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Simple Summary: Naproxen was loaded onto a magnetic nanoparticle coated with polyethylene
glycol. Magnetic nanoparticles (MNPs) were used in this study to develop a smart naproxen delivery
system. One of the most potent COX-1 and COX-2 inhibitors is naproxen, which belongs to the
NSAID family of drugs. Although this drug has a short half-life, it has considerable toxicities and
side effects on gastrointestinal tissues. The significant potential of our proposed nanocarrier for
biomedical applications has been widely recognized; we modified MNPs to attach to this drug via
disulfide bonds, promote the selective release of naproxen in inflammatory cells, and prevent adverse
effects on the digestive system. It was found that the cytotoxicity of the drug was lowered by this
change, which prevented unspecific protein binding.

Abstract: An efficient and selective drug delivery vehicle for cancer cells can remarkably improve
therapeutic approaches. In this study, we focused on the synthesis and characterization of mag-
netic Ni1−xCoxFe2O4 nanoparticles (NPs) coated with two layers of methionine and polyethy-
lene glycol to increase the loading capacity and lower toxicity to serve as an efficient drug car-
rier. Ni1−xCoxFe2O4@Methionine@PEG NPs were synthesized by a reflux method then charac-
terized by FTIR, XRD, FESEM, TEM, and VSM. Naproxen was used as a model drug and its
loading and release in the vehicles were evaluated. The results for loading efficiency showed
1 mg of Ni1−xCoxFe2O4@Methionine@PEG NPs could load 0.51 mg of the naproxen. Interest-
ingly, Ni1−xCoxFe2O4@Methionine@PEG showed a gradual release of the drug, achieving a time-
release up to 5 days, and demonstrated that a pH 5 release of the drug was about 20% higher than
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Ni1−xCoxFe2O4@Methionine NPs, which could enhance the intracellular drug release following
endocytosis. At pH 7.4, the release of the drug was slower than Ni1−xCoxFe2O4@Methionine NPs;
demonstrating the potential to minimize the adverse effects of anticancer drugs on normal tissues.
Moreover, naproxen loaded onto the Ni1−xCoxFe2O4@Methionine@PEG NPs for breast cancer cell
lines MDA-MB-231 and MCF-7 showed more significant cell death than the free drug, which was
measured by an MTT assay. When comparing both cancer cells, we demonstrated that naproxen
loaded onto the Ni1−xCoxFe2O4@Methionine@PEG NPs exhibited greater cell death effects on the
MCF-7 cells compared with the MDA-MB-231 cells. The results of the hemolysis test also showed
good hemocompatibility. The results indicated that the prepared magnetic nanocarrier could be
suitable for controlled anticancer drug delivery.

Keywords: drug delivery; Ni1−xCoxFe2O4 NPs; methionine; PEGylating; MTT assay; cell line

1. Introduction

Cancer includes a variety of diseases in which the growth of malignant cells has the
potential to spread to other parts of the body [1–3]. One of the most common cancers is
breast cancer in women; most deaths from breast cancer are due to its drug resistance and
the potential for metastasis to distant organs [4–6]. There are several pathways involved in
the modulation of breast cancer. One of these pathways is the use of nanoparticles (NPs)
carrying anticancer agents that can be delivered to the targeted tumor and the treatment of
breast cancer [7,8].

Drug delivery is a major topic of research in biomedicine that controls drug delivery
and therapeutic drugs to target cells [9–11]. However, nanotechnology creates products that
exhibit novel properties at nanoscale levels, which offer new tools for biologists [12–14].
Recently, the use of various organic–inorganic hybrid NPs because of advances in nanotech-
nology has drawn significant attention [15]. Studies have shown that modified magnetic
NPs can be used in vivo as they increase the efficacy of drug delivery [16].

Magnetic NPs (MNPs), due to their potential in medical applications, have received
extensive attention in biomedical communities [17–19]. They have a spinel structure with
unique properties such as a considerable specific surface area, a small size, high saturation
magnetization, and controlled magnetic behavior [20–23]. Amongst the magnetic NPs
(MNP), cobalt ferrite (CoFe2O4) has drawn significant attention because the change of met-
als in its composition can substantially affect its physical and chemical characteristics as well
as its biocompatibility to serve as a drug delivery system [22,24,25]. Spinel ferrites (SFs) can
be used in medical diagnostics and therapy such as magnetic resonance imaging, controlled
drug delivery, gene delivery, bioseparation, and therapeutic hyperthermia [26,27].

