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Abstract: Donor-doped strontium titanate (SrTiO3) is one of the most promising n-type oxide
thermoelectric materials. Routine doping of La at Sr site can change the charge scattering mechanism,
and meanwhile can significantly increase the power factor in the temperature range of 423–773 K.
In addition, the introduction of Sc partially substitutes Sr, thus further increasing the electron
concentration and optimizing the electrical transport properties. Moreover, the excess Sc in the
form of Sc2O3 composite suppresses multifrequency phonon transport, leading to low thermal
conductivity of κ = 3.78 W·m−1·K−1 at 773 K for sample Sr0.88La0.06Sc0.06TiO3 with the highest
doping content. Thus, the thermoelectric performance of SrTiO3 can be significantly enhanced by
synergistic optimization of electrical transport and thermal transport properties via cation doping
and composite engineering.

Keywords: strontium titanate; rare earth doping; composite; thermal expansion; lattice thermal con-
ductivity

1. Introduction

With the sustainable development of global industrialization, the demand for en-
ergy is rapidly growing in recent years, which promotes researchers to explore clean and
renewable energy technology. Thermoelectric (TE) materials, enabling the direct inter-
conversion between heat and electricity based on the Seebeck effect and the Peltier effect,
would play important role in the energy depletion [1–3]. The conversion efficiency of
TE materials is essentially determined by the dimensionless figure of merit ZT = σS2T/
(κlat + κe). where σ, S, T, κlat, and κe represent the electrical conductivity, Seebeck coefficient,
absolute temperature, the lattice and electronic components of thermal conductivity κtot, re-
spectively [4]. Accordingly, high thermoelectric properties require synergistic optimization
of electrical and thermal transport properties, and thus lattice softening [5], nanostructure
engineering [6,7], band convergence [8–10], multiscale phonon scattering including dislo-
cation engineering [11,12], point defect and grain boundary scattering [13,14], have been
proposed and developed in these years.

Due to the low-cost, excellent thermal stability, environmental compatibility, and
unique oxidation-proof features at high temperatures, transition metal oxides such as
NaxCoO2 [15,16], and Ca3Co4O9 [17–19] are suitable for p-type thermoelectric candidates.
Especially, their significantly high thermal stability allows maintaining large temperature
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differences (∆T) in thermoelectric devices, making them possible to achieve high out-
put power [20,21]. However, the poor electrical conductivity restricts the power factor
(PF = σS2) and thermoelectric figure of merit ZT. Therefore, many researches have been
focusing on the strategies for optimizing the electrical transport properties. For example, a
PF as high as 18.92 µW·cm−1 K−2 at 1100 K in NaxCoO2 can be realized via Ag composite
with large electron density of ~1021·cm−3 [22].

For n-type oxide thermoelectric materials, strontium titanate (STO) undergoing donor-
doping has obtained much attention as a result of their promising thermoelectric proper-
ties [23,24]. The band structure calculations reveal that there are heavy and light bands
around the Fermi level contributing to the electron transport in SrTiO3, favoring large
Seebeck coefficients [25]. In this situation, large power factors of 28–36 µW·cm−1 K−2 at
room temperature has been achieved in n-type Sr1-xLaxTiO3 single crystal with relatively
high carrier concentrations of (0.2–2) × 1021 cm−3 [26]. However, the thermoelectric per-
formance can be further boosted with reduced thermal conductivities. In context of the
lattice thermal conductivity κlat contributing 75–100% of the total thermal conductivity,
suppression of phonon transport would enable the optimization of thermoelectric perfor-
mance in perovskite titanate thermoelectrics (ABO3) [27]. The simple and effective strategy
is to introduce point defects by disordering A site to strengthen the phonon scattering. It
is reported that doping ions with a smaller ion radius at the A site can reduce thermal
conductivity well, while doping ions with a closed radius with Sr can significantly improve
electrical transport performance [28,29].

