b d b b d b

c c a b b d b b d

d b b a c c d b b

b d b c a c b d b

b b d c c a b b d

d b b d b b a c c

b d b b d b c a c

b b d b b d c c a

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

,

and a 5 pspi, b 5 (1 2 ps)(1 2 pi), c 5 ps(1 2 pi), d 5 (1 2 ps)pi.
Finding the inverse of this matrix E21, we can find the ideal coincid-
ence counts as a function of the measured counts

C~E{1N: ð9Þ

In the more general case of d slit positions, we follow the same
procedure as outlined above, to obtain

Nij~aCijzb
X
m=i
n=j

Cmnzc
X
n=j

Cinzd
X
m=i

Cmj, ð10Þ

and the matrices E and E21 are described accordingly.

Figure 2 | Phase slits on the SLM for measurement of coincidences N11.

Figure 3 | Experimental setup. Signal (blue) and idler (red) beams are

directed onto the SLM. As can be seen in the image, each of the twin

photons is incident on one side of the SLM. Acronyms are defined in the

text.
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Experiment
Figure 3 shows a sketch of the experimental setup. Horizontally
polarized frequency-degenerate twin photons at 650 nm are gen-
erated by pumping a non-linear BBO (b-Barium Borate) crystal
with a He-Cd laser operating at l 5 325 nm. The photons are
directed onto a single SLM using mirrors and lenses. The SLM is
the Pluto reflective phase-modulation-only model fabricated by
Holoeye, with resolution 1920 3 1080 pixels and 8.0-mm pixel
pitch. A half-wave plate is used right before the SLM to prepare
the polarization state of the photons to j1æ. At the detection stage,
each beam goes through another wave plate and a polarizing beam
splitter to select the photons that reflected off of the intended
region of the SLM. The detectors are single-photon avalanche
photodiodes (APD) with large detection aperture. Lenses (focal
lengths 70 cm and 15 cm) are used to map the tranverse position
of the down-converted beams onto the SLM. For the measure-
ments, horizontal phase slits are scanned vertically on each half of
the SLM, corresponding to each beam. The total scan region for
each photon is thus 1080 pixels.

Results
In order to characterize the spatial distribution of the coincidence
counts in the absence of the SLM, we first performed the traditional
procedure of scanning the detectors in the transverse plane and
registering coincidence counts as a function of the detector position
x. In these measurements the scanning detectors were equipped with
a 20-mm slit aperture and scanned in the vertical direction. The
polarization of the photons was set to the vertical direction, so that
the SLM had no effect on the spatial distribution. Figure 4a) shows
results when detector Ds is scanned and detector Di is completely
open (area-integrating). Fig. 4b) shows results when the detectors are
scanned in opposite directions, giving the coincidence distribution as
a function of xs 2 xi. The data of both figures fit well to gaussian
functions. We also see that the tails of the gaussians go to zero,
indicating low background counts outside the coincidence region.

Next we performed scanning measurements, this time using the
SLM as described in the previous section. Figure 5 shows several two-
dimensional scans, obtained by scanning in the vertical direction of
the signal and idler photons. The scans were performed using phase

Figure 4 | Experimental results when the detectors are scanned in the transverse plane. a) The marginal coincidence distribution Cs(xs). b) The marginal

coincidence distribution C2(xs 2 xi).