Biomedical applications must modify the surface of magnetic NPs to make them
more stable before they are used for drug delivery to improve the limitations of these NPs,
which include their destabilization effect and non-specific uptake by the RES; the size of
magnetic NPs is also limited by the main immunogenic region [28–31]. Surface modifica-
tion is required for biomedical applications to begin coating them with stimuli-responsive
magnetic NPs that respond when exposed to external stimuli and can generate physico-
chemical changes in the structure that favor controlled drug release or release at a specific
place [32–34]. Recently, the use of various organic–inorganic hybrid nanoparticles because
of advances in nanotechnology has drawn significant attention. Methionine is one of the
most crucial and primary biocompatible amino acids in the human body and it has been
specialized for physiological purposes in vivo. Methionine has two active functional groups
(-COOH and -NH2) that can be used for metal atom conjugation [35–37]. The conjugation of
amino acids with polyethylene glycol (PEG) shows important therapeutic benefits. The use
of NPs with PEG coatings inside biological samples has several advantages. For in vivo ap-
plications, PEG coatings can increase the particle circulation time by reducing protein and
cell adsorption on the particles and decreasing the clearance rate of “PEGylated” materials.
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Herein, we report the magnetic nanoformulations in which Ni1−xCoxFe2O4 NPs
were coated with methionine as an inner layer and polyethylene glycol as an outer layer.
NSAIDs (non-steroidal anti-inflammatory drugs) such as naproxen, which are potent
COX-1 and COX-2 inhibitors [38], have been studied; drug loading and release behavior
using naproxen as a drug model on Ni1−xCoxFe2O4@Methionine@PEG NPs have not been
previously studied. MTT assays with different doses and incubation times were used to
determine cytotoxicity in vitro using this as a carrier.

2. Materials and Methods
2.1. Materials

To prepare the Ni1−xCoxFe2O4@Methionine@PEG NPs, FeCl3·6H2O (CAS #: 10025-
77-1), CoCl2·6H2O (CAS #: 7791-13-1), NiCl2·6H2O (CAS #:7791-20-0), NaOH (CAS #:
1310-73-2), and methionine (CAS #: 63-68-3) were used as an inner shell of magnetic
NPs; polyethylene glycol 6000 (PEG-6000) (CAS #: 25322-68-3) was used as an outer layer.
Penicillin-streptomycin (CAS #: P4333), thiazolyl tetrazolium (CAS #: 298-93-1), fetal bovine
serum (FBS) (CAS #: 12103C), and dimethyl sulfoxide (CAS #: 67-68-5) were purchased
from Merck, Germany. MCF-7, MCF10A, and MDA-MB-231 cell lines were obtained from
the Pasteur Cell Bank (Tehran, Iran). Naproxen was purchased from Daroo-Pakhsh Co.
(Tehran, Iran). All the chemicals were obtained from Merck (Berne, Germany), and all were
used as received without any purification.

2.2. Preparation of Methionine-Coated Magnetite (Ni1−xCoxFe2O4@Methionine)

In a typical experiment to synthesize an Ni1−xCoxFe2O4 NP coated with methionine
using the reflux method, briefly 1.621 g FeCl3, 0.713 g CoCl2, and 0.713 g NiCl2 were stirred
for 15 min in 90 mL of deionized water under an N2 atmosphere. The mixture was stirred
followed by the addition of 25 mL of NaOH (1.5 M) until the mixture reached a pH of
around 12. When the precipitate was obtained, magnetic stirring was used to dissolve
0.5 g of methionine in deionized water. A 70–80 ◦C heat was applied to the mixture and
it was allowed to reflux for two hours. Magnetic separation was used to collect the final
products and they were rinsed several times with a solution of ethanol and deionized
water. The same experimental technique was used to produce bare Ni1−xCoxFe2O4 NPs
without methionine.

2.3. Preparation of PEG-Coated Magnetite (Ni1−xCoxFe2O4@Methionine) NPs

A polyethylene glycol solution with a suitable concentration was prepared by dissolv-
ing PEG-6000 powder in a phosphate-buffered saline (PBS) solution. The mixture of the
PBS solution and magnetic (Ni1−xCoxFe2O4@Methionine) NPs was vigorously stirred for
30 min and then centrifuged at 6000 rpm to obtain the final NPs [29].