In this work, La doping and Sc2O3 composite have been utilized for the synergistic
optimization of electrical and thermal transport properties. Substitution Sr with trivalent La
aims to increase the electrical conductivity of SrTiO3, while compositing Sc2O3 is expected
to reduce the thermal conductivity. The power factor reaches 9.41 µW·cm−1·K−2 at 517 K.
In addition, point defect induced the stress and mass fluctuation favor for the enlargement
of expansion coefficients and reduction of lattice thermal conductivity. As a result, the
ZT = 0.143 has been obtained for the sample Sr0.88Sc0.06La0.06TiO3 at 773 K.

2. Materials and Methods
2.1. Sample Preparation

Undoped and doped strontium titanate powders were prepared by solid state reaction
method, using SrCO3 (99.8%), TiO2 (99.8%), La2O3 (99.9%), and Sc2O3 (99.9%) as raw mate-
rials. These powers were weighted according to the stoichiometric ratio Sr1-x-yScxLayTiO3
(x = 0, 0.04, 0.06; y = 0, 0.06), and mixed via ball milling at a speed of 200 r/min for 48 h
with stainless steel pots and zirconia balls. The as-obtained mixtures were cold-pressed
into tablets with φ10 mm × 2 mm, which were then placed in a muffle furnace for anneal-
ing at 1573 K for 6 h in air. The as-annealed samples were ground into fine powders by
ball milling again with 500 r/min for 12 h. Finally, dense ceramic samples (φ10 mm ×
2 mm) were prepared by spark plasma sintering (SPS) with graphite dies under 1473 K and
30 MPa for 5 min.

2.2. Phase and Microstructure Characterization

The phase purity of the as-prepared samples was examined by powder X-ray diffrac-
tion (PXRD, Rigaku, Japan, Cu Kα radiation, λ = 1.541854 Å, 20◦ < 2θ < 80◦, step width
0.02◦) at room temperature. The lattice parameters were calculated using the software
of WinCSD (version 4.19, L. Akselrud. Kyiv, Ukraine) [30]. The microstructure and com-
position were characterized by scanning electron microscope (SEM; ZEISS Gemini 300,
Jena, Germany), equipped with energy-dispersive X-ray spectroscopy (EDX), which was
performed at the accelerating voltage of 15 kV (Oxford X-MAX, Oxford, UK). The average
grain sizes were examined from the observed microstructure by image analysis using the
Image-Pro program (Plus 6.0, 2018, Media Cybernetics, MD, USA) [31].
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2.3. Thermoelectric Performance Measurements

The Seebeck coefficient and electrical conductivity of the samples were simultaneously
measured using a ZEM-3 instrument (ULVAC-RIKO, Kanagawa, Japan) under helium
atmosphere from room temperature to 773 K. The room temperature Hall coefficient (RH),
Hall carrier concentration (nH), and Hall mobility (µH) were collected with a Hall effect
test system (Lake Shore 8400, Westerville, OH, USA) using the four-probe van der Pauw
method under a reversible magnetic field of 0.9 T. The thermal expansion coefficients were
obtained from 500 K to 800 K by a thermomechanical analyzer (NETZSCH, TMA 402F3,
Selb, Germany). The thermal conductivity can be calculated according to the equation
κ = Cpλd, where Cp is the specific heat capacity, λ is the thermal diffusivity, and d is the
density. A laser flash diffusivity (NETZSCH, LFA467, Selb, Germany) was used to measure
λ of a tablet sample with a diameter of 10 mm and a typical thickness of 1–2 mm. Prior
to the measurement, the samples were coated with a thin graphite layer to minimize
the error of material emissivity. The specific heat capacity (Cp) was determined by the
experimental measurement with a thermal analyzer (NETZSCH, STA 449F3, Selb, Germany)
using sapphire as reference sample. The density d was measured at room temperature by
applying the Archimedes method with ethanol as the immersion liquid.

