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ABSTRACT In humans, most genome-wide association studies have been conducted using data from Caucasians and many of the
reported findings have not replicated in other populations. This lack of replication may be due to statistical issues (small sample sizes or
confounding) or perhaps more fundamentally to differences in the genetic architecture of traits between ethnically diverse
subpopulations. What aspects of the genetic architecture of traits vary between subpopulations and how can this be quantified? We
consider studying effect heterogeneity using Bayesian random effect interaction models. The proposed methodology can be applied
using shrinkage and variable selection methods, and produces useful information about effect heterogeneity in the form of whole-
genome summaries (e.g., the proportions of variance of a complex trait explained by a set of SNPs and the average correlation of
effects) as well as SNP-specific attributes. Using simulations, we show that the proposed methodology yields (nearly) unbiased
estimates when the sample size is not too small relative to the number of SNPs used. Subsequently, we used the methodology for
the analyses of four complex human traits (standing height, high-density lipoprotein, low-density lipoprotein, and serum urate levels) in
European-Americans (EAs) and African-Americans (AAs). The estimated correlations of effects between the two subpopulations were
well below unity for all the traits, ranging from 0.73 to 0.50. The extent of effect heterogeneity varied between traits and SNP sets.
Height showed less differences in SNP effects between AAs and EAs whereas HDL, a trait highly influenced by lifestyle, exhibited a
greater extent of effect heterogeneity. For all the traits, we observed substantial variability in effect heterogeneity across SNPs,
suggesting that effect heterogeneity varies between regions of the genome.

KEYWORDS population structure; GWAS; random effect interactions; Bayesian spike slab; effect heterogeneity

POPULATION structure is a pervasive feature in plant,
animal, and human populations (Gaggiotti et al. 2009;

Pfenninger et al. 2011; Puckett et al. 2014). In population
genetics, differentiation between subpopulations is often
measured by comparing allele frequencies, e.g., using the

“F-statistic” (Malécot 1947; Wright 1951; Cockerham
1969). In genome-wide association studies (GWAS), popula-
tion differentiation is predominantly viewed as a confounder
(Astle and Balding 2009) that can lead to spurious associa-
tions (Lander and Schork 1994; Deng 2001; Marchini et al.
2004; Liu et al. 2011). To address this problem a variety of
methods have been proposed (Price et al. 2010). However,
rather than a confounder, population stratification can act as
an effect modifier, leading to heterogeneity in the genetic
architecture of traits.

The evolutionary dynamics involved in the processes that
lead to population structure can result in subpopulations with
heterogeneity in allele frequencies and linkage disequilibrium
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(LD) patterns (Gabriel et al. 2002). Moreover, in some in-
stances, ethnic background correlates with environmental
exposures (e.g., diet, income, and lifestyle) and this can lead
to genotype-by-environment interactions. All these differ-
ences between ethnic groups can induce heterogeneity
in the genetic architecture of traits (de los Campos and
Sorensen 2014). Quantifying the extent of effect heterogeneity
between ethnically diverse groups is relevant across disciplines
and can shed light on whether results obtained in one group
are expected to replicate in others. This is particularly impor-
tant when we consider that the vast majority of GWAS have
been conducted using data from Caucasians and that results
reported from these studies do not always replicate in other
populations, which may indicate differences in genetic archi-
tectures between ethnic groups (Greene et al. 2009; Kraft
et al. 2009; Ng et al. 2014).

Several studies have demonstrated (or alluded to) effect
heterogeneity between ethnic groups (Ntzani et al. 2012; de
Candia et al. 2013; Li and Keating 2014; Brown et al. 2016).
Most of these studies measured effect heterogeneity by esti-
mating the average correlation ofmarker effects between two
or more ethnically diverse groups.

One may attempt to estimate effect correlations by quan-
tifying the average correlation of estimated effects from
GWAS conducted in different ethnic groups. However, esti-
mation errors make the simple correlation of estimates of
effects a seriously biased (toward zero) estimate of the cor-
relation of (true) effects (see Supplemental Material, Appen-
dix C). To overcome this problem, several studies have used
multivariate Gaussian random regressionmodels. Suchmeth-
ods have been considered in both animal and plant breeding
(Wei and van der Werf 1994; García-Cortés and Toro 2006;
Karoui et al. 2012; Olson et al. 2012; Christensen et al. 2014;
Lehermeier et al. 2015) as well as in human genetics (e.g., Lee
et al. 2012; de Candia et al. 2013). Another approach esti-
mates the correlation of effects using an extension of the LD
score regression (Brown et al. 2016).