2.4. Characterization

An X-ray diffraction (XRD) analysis of the samples was recorded by an A X’ Pert
Pro MPD, Panalytical (Amsterdam, Netherlands) with Cu Kα radiation (λ = 1.54060 Å)
and with a 2θ range of 10–80◦ at room temperature. The emissions from the field of the
NPs were sized and morphologically characterized using scanning electron microscopy
(FESEM) and a transmission electron microscope (Zeiss EM900 Transmission Electron Micro-
scope, Cologne, Germany). It was possible to obtain infrared spectra in the 4000–400 cm−1

range by using a BRUKER spectrometer (VERTEX 70). As a function of the soaking time,
the amount of adsorbed and released medication was measured with a UV-Vis spectropho-
tometer (Shimadzu, UV-1700 Pharma spec, Tokyo, Japan). A Quantum Design MPMS-XL-7
superconducting quantum interference device (SQUID) with an external magnetic field
assessed the magnetic characteristics of the NPs produced at an ambient temperature.
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2.5. In Vitro Loading and Release of Naproxen

First, 0.1 g of nanoparticles (Ni1−xCoxFe2O4@Methionine, Ni1−xCoxFe2O4@Methionine
@PEG) were dispersed in a PBS solution. We then prepared different contents of naproxen
with 20 mL of a buffer of pH 7.4. The naproxen solution was added to the initial solution
and the mixture stood for 24 h whilst being constantly agitated. After that, the disper-
sion was centrifuged at 6000 rpm and washed twice to collect the naproxen-loaded NPs;
the supernatant was saved for estimating the drug loading concentration. UV-Vis spec-
troscopy was used to determine the loading capacity at a wavelength of 230 nm to assess
the remaining drugs in the supernatants. The loading capacity was then computed using
a standard calibration curve with various known drug concentrations. Equation (1) was
used to compute the amount of loaded naproxen:

Loading (%) = (C0V0 − CtVtα)/(w)× 100 (1)

where C0 indicates the initial concentration of naproxen, Ct represents the drug concentra-
tion determined by the standard naproxen curve, α is the dilution ratio, V0 and Vt are the
volumes of the aqueous phase in mL, and w (mg) is the weight of the nanocarrier.

Samples containing 20 mg of naproxen were placed in 20 mL of PBS at various pH
values (5 and 7.4) and shaken at a constant rate (100 r/min) for a specific time in the dark
at a constant temperature (37.5 ◦C). Each time the supernatant was removed, the volume
of the new PBS with the same pH value was equally balanced. According to Equation (2),
the UV-Vis method at a wavelength of 230 nm was used to calculate the proportion of
naproxen that had been released:

Drug release (%) = (Ce×V)/W × 100 (2)

where V (mL) is the volume of buffer solution, W (mg) is the amount of drug loading,
and Ce (mg/mL) is the concentration of naproxen in the supernatant.

We used various kinetic models such as zero-order, first-order, Higuchi, Korsmeyer–
Peppas, and Hixson–Crowell.

2.6. In Vitro Cytotoxicity

On cancer cell lines MCF-7 and MDA-MB-231 as well as a normal cell line (MCF10A),
the samples were tested for their cytotoxicity using an MTT assay, which is a commonly
used technique. There were 2 × 104 cells per well and 37 ◦C humidified incubators in
96-well plates with FBS and penicillin-streptomycin to seed the cells. After a 24 h incubation
period, suspensions of various samples (0–35 µg/mL) were added to the medium and
incubated for another 24 h period as well as for 48 and 72 h. In the next step, the contents
of the 96-well plates were replaced by the MTT solution in each well after another 4 h of
incubation at 37 ◦C in a 5% CO2 environment. To dissolve the purple formazan crystals,
the medium was replaced and added to each well with 0.05 mL of dimethyl sulfoxide
(DMSO) [39,40]. Finally, the absorbance of each well was measured using a microplate
reader at 570 nm. The IC50 concentration and the cytotoxicity rate were estimated using
Equation (3):

Cell Survival rate = (absorbance of treated cells)/(absorbanece of control cells)× 100. (3)

2.7. Hemocompatibility Test

Fresh blood samples were taken from a healthy volunteer and centrifuged for 5 min at
2000 rpm to isolate the RBC cells. A total of 400 µL of the washed RBCs was diluted with
3.6 mL of PBS to produce the clear supernatant and then the cells were washed three times
with PBS. Various concentrations (2000, 1750, 1500, 1250, 1000, and 750 µg·mL−1) of the
Ni1−xCoxFe2O4@Methionine@PEG nanoformulation in PBS (0.8 mL) was mixed with the
diluted RBC suspension (0.2 mL) and kept without shaking for 2 h at room temperature.
The negative control was PBS. Centrifugation and UV-Vis spectroscopy were used to
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measure the absorbance of the supernatant at 540 nm after 2 h to determine the percentage
of hemolysis in the solution of each sample [41]. The following equation (Equation (4)) was
used to estimate the percentage of hemolysis in each sample:

Percent Hemolysis(%) : (sample absorbance− negative control absorbance/
positive control absorbance− negative control absorbance)× 10.