3. Results and Discussion

The PXRD results of Sr1-x-yScxLayTiO3 (x = 0, 0.04, 0.06; y = 0, 0.06) samples are shown
in Figure 1a. Almost all diffractions are well consistent with cubic perovskite structure
(Figure 1d.) despite the fact that a small amount of impurity phase identified as Sc2O3 and
Ti1.87O3 can be tracked. Figure 1b displays the diffractions around 33◦, which are basically
unchanged for single-doped samples. This can be understood from the low solid solubility
of Sc in SrTiO3 due to the large difference in ionic radius [32]. As a matter of fact, Sc is
usually treated as dopant for Ti in SrTiO3 to tune the physical properties [33]. High-angle
shift is observed for La/Sc co-doped samples, demonstrating that La can successfully
substitute Sr since the ionic size of La3+ (1.36 Å, 12-coordination) is slightly smaller than
that of Sr2+ (1.44 Å, 12-coordination) [34]. The dependences of lattice parameters on the
doping contents verify the conclusion presented in Figure 1c. The lattice parameters are
constant with single Sc doping, and get smaller when La substitutes Sr in SrTiO3.

Figure 2a presents the SEM image of the surface for the co-doped sample
Sr0.9Sc0.04La0.06TiO3. The element distributions of Sr0.9Sc0.04La0.06TiO3 are basically ho-
mogeneous (Figure 2b–f), suggesting La and partial Sc can be dissolved into the matrix.
However, a small amount of Sc enrichment area can also be observed, indicating that the
low solution limit of Sc, which is well in agreement with the XRD results. Table 1 shows
the real compositions of Sr1-x-yScxLayTiO3 (x = 0, 0.04, 0.06; y = 0, 0.06) detected by EDS,
close to the nominal compositions designed in this work.

The average grain sizes were measured from SEM images by image analysis using the
Image-Pro program [31], as can be seen in Table 2. With the increase of doping amount, the
average grain sizes are almost the same, ranging from 1.35 µm to 1.87 µm. It is reported
that the mean free paths of electron and phonon in SrTiO3 are about 1 nm and 2 nm,
respectively [35,36]. Thus, the large grains would not result in the essential difference in
electron and phonon transport for samples Sr1-x-yScxLayTiO3 (x = 0, 0.04, 0.06; y = 0, 0.06).
The measured densities are very close to the ideal value of single crystal SrTiO3, suggesting
dense feature for bulk samples.
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peak in the vicinity of 33°, (c) lattice parameter and volume of Sr1-x-yScxLayTiO3 (x = 0, 0.04, 0.06; y = 
0, 0.06) ceramics as function of the doping contents, (d) crystal structure diagram of SrTiO3. 

 
Figure 2. (a) SEM images of typical sample Sr0.9Sc0.04La0.06TiO3; (b–f) the corresponding elemental 
distribution for Ti, O, Sr, La, and Sc. 

Table 1. The real compositions of Sr1-x-yScxLayTiO3 (x = 0, 0.04, 0.06; y = 0, 0.06) detected by EDS. 

Nominal Comp. Ti (%) O (%) Sr (%) La (%) Sc (%) Real Comp. 
SrTiO3 20.01 ± 0.27 60.04 ± 0.12 19.95 ± 0.25 - - SrTi0.997O3 

Sr0.96Sc0.04TiO3 20.03 ± 0.16 60.05 ± 0.13 19.20 ± 0.15 - 0.72 ± 0.28 Sr0.959Sc0.036Ti1.001O3 
Sr0.9Sc0.04La0.06TiO3 19.88 ± 0.21 60.18 ± 0.31 17.98 ± 0.19 1.14 ± 0.09 0.82 ± 0.32 Sr0.897Sc0.040La0.058Ti0.99O3 
Sr0.88Sc0.06La0.06TiO3 20.02 ± 0.18 59.92 ± 0.21 17.69 ± 0.20 1.21 ± 0.06 1.16 ± 0.21 Sr0.885Sc0.058La0.061Ti1.002O3 
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Table 1. The real compositions of Sr1-x-yScxLayTiO3 (x = 0, 0.04, 0.06; y = 0, 0.06) detected by EDS.

Nominal Comp. Ti (%) O (%) Sr (%) La (%) Sc (%) Real Comp.