Themethodsdescribed aboveprovidewhole-genome sum-
maries such as SNP heritability and average correlation of
effects. However, they do not shed light on how effect het-
erogeneity may vary across regions of the genome or between
SNP sets. Moreover, the random regression methods com-
monly used to estimate effect correlations assume that SNP
effects follow Gaussian distributions. This assumption does
not contemplate the possibility that some SNPs may have no
effect in one or more than one group. To overcome this
limitation, we consider modeling effect heterogeneity using
a Bayesian random effect interaction model that decomposes
SNP effects into main and interaction components. Unlike
previously used methods, the proposed approach can be
applied with both shrinkage and variable selection priors
(e.g., Ishwaran and Rao 2005; Park and Casella 2008), and
offers both whole-genome and SNP-specific measures of ef-
fect heterogeneity.

Using simulations,we show that theproposedmethod yields
nearly unbiased estimateswhen sample size ðnÞ is not too small

relative to the number of markers ðpÞ used. Subsequently, we
applied the proposed methodology to data from the ARIC (multi-
ethnic Atherosclerosis Risk in Communities) study to quantify
effect heterogeneity between European and African ances-
tries [hereinafter referred to as European-Americans (EAs)
and African-Americans (AAs), respectively]. These subpopu-
lations have important differences in allele frequencies, LD
decay (Shifman 2003), and cultural and socioeconomic fac-
tors that are linked to environmental exposures.

Our results show that for the four traits there is a varying
extent of effect heterogeneity (the correlation of effects was
highest for height and lower for lipid traits). Moreover, we
show that for high-density lipoprotein (HDL), low-density
lipoprotein (LDL), and serum urate there is a great deal of
variability in effect heterogeneity across the genome.

Methods

Meuwissen et al. (2001) proposed to predict complex traits
by regressing phenotypes on whole-genome panels of SNPs.
Their model was developedwith reference to a homogeneous
population. Here, following de los Campos et al. (2015b), we
consider extending the whole-genome regression model by
including random effect interactions between markers and
groups. Considering two groups, the regression of pheno-
types (yk ¼ fyk1; . . . ; yknkg, where k ¼ 1; 2 indexes groups
and nk denotes the number of individuals in the kth group)
on p markers (e.g., SNPs), can be represented as follows:
�
y1
y2

�
¼

�
1m1
1m2

�
þ
�
X1
X2

�
b0 þ

�
X1
0

�
b1 þ

�
0
X2

�
b2 þ

�
e1
e2

�

(1)

where m1 and m2 are group-specific intercepts, b0 ¼ fb0jgpj¼1
is a vector of “main effects,” b1 ¼ fb1jgpj¼1 and b2 ¼
fb2jgpj¼1are group-specific interactions, and e1 ¼ fe1ign1i¼1

and e2 ¼ fe2ign2i¼1 are error terms. In our models, we assume
uncorrelated independent and identically distributed (IID)
Gaussian errors with group-specific variances that are

e1i
iid
� Nð0;s2

1Þ and e2i
iid
� Nð0;s2

2Þ.
Marker effects in groups 1 and 2 are defined by the sum of

the main and group-specific terms, that is, b1j ¼ b0j þ b1j and
b2j ¼ b0j þ b2j, respectively. Since the number of markers is
usually large relative to sample size, we treat both main and
interaction effects as random. Depending on the distribution
assigned to SNP effects, the model can induce variable selec-
tion, shrinkage, or a combination of both (Ishwaran and Rao
2005; Gianola et al. 2009; de los Campos et al. 2013). To
illustrate, we considered two priors for main and interaction
effects: a Gaussian distribution and a prior with a point of
mass at zero, and a Gaussian slab, also known as BayesC
(Habier et al. 2011).

In the Gaussian setting, we assign independent normal
priors with null mean, and with different variances for the
main and interaction effects, that is
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Above, s2
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b2 represent the prior variances of the
main and interaction effects, respectively.

For the spike slab prior we adopt the assumptions of the
BayesCmodel (Habier et al. 2011), with set-specific variances
and proportions of nonzero effects, that is
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where pðb:jjp�; ~s2
b:Þ is a mixture distribution of the form

pðb:jjp:; ~s
2
b:Þ ¼ ð12p:Þ1ðb:j ¼ 0Þ þ p:Nð0; ~s2

b:Þ, for “.”=0,1,2.
Here, p: represents the proportion of nonnull effects.