(4)

3. Results
3.1. XRD Analysis

The XRD patterns of the as-prepared magnetite Ni1−xCoxFe2O4 NPs, methionine-
coated samples, and PEG-coated magnetite (Ni1−xCoxFe2O4@Methionine) NPs are shown
in Figure 1, which confirmed that the Ni1−xCoxFe2O4 nanoparticle peaked at 2θ = 18.72◦,
30.35◦, 35.70◦, 43.33◦, 53.71◦, 57.23◦, and 62.84◦ and could be indexed to the planes of
(111), (022), (113), (004), (224), (115), and (044), respectively, which was in agreement with
the theoretical values (JCPDS standard data, Card No. 98-001-6669). Furthermore, in the
methionine-coated Ni1−xCoxFe2O4 nanoparticle, the peaks were at 2θ = 18.39◦, 30.24◦,
35.69◦, 43.17◦, 53.64◦, 57.23◦, and 62.84 ◦, decreasing the 2theta values and indicating the
entry of methionine into the network cavities and increasing the network space. Character-
istic diffraction peaks corresponded with the crystal planes (111), (022), (113), (004), (224),
(115), and (044), respectively (JCPDS standard data, card No. 98-001-6669) [29,37]. After
the PEGylation of the core-shell of the Ni1−xCoxFe2O4@Methionine NP with decreasing
2theta values, polyethylene glycol entered into the network cavities and the network space
increased. However, the peaks were broad after capping with PEG.
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3.2. FTIR Analysis

The FTIR spectra of all samples were recorded using an FTIR spectrophotometer in the
range of 400 to 4000 cm−1. As shown in Figure 2, methionine showed peaks at 1517 cm−1

(symmetric N–H bending), 1630 cm−1 (asymmetric N–H bending), 1419 cm−1, 1600 cm−1

(symmetric and asymmetrical stretching of COO), and 1232–1330 cm−1 (C–O band). The
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peaks of the tetrahedral and octahedral metal-oxygen complexes of Ni1−xCoxFe2O4, which
are mainly dependent on Fe–O distances, were located at 400 and 600 cm−1, respectively.
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@Methionine, (d) Ni1−xCoxFe2O4@Methionine@PEG, (e) naproxen loaded onto the Ni1−xCoxFe2O4

@Methionine@PEG, and (f) pure naproxen.

The absorption bands in the pure naproxen spectrum around 1028 cm−1 and 1264 cm−1

were due to symmetric Aryl–O stretching and asymmetric Aryl–O stretching, respectively.
The spectra around 1090 cm−1 were related to C–O stretching. The peak in the region of
1481–1604 cm−1 was caused by aromatic C=C stretching and the peaks of 1682 cm−1 and
1728 cm−1 referred to the C=O H bonds and non-H bonds stretching, respectively.

In the curve, the O–H stretch band was approximately presented at 3404 cm−1,
the C–H stretch band at 2835 cm−1, and the C–O stretch band at 1058 cm−1. These were are
all from the PEG-coated Ni1−xCoxFe2O4@Methionine NP, demonstrating the existence of
a residual PEG in the final sample. As seen in Figure 2 in curve e, hydrogen bonds were
thought to be present between naproxen and the analyzed NPs. Given the C-H stretching
groups in polyethylene glycol and the presence of oxygen in the naproxen, this possibility
was reasonable.

3.3. Magnetic Properties

As can be seen in Figure 3, the magnetic properties of the synthesized Ni1−xCoxFe2O4
@Methionine NPs, Ni1−xCoxFe2O4@Methionine@PEG NPs, and bare Ni1−xCoxFe2O4 NPs
were measured at room temperature, indicating that the Ni1−xCoxFe2O4 NPs exhibited
a superparamagnetic behavior. Figure 3a shows that the saturation magnetization of
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the bare Ni1−xCoxFe2O4 NPs was estimated to be 46.09 emu/g. Similar behavior for the
Ni1−xCoxFe2O4@Methionine NPs was observed but with less magnetization of 21.86 emu/g
(Figure 3b), and even less saturation magnetization for the Ni1−xCoxFe2O4@Methionine@
PEG NPs, which was estimated to be 16.26 emu/g.
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3.4. Morphology Study