SrTiO3 20.01 ± 0.27 60.04 ± 0.12 19.95 ± 0.25 - - SrTi0.997O3
Sr0.96Sc0.04TiO3 20.03 ± 0.16 60.05 ± 0.13 19.20 ± 0.15 - 0.72 ± 0.28 Sr0.959Sc0.036Ti1.001O3

Sr0.9Sc0.04La0.06TiO3 19.88 ± 0.21 60.18 ± 0.31 17.98 ± 0.19 1.14 ± 0.09 0.82 ± 0.32 Sr0.897Sc0.040La0.058Ti0.99O3
Sr0.88Sc0.06La0.06TiO3 20.02 ± 0.18 59.92 ± 0.21 17.69 ± 0.20 1.21 ± 0.06 1.16 ± 0.21 Sr0.885Sc0.058La0.061Ti1.002O3

Table 2. Average grain sizes, densities, and thermal expansion coefficients of samples Sr1-x-yScxLayTiO3 (x = 0, 0.04, 0.06;
y = 0, 0.06).

Sr1-x-yScxLayTiO3 Average Grain Size (µm) Real Density (g cm−3) Thermal Expansion Coefficients
(10−5 K−1, 500–800 K)

SrTiO3 1.77 ± 0.07 5.105 1.00 ± 0.01
Sr0.96Sc0.04TiO3 1.87 ± 0.01 4.997 1.01 ± 0.01

Sr0.9Sc0.04La0.06TiO3 1.35 ± 0.07 5.124 1.02 ± 0.01
Sr0.88Sc0.06La0.06TiO3 1.35 ± 0.05 5.134 1.08 ± 0.01

Figure 3 shows the temperature-dependence of the electrical transport properties
for Sr1-x-yScxLayTiO3 (x = 0, 0.04, 0.06; y = 0, 0.06) ceramics. As can be seen in Figure 3a,
the pristine SrTiO3 and single Sc-doped samples exhibit metal-like conductive behaviors.
Meanwhile, the electrical conductivity of Sr0.96Sc0.04TiO3 increases slightly in comparison
with undoped SrTiO3, confirming finite substitution of Sc3+ for Sr2+, which introduces
extra electrons and increases the electron concentration (Figure 3b). La-doping enhances
the electrical conductivity of SrTiO3 significantly, and the conduction behaviors transform
from metal to semiconductor before 468 K. The electrical conductivity increases at low
temperatures, while decreases at high temperatures with increasing temperature, which
are consistent with the results reported in the literatures [23,37]. However, the values of
electrical conductivity are lower than the data reported in the literatures, which is probably
ascribed from the Sr vacancy since Sc hardly substitutes Sr.
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At room temperature, Sr0.96Sc0.04TiO3 sample has the largest electrical conductivity
because of its high mobility (Figure 3b). For La/Sc co-doped samples, the carrier mobilities
µH descend, resulting in the low electrical conductivity. At high temperature, the electrical
conductivity of all samples monotonically increase with the rise of the doping concentration,
which is derived from the donor doping effect. Figure 3c shows the Seebeck coefficients of
Sr1-x-yScxLayTiO3 (x = 0, 0.04, 0.06; y = 0, 0.06) depending on the temperature. The negative
S in all measurements indicates that Sr1-x-yScxLayTiO3 ceramics are n-type semiconductors.
The absolute values of Seebeck coefficient for Sr1-x-yScxLayTiO3 increases as the temperature
rises, and doping suppresses the Seebeck coefficient since it is inversely proportional to
the carrier concentration as follows: S~[π/(3n)]2/3 m × T (m is the electron effective
mass) [38]. The power factors PF are calculated from σS2 and presented in Figure 3d. The
undoped and single-doped Sc samples have the largest power factor at room temperature
(9.8 µW·cm−1·K−2 at 320 K). For the co-doped samples, the peak values shift to the high
temperature and PF = 9.41 µW·cm−1·K−2 has been achieved for Sr0.88Sc0.06La0.06TiO3.