Hyper-parameters

In the Gaussian model, the hyper-parameters are the error
variance and the three variances of effects, that is
V ¼ fs2

1;s
2
2;s

2
b0 ;s

2
b1 ;s

2
b2g. In BayesC, the hyper-parameters

also include the proportion of nonnull effects; therefore:
V ¼ fs2

1;s
2
2; ~s

2
b0 ; ~s

2
b1 ; ~s

2
b2 ;p0;p1;p2g. These parameters con-

trol the extent of shrinkage and variable selection, and how
the architecture of effects may vary between groups. We treat
these hyper-parameters as unknown and therefore assign
prior distributions to them. For variance parameters, the con-
jugate prior is the scaled inverse x2. However, this prior can
have some influence on inference. Therefore, instead, we use
a prior for variance parameters that is a transformation of the
b distribution (see Appendix A in the Supplemental Mate-
rial). For the proportion of nonzero effects fp0;p1;p2g we
use independent identical b priors. This allows us to accom-
modate different effect distributions for different traits and
sets of SNPs. Further details about this are provided in the
Analyses of complex human traits section below.

Themodelsdescribedabovecanbeused toestimate several
parameters that are descriptive of the trait architecture.
Whole-genome summaries of the trait architecture and of
effect heterogeneity include the proportion of variance ex-
plained by SNPs [or genomic heritability, e.g., de los Campos
et al. (2015a)] in each of the ethnic groups, the average
correlation of effects, and the average proportions of nonzero
effects (either main effects, interaction terms, or total ef-
fects). Samples from the posterior distribution can also be
used to estimate SNP-specific parameters such as the poste-
rior correlation of a SNP effect, rj ¼ Corð b1j;b2jÞ.

Genomic variance and the average correlation of effects
were estimated using the methods described by Lehermeier
et al. (2017). Briefly, at each iteration of an MCMC algorithm,
we used the samples of the main and interaction effects to form
marker effects (b1jðsÞ ¼ b0jðsÞ þ b1jðsÞ and b2jðsÞ ¼ b0jðsÞ þ b2jðsÞ
where, s = 1,. . .,N is an index for the N MCMC samples col-
lected) to obtain samples from the posterior distribution of the
correlation of effects rs ¼ Corðb1jðsÞ;b2jðsÞÞ, here Corð  Þ repre-
sents Pearson’s product moment correlation. Likewise, at each
iteration of the sampler, genomic values can be obtained from

u1ðsÞ ¼ X1b1ðsÞ and u2ðsÞ ¼ X2b2ðsÞ. Therefore, a sample for the
posterior distribution of the genomic variances for each group

was computed as s2
g1ðsÞ ¼ ðn121Þ21Pn121

i51 ðu1iðsÞ2�u1ðsÞÞ2

and s2
g2ðsÞ ¼ ðn221Þ21Pn221

i51 ðu2iðsÞ2�u2ðsÞÞ2, where �u:ðsÞ ¼
n:
Pn:

i51u:iðsÞ. Finally, samples from the posterior distribution of
the proportion of variance of the trait explained by a SNP set

were obtained using: v2g1ðsÞ ¼
s2
g1ðsÞ

s2
g1ðsÞþs2

1ðsÞ
and v2g2ðsÞ ¼

s2
g2ðsÞ

s2
g2ðsÞþs2

2ðsÞ
.

Data: Our simulation and real data analyses were based on
data from theARIC study. ARIC is a prospective epidemiologic
study sponsored by the National Heart, Lung, and Blood
Institute conducted in four U.S. communities to study the
causes of atherosclerosis andother cardiovascular risk factors,
such as blood lipids, lipoprotein cholesterols, and apolipopro-
teins. It has a total sample size of 15,792 (9584 EAs and
3107 AAs) men and women aged 45–64. A total of 13,113
individuals were genotyped using an Affymetrix array with
a total of 934,940 SNPs. Genotype and phenotype data
from the ARIC study was acquired through the database for
genotypes and phenotypes (dbGaP) (institutional review
board (IRB) number 15–745; r050661 and study accession
number phs000280.v1.p1).