The SEM images of the synthesized Ni1−xCoxFe2O4, Ni1−xCoxFe2O4@Methionine,
and Ni1−xCoxFe2O4@Methionine@PEG NPs are shown in Figure 4a–c, which demonstrated
that the magnetite nanoparticles were an irregular shape with an average particle size of
about 13.3 nm. The Ni1−xCoxFe2O4@Methionine and Ni1−xCoxFe2O4@Methionine@PEG
NPs were spherical and almost uniform in size with an average particle size of about
17–18 nm and 28–29 nm, respectively. Therefore, the average size of the nanoparticles
made them suitable for drug delivery applications. Figure 4d–f shows the TEM images of
the Ni1−xCoxFe2O4, Ni1−xCoxFe2O4@Methionine, and Ni1−xCoxFe2O4@Methionine@PEG
NPs, respectively. As shown in Figure 4d, the Ni1−xCoxFe2O4 magnetic NPs had a slight
agglomeration due to strong magnetic interactions between the NPs [29]. After coating the
magnetic NPs with a layer of methionine as an inner layer, a light gray shell around the
Ni1−xCoxFe2O4 NPs could be seen and, in the next step, the thickness of the polymer shell
of the nanoparticles could clearly be seen, which was increased by adding a polyethylene
glycol solution as an outer layer.

3.5. Drug Loading and Release Behavior In Vitro

Figure 5 shows the amount of naproxen that could be absorbed into the body. Using
these findings, it was concluded that the maximum amount of naproxen adsorption of the
Ni1−xCoxFe2O4@Methionine nanoparticles was 0.038 mg/mg when the initial naproxen
concentration was 0.06 mg/mL and the maximum amount of naproxen adsorption of the
Ni1−xCoxFe2O4@Methionine@PEG nanoparticles was 0.051 mg/mg. As a result, 1 mg of
Ni1−xCoxFe2O4@Methionine NPs loaded 0.38 mg and 1 mg of Ni1−xCoxFe2O4@Methionine
@PEG NPs loaded 0.51 mg of the drug, respectively.
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Figure 4. FESEM micrographs of Ni1−xCoxFe2O4 NP (a), Ni1−xCoxFe2O4@Methionine NP (b),
and Ni1−xCoxFe2O4@Methionine@PEG NP (c), and TEM images of Ni1−xCoxFe2O4 NP (d),
Ni1−xCoxFe2O4@Methionine NP (e), and Ni1−xCoxFe2O4@Methionine@PEG NP (f).
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Figure 5. Loading capacity curves of naproxen on the Ni1−xCoxFe2O4@Methionine NPs (a) and
Ni1−xCoxFe2O4@Methionine@PEG NPs (b) at different initial concentrations of the drug.

Figure 6 represents the percentage of naproxen released from the Ni1−xCoxFe2O4@
Methionine and Ni1−xCoxFe2O4@Methionine@PEG NPs synthesized as described above
(37 ◦C). For the simulated tumor environment, pH values of −5 and −7.4 were specified.
In 120 h, the release rates of both carriers were lower in neutral solution settings (pH 7.4)
than in acid solution conditions (pH 5). It was also found that, under the same conditions
(pH 5), the drug was released about 20% faster in the Ni1−xCoxFe2O4@Methionine@PEG
NPs than in the Ni1−xCoxFe2O4@Methionine NPs. The zero-order, first-order, Higuchi,
and Korsmeyer–Peppas models were used in this investigation to systematically deter-
mine the release behavior of the naproxen-loaded NPs at different pH values (5 and 7.4).
A higher linear regression coefficient (closer to 1) suggested the ideal sample release kinetic
model, as shown in Table 1. The Higuchi model was used to calculate the release data for
all samples.
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Figure 6. Cumulative release curves of naproxen from naproxen-loaded Ni1−xCoxFe2O4@Methionine
NPs at pH 5 (c) and pH 7.4 (b); Ni1−xCoxFe2O4@Methionine@PEG NPs at pH 5 (d) and pH 7.4 (a).
Data are expressed as mean ± SD (n = 5).
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Table 1. The release kinetic models and the parameters obtained for the carriers.

Release Model Equation (a)
pH = 5

(b)
pH = 7.4

(c)
pH = 5

(d)
pH = 7.4

Zero-Order Ct = C0 + K0t R2 = 0.9583 R2 = 0.9205 R2 = 0.9363 R2 = 0.914

First-Order LogC = LogC0 + Kt/2.303 R2 = 0.9842 R2 = 0.9381 R2 = 0.9607 R2 = 0.9276

Higuchi Q = KH
√

t R2 = 0.9900 R2 = 0.9878 R2 = 0.9794 R2 = 0.9867

Korsmeyer–Peppas Mt/M = Ktn
R2 = 0.9852 R2 = 0.9775 R2 = 0.9775 R2 = 0.9689

n = 0.3292 n = 0.6005 n = 0.4129 n = 0.5791

(a) Ni1−xCoxFe2O4@Methionine NPs at pH 5, (b) Ni1−xCoxFe2O4@Methionine NPs at pH 7.4,
(c) Ni1−xCoxFe2O4@Methionine@PEG NPs at pH 5, and (d) Ni1−xCoxFe2O4@Methionine@PEG NPs
at pH 7.4.