The thermal expansion coefficients (αV) ranging from 500–800 K for these samples are
shown in Table 2. With the increase of the doping amount at the Sr site, this parameter
increases monotonically, which leads to the reduction in the lattice thermal conductivity
(Figure 4b). The lattice thermal conductivity is inversely proportional to the absolute value
of the average volumetric thermal expansion coefficients, expressed by Grüneisen’s law
and the Slack phonon model as follows:

αV =
βT
V

γC (1)

κlat = A
Mθ3

dδ

γ2n2/3T
(2)

where A is a constant, M is the average atomic mass, n is the number of atoms per
unit cell, δ3 is the volume per atom, T is the absolute temperature, γ is the average
Grüneisen parameter for the acoustic branches, and θd is the Debye temperature, βT is
the isothermal compressibility, C is the heat capacity, and V is the molar volume. From
Equations (1) [39] and (2) [40], αV is directly proportional to the Grüneisen parameter γ
under certain conditions. On the other hand, γ is usually the parameter that characterizes
the strength of anharmonic inversely proportional to κlat.
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Lattice thermal conductivity κlat is calculated by subtracting κe from κtot, and the
electronic contribution κe is estimated according to the Wiedemann-Franz law (κe = LσT)
with the Lorentz umber (L) estimated from the single parabolic band (SPB) model [38]. The
contribution of κe to the total thermal conductivity κtot is too low, which can be negligible
in this work. Thus, the varieties of κtot and κlat on the temperature are basically identified
(Figure 4a,b). The pristine SrTiO3 exhibits a high thermal conductivity at room temperature,
reaching 9.38 W·m−1·K−1. The relatively high thermal conductivity restricts figure of
merit ZT, and additional scattering mechanism should be introduced to lower the lattice
thermal conductivity. Figure 4b displays the lattice thermal conductivity decreases with
increasing the temperature which basically conforms to the relationship of T−1, indicating
that phonon scattering is dominant at high temperatures.

The lattice thermal conductivity drops sharply with La and Sc doping in SrTiO3.
Such a significant reduction mainly ascribes to the point defect scattering due to the mass
fluctuation and strain fluctuations (described by disorder scattering factors ΓM and ΓS,
respectively) between La/Sc and Sr, and thereby giving rise to the reduction of the lattice
thermal conductivity at room temperature. The τ−1

PD (phonon-point-defect scattering) and
disorder scattering factors can be obtained through [41]:

τ−1
PD = τ−1

S + τ−1
M =

Vω4

4πv3
s
(ΓS + ΓM) (3)

Γ = ΓS + ΓM (4)

ΓS =
∑n

i=1 ci

(
Mi
M

)2
f 1
i f 2

i εi

(
r1

i −r2
i

ri

)2

∑n
i=1 ci

(5)

ΓM =
∑n

i=1 ci

(
Mi
M

)2
f 1
i f 2

i

(
M1

i −M2
i

Mi

)2

∑n
i=1 ci

(6)

where ω is the phonon frequency, and vs is the sound speed. The disorder Γ is related
to both mass fluctuation scattering ΓM and strain field ΓS. ci is the relative degeneracy
of the site, fi is the fractional occupation, Mi and ri are the average mass and radii of
element, respectively, and M is the average mass [42]. The difference in the ionic radius
between Sr and rare earth elements leads to high distortion into the lattice and thus reduces
the lattice thermal conductivity. In addition, Sc2O3 as a composite phase, plays a role in
low-frequency phonon scattering, favoring the reduction of lattice thermal conductivity.
The total thermal conductivity of the sample Sr0.88Sc0.06La0.06TiO3 significantly reduced to
6.97 W·m−1·K−1 at room temperature, which is 25.6% lower than the pristine sample.

Figure 5 plots the ZT values as a function of temperature from 323 K to 773 K. The ZT
values increase with the rise of the temperature, and the largest ZT = 0.143 at 773 K has been
achieved for composition Sr0.88Sc0.06La0.06TiO3. In comparison with the value reported in
literature with single La doping at the same temperature (ZT~0.2) [43], the thermoelectric
performance is uncompetitive in this work. However, the composite engineering turns
out to be an effective route to optimize the electrical and thermal transport properties of
thermoelectric materials.
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