Figure 5 | Experimental results for 2D scans. The top row corresponds to raw data, giving distributions N. The bottom row corresponds to corrected data

C. The splitting of the elliptical shapes seen in the smaller slit widths is probably due to the mapping of the intensity distribution of the pump-laser

beam, which happens when the coincidences are measured in the near field.

www.nature.com/scientificreports
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slits of widths: 40, 36 (not shown), 30, 20, 15 and 10 pixels, as
depicted in the different graphs. In all measurements (with SLM
and with scanning detectors) accidental-coincidence count rates,
defined as Cacc 5 csciDt, were subtracted. In this formula, cs and ci

are the detector single-photon count rates and Dt is the temporal
coincidence window. The upper row shows the raw uncorrected data,
giving the raw distributions N. The usual elliptical pattern showing
spatial correlations can be seen. As the slit width decreases in size, an
increasingly prominent background contribution can be observed,
which appears as the cross-shaped pattern covering the entire scan-
ning region. It can be seen that the contrast decreases as the slit size
decreases. The lower row of Figure 5 shows the data when the cor-
rection procedure described above has been applied, giving the cor-
rected distributions C. We can observe that the background counts
are greatly reduced. The correction procedure is less effective for
smaller slit sizes, where the signal-to-noise ratio is smaller. As the
phase noise in the SLM is time dependent40 within the millisecond
range, this noise is more effective when the photon flux is small.

To better observe the reduction in background counts, in Figure 6
we show one-dimensional marginal distributions for only the signal
photon as a function of the slit position. Red circles correspond to
uncorrected data Ns and blue squares to corrected data Cs. Gaussian
curve fits serve as a guide to the eye. We observe that the inhomo-
genous background contribution, represented by the flat tails of the
gaussian distributions, is nearly eliminated in the corrected measure-
ments. These plots can be compared to Fig. 4a), which was obtained
by scanning the detector D1 directly. Using the distribution shown in
Fig. 4a), we calculate the variance of the distributions Cs(xs) on the
SLM, giving Dx2

s

� �
~ 5274+170ð Þ pixels2. Converting the width of

the mechanical slit in terms of the dimensions of the SLM pixels, and
taking into account the magnification of the optical system, the result
obtained is nearly 13 pixels. Therefore, we compare it to the variance

of the corrected distribution obtained with a 15 pixel width phase slit,
obtaining (5771 6 380) pixels2, showing compatibility to within
experimental error. Calculating the variance directly from the uncor-
rected data gives a value that is incorrect by several orders of
magnitude.

To quantify the improvement in background counts, we define the
contrast C~cmax=ctail , where cmax is the count rate at the maximum
of the gaussian, and ctail is the nearly constant count rate at the flat tail

Figure 6 | Experimental results for the marginal distributions of the signal photon. Red circles correspond to raw data Ns, and blue circles to data

processed according to the procedure described in the paper, giving Cs.

Figure 7 | Contrast as a function of the width of the phase slit, for
uncorrected measurements Ns (red circles) and corrected measurements
Cs (blue squares).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5337 | DOI: 10.1038/srep05337 5



of the gaussian distribution. In Figure 7 we plot the contrast for both
uncorrected and corrected measurements as a function of the slit
size, and do a linear fit to the data. The ratio of the slopes of the lines
is about 15.75, showing that we obtained an improvement in the
contrast of more than an order of magnitude for the corrected data.

By summing the coincidence distributions (N or C) over the diag-
onal variable xs 1 xi, we have the marginal coincidence distributions
N2 and C2 for the anti-diagonal variable xs 2 xi, as shown in Fig. 8.
Red circles correspond to raw data N2 and blue squares to corrected
data C2. We can see that the corrected data more closely approx-
imates the distribution C(xs 2 xi) shown in Fig. 4b).

Our method is the simplest correction, in the sense that we assume
that the value of ps (pi) is the same for all pixels of the signal (idler)
photon. We believe that more sophisticated methods are also viable,
if one takes into account more technical details about the SLM.

Conclusion
In conclusion, we have presented a method for performing scanning
measurements of spatial correlations of photons using an imperfect
phase-only SLM. Exploiting the polarization dependence of the
device, we use polarization interference measurements to turn a
phase mask into an amplitude mask. We present a model that takes
into account inhomogenous background counts introduced by the
SLM and other imperfections in the system. We observe a consid-
erable increase in contrast. We show that our method is useful for
characterizing and studying spatial correlations of photon pairs.
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