3.6. Cytotoxicity Studies

We chose human breast cancer cells (MCF-7 and MDA-MB-231) and normal cells
(MCF10A) as cell models and tested the cytotoxicity after incubation three times for 24, 48,
and 72 h with naproxen loaded onto Ni1−xCoxFe2O4@Methionine NPs, free naproxen, and
naproxen-loaded Ni1−xCoxFe2O4@Methionine@PEG NPs, respectively. The MTT assay of
the MCF-7 cells (Figure 7) showed naproxen loaded onto Ni1−xCoxFe2O4@Methionine@PEG
NPs had significant cell death, which was much higher than the naproxen loaded onto
Ni1-xCoxFe2O4@Methionine; both carriers caused more cell death than free naproxen.
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Figure 7. The effect of free drug and drug-loaded carriers (a) Ni1−xCoxFe2O4@Methionine NPs
and (b) Ni1−xCoxFe2O4@Methionine@PEG NPs on the viability of MCF-7 cells after incubation for
(A) 24 h, (B) 48 h, and (C) 72 h. Data are expressed as mean ± SD (n = 5) (*** p < 0.001, ** p < 0.01,
* p < 0.05).
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According to Figure 8, the MTT experiment of the MDA-MB-231 cells showed that
naproxen loaded onto Ni1−xCoxFe2O4@Methionine@PEG NPs killed cells faster than
Ni1−xCoxFe2O4@Methionine NPs and faster than the free drug (Figure 8 for 24, 48, and
72 h, respectively). According to the comparison of the two types of cancer cells, both
carriers caused higher cell death in MCF-7 than in MDA-MB-231. As shown in Figure 9,
the drug-loaded NPs did not cause any substantial toxicity in the normal MCF10A cells
following a 72 h treatment, indicating that they were biocompatible enough to be used in
drug delivery. When naproxen was loaded onto the carriers, the growth inhibition effect
on the cancer cells improved their therapeutic possibilities. Table 2 summarizes the IC50
values of the substances against the MCF-7 and MDA-MB-231 cells, respectively.
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Figure 8. The effect of free drug and drug-loaded carriers (a) Ni1−xCoxFe2O4@Methionine NPs and
(b) Ni1−xCoxFe2O4@Methionine@PEG NPs on the viability of MDA-MB-231 cells after incubation for
(A) 24 h, (B) 48 h, and (C) 72 h. Data are expressed as mean ± SD (n = 5) (*** p < 0.001, ** p < 0.01,
* p < 0.05).

3.7. Hemocompatibility Test

The biocompatibility of materials intended for use in the biomedical field must be
appropriately evaluated. The hemolytic activity test is a reliable and scientific method for
determining the biocompatibility of a synthetic material with living systems [42].
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Figure 9. The effect of free drug and drug-loaded carriers (a) Ni1−xCoxFe2O4@Methionine NPs and
(b) Ni1−xCoxFe2O4@Methionine@PEG NPs on the viability of normal MCF10A cells after incubation
for 72 h. Data are expressed as mean ± SD (n = 5) (*** p < 0.001, * p < 0.05).
Table 2. IC50 values of naproxen and naproxen-loaded carriers on MCF-7 and MDA-MB-231 cells.

Cell Lines Incubation Time
IC50 (µg/mL−1 Naproxen)

Free Naproxen Naproxen Loaded onto a

Naproxen Loaded onto b

MCF-7
24 h 405.40 ± 97.00 117.44 ± 23.27, 138.16 ± 31.45
48 h 352.97 ± 65.34 114.98 ± 34.26, 66.29 ± 8.71
72 h 186.99 ± 33.83 57.45 ± 145.47, 44.03 ± 2.94

MDA-MB-231
24 h 405.06 ± 144.94 138.76 ± 26.93, 176.77 ± 34.64
48 h 419.54 ± 295.21 98.55 ± 15.45, 92.31 ± 13.72
72 h 218.44 ± 20.18 78.81 ± 7.71, 73.79 ± 8.46

a Ni1−xCoxFe2O4@Methionine NPs; b Ni1−xCoxFe2O4@Methionine@PEG NPs.

Nanoparticle hemocompatibility is undervalued despite the fact that most nanopar-
ticles will meet blood at some point during their path through the body. Nanoparticles
can affect the morphology of red blood cells (RBCs) or erythrocytes, resulting in hemolysis.
Hemolysis happens when the cell membrane is ruptured and the cells are lysed. By inciting
the immune system to suppress them, these negative interactions between nanoparticles
and the bloodstream may increase inflammatory and autoimmune illnesses as well as infec-
tion and malignancy [43]. The blood compatibility of Ni1−xCoxFe2O4@Methionine@PEG
was examined in this study (Figure 10). Hemolysis percentages lower than 5% were
recorded for all concentrations of Ni1−xCoxFe2O4@Methionine@PEG (150, 125, 100, 75,
50, and 25 µg·mL−1), which are regarded as safe [44]. Nanoformulation has been demon-
strated to be a safe method for the hemolysis of human erythrocytes. This may be due to
the inclusion of PEG, which facilitates NP escape from the reticuloendothelial system and
prevents macrophage scavenging. This is a solution to the unfavorable hemocompatibility
of CoFe2O4, which has been shown in previous studies to have a hemolytic effect on human
erythrocytes [45].
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Figure 10. Hemolysis percentage of Ni1−xCoxFe2O4@Methionine@PEG NPs with a positive control
at different concentrations.

4. Discussion

In our previous experiments to produce magnetic Ni1−xCoxFe2O4@Methionine
nanoparticles, we occasionally found aggregation among the particles that may have
been due to (interparticle) hydrogen bonding between the magnetic nanoparticles and me-
thionine. The answer to the problems posed by the aggregations among the particles in an
aqueous suspension is Steric hindrances; therefore, using PEG polymers (steric stabilizers)
adsorbed or grafted onto the particle surfaces, contacts among the particles were prevented
by the polymer chains extending into the medium. However, with the PEGylated magnetic
Ni1−xCoxFe2O4@Methionine nanoparticles, as shown in Figure 1c, peaks of the NPs were
observed but the intensity of the peaks was significantly reduced due to the coating of
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amorphous PEG on the surface of the core-shell of the Ni1−xCoxFe2O4@Methionine NPs;
this was in good agreement with Panwar et al. [46].

As can be seen in Figure 2c, the peaks of methionine that were determined by the spot
chain in the spectrum were similar to the peaks of Ni1−xCoxFe2O4@Methionine, which
clearly showed the presence of methionine on the surface of Ni1−xCoxFe2O4 [37]. However,
in magnetic Ni1−xCoxFe2O4 NPs and methionine, van der Waals and hydrogen forces are
thought to bind them. Given the amino acid groups in methionine and the presence of
oxygen on the nickel structure, this possibility was reasonable.

Furthermore, before coating the Ni1−xCoxFe2O4@Methionine NP by PEG, peaks in
the regions of 3404 cm−1, 2835 cm−1, and 1058 cm−1 were not observed in the spectrum of
the Ni1−xCoxFe2O4@Methionine NP. These results clearly showed the surface modification
of the Ni1−xCoxFe2O4@Methionine NP with PEG. On the other hand, according to the
TEM image of the Ni1−xCoxFe2O4@Methionine NP before PEGylation, aggregation was
found among the particles, which may be due to hydrogen bonding (interparticle) or van
der Waals forces between the magnetic nanoparticles and methionine. After the surface
coating, there was a decrease in the agglomeration, which confirmed the successful capping
of Ni1−xCoxFe2O4@Methionine with PEG.

Naproxen-loaded Ni1−xCoxFe2O4@Methionine@PEG NPs had C=O bands that shifted
from 1728 cm−1 to 1604 cm−1 because of hydrogen bonding that formed between the surface
of the carrier and the naproxen [47]. Therefore, a peak in the 808 cm−1 region of curve
e related to the bending of naproxen on the plate, resulting in the successful loading of
naproxen onto the Ni1−xCoxFe2O4@Methionine@PEG NP.

Figure 3 delineates the magnetic properties with the applied magnetic field range from
15 to 15 kOe in which the magnetization curves of the nanoparticles were measured by
SQUID. The curves of the magnetization samples described a superparamagnetic function.
That is important for biomaterials, making them easily trackable in the magnetic field
gradient whilst maintaining the advantage of a stable and homogeneous suspension during
drug delivery. When methionine was coated, bare Ni1−xCoxFe2O4 NPs were coated and the
attachment of non-magnetic groups of methionine reduced the saturation magnetization.
The saturation magnetization for the Ni1−xCoxFe2O4@Methionine@PEG NPs was also less
than that for Ni1−xCoxFe2O4@Methionine. The reduction in the magnetic properties of
the Ni1−xCoxFe2O4 NPs was due to their shells. As a result, the observed values of the
saturation magnetization of the Ni1−xCoxFe2O4 NPs with different shells confirmed the
magnetic properties of these nanoparticles.

As shown in Figure 5, there was an increase in naproxen adsorption when the initial
concentration of naproxen was raised. These findings showed that the adsorption of
naproxen benefitted from a high loading capacity. There was a strong correlation between
the loading capacity of naproxen and the initial drug concentrations; this appeared to be
due to the large specific surface area of the carrier and the hydrogen bonds between the
naproxen and the shells of the carriers. This was demonstrated when the loading capacity
of the PEGylated Ni1−xCoxFe2O4@Methionine NPs was raised.

As shown in Figure 6, when drugs are released into cancerous tissues, they are released
into acidic intracellular lysosomes, endosomes, or diseased cells. As a result, nanoparticles
could help accelerate drug release intracellularly after being internalized via endocytosis.
If this is applied, anticancer drugs may have fewer side effects on healthy cells and drug
losses during blood transport would be reduced. Under the same conditions, naproxen
was released about 20% faster in the Ni1−xCoxFe2O4@Methionine@PEG NPs than in the
Ni1−xCoxFe2O4@Methionine NPs because the nanoparticles could increase the intracellular
drug release after being internalized by endocytosis. Under an acidic pH of 7.4, the drug
release was low because a low release decreases drug loss in blood transportation; a high
release at a pH of 5 facilitated the active release of anticancer drugs and the data suggested
that both carriers were sensitive to the pH. The pH-dependent release was due to the strong
differential in the hydrogen bonding interactions between the naproxen functional groups
and the shell carrier functional groups.
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The result of the MTT assay (Figure 7) showed that the cell death of naproxen loaded
onto Ni1−xCoxFe2O4@Methionine@PEG NPs was much higher than naproxen loaded onto
Ni1-xCoxFe2O4@Methionine; both carriers caused more cell death than free naproxen as
the method of drug absorption or the cellular absorption of the drug was not the same as
that of a drug loaded onto a nanoparticle. Their cellular absorption was one of the reasons
they had varying toxicities. The drug had a shorter cross-sectional effect when taken orally
due to the faster release but when administered via nanoparticles, the drug had a longer
effect due to the slower release and the overall effect of the drug was improved [36,37].
In high amounts, the microelement cobalt can have toxic implications despite being a
cofactor of vitamin B12 [48]. That signifies that cobalt compounds are not particularly toxic.
However, cobalt compounds can cause abnormalities, mutagenesis effects, and anemia
in people [49]. Reactive oxygen species can be generated due to cobalt-induced oxidative
stress [50]. In this work, the toxicity of cobalt compounds was lowered by PEGylation in
various fields.

5. Conclusions

Recent studies have focused on magnetic formulations with amino acids or poly-
mer shells as a drug delivery mechanism. For Ni1−xCoxFe2O4 NPs, the methionine and
PEG capping agent improved the particle stabilization, drug delivery potential in vitro
characteristics, and uniform distribution of the particle size and biocompatibility. Using
naproxen as a model drug at human body temperature in normal pH settings and acidic pH
conditions, the Ni1−xCoxFe2O4@Methionine@PEG NPs were shown to have drug delivery
capabilities. The naproxen-loaded carrier slowly released the drug over the course of
120 h. Therefore, the Ni1−xCoxFe2O4@Methionine@PEG nanocarrier was pH responsive,
which could be a promising drug-releasing agent and facilitate the delivery of drugs to the
desired tissue types in patients. The fraction cell viability was characterized by an MTT
assay in which the cell death of naproxen was well-controlled through the pH-responsive
magnetic nanocarriers. We demonstrated cell viability for two cancer cell lines (MCF-7 and
MDA-MB-231) and a normal cell line (MCF10A), which showed that the drug-containing
Ni1−xCoxFe2O4@Methionine@PEG NPs were more potent than free naproxen and even
more potent than the drug-containing Ni1−xCoxFe2O4@Methionine NPs. There was a
greater MCF-7 cell inhibition effect than in the MDA-MB-231 cell. None of the drug-loaded
carriers or the free drug inhibited the growth of the normal cell line, MCF10A. The results
showed significant differences in the drug-loaded Ni1-xCoxFe2O4@Methionine@PEG NP
and the free drug at the same concentrations because when the drug was loaded into the
carrier, which was coated by amino acids and PEG, it provided an NP with a larger surface
area available for interactions, which enhanced the cell death effect and thus they imparted
to the microorganisms.
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