Genotypes: We retained SNPs that had minor allele
frequencies . 1% in at least one of the two ethnic groups,
had a higher than 95% calling rate, and were mapped to one
of the 23 human chromosomes. After quality control, we
retained 828,822 SNPs. Individuals with a missing rate .
5% in their genotypes were removed. Individuals were clas-
sified as EAs or AAs based on self-reported ethnicity (also
confirmed from principal component analyses, Supplemen-
tal Material, Figure S1). We removed individuals that had
within-group genomic relationships higher than 0.075; this
ensured that we retained a high enough number of dis-
tantly related individuals. The final data sets comprised
only distantly related individuals including 6627 EAs and
1601 AAs.

Simulations: We simulated phenotypes using genotype data
fromtheARICstudy from6627EAsand1601AAs.Phenotypes
were simulated under an additive genetic model with a
heritability of 0.5 for both groups. We further considered
scenarios with the number of markers ðnÞ varying from
100 to 10,000 and the true correlations of effects between
groups varying from 0.2 to 0.8. In a first simulation setting,
we assumed that all the markers had effects on both groups.
In a second setting, we assumed that 50% of the loci had
effects on both groups, 20% had effects on EAs but not on
AAs, 20% had effects on AAs but not on EAs, and 10% had no
effects on either group (noncausal variants). These simula-
tions were conducted for 200 Monte Carlo replicates per set-
ting. Finally, we considered an additional scenario where
heritability was lower in both groups (0.2) or lower in one
of the groups (0.2 in EA and 0.5 in AA, and vice versa).
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Further details of the simulation are given in Appendix B in
the Supplemental Material.

Analyses of complex human traits: We considered four
complex phenotypes: height (cm), HDL (mmol/liter) and
LDL (mmol/liter) cholesterol, and serum urate (mg/dl). In-
dividuals with height , 147 cm, LDL . 10 mmol/liter, and
serum urate . 15 mg/dl were removed. We did not identify
clear outliers for HDL. Transformation of the traits was not
considered necessary (Figure S2). Phenotypes were precor-
rected for ethnicity, age, sex, and the first fivemarker-derived
principal components.

Models were fitted to subsets of SNPs selected based on
single-marker regression (GWAS) P-values derived from in-
dependent data that did not include ARIC. For height, GWAS
P-values were derived from the full release of the UK Bio-
bank. For HDL and LDL, P-values were from the Global Lipids
Genetics Consortium (GLGC) computed after excluding
data from ARIC. Finally, for serum urate, P-values were from
the Global Urate Genetics Consortium (GUGC), also derived
without using data from ARIC. The simple ranking of
markers based on association P-values would lead to sets
of highly redundant markers, i.e., markers in high LD (see
Figure S3). To avoid this, we designed a windows-based
selection algorithm where a window was defined as a set
of consecutive SNPs that exceeded a given 2log10(P-value)
cutoff (this was done on a per-trait basis). Windows were
made on a per-trait basis at 2log10(P-value) cutoffs of
2, 2.3, 2.6, 3, 5, and 8 (Table S1). SNPs that cleared a
given 2log10(P-value) cutoff were termed “significant” at
that cutoff (see Figure S4).

Wefitted the interactionmodel toeachof the four traits and
each of the SNP sets described above. For sensitivity analyses,
we also fitted the same models to randomly chosen sets of
SNPs (of sizes 500, 1000, 2500, 5000, and 10,000 SNPs,
respectively). Finally, for further sensitivity testing, we re-
peated the analysis with the EA ethnic group label randomly
permuted.

Software: Models were fitted using a modified version of the
Bayesian Generalized Linear Regression (BGLR) (Pérez and
de los Campos 2014) R package (available at: https://github.
com/gdlc/BGLR-R and at https://cran.r-project.org/web/
packages/BGLR/index.html) that implements a weakly in-
formative prior for variance parameters based on a transfor-
mation of the b distribution (de los Campos et al. 2009)
described above. We ran the MCMC algorithm for 45,000
iterations; the first 15,000 iterations were discarded as bur-
n-in and the remaining samples were thinned at a thinning
interval of 5. BGLR assigns a b prior to the proportion
of nonzero effects; we choose the shape parameters of the
b prior to be equal to 1, which gives a uniform prior in the
0–1 interval. For variance parameters, we devised a prior
that is a modified version of the b prior (see Appendix A in
the Supplemental Material) and used shape parameters
equal to 1.01 to obtain an almost uniform prior for variance

parameters within the interval [0,K] where K was twice the
variance of the phenotype.

Data availability

File S1 contains supplementalfigures, tables, and appendices.
The IRBnumber for ARIC data set is 15–745; r050661 and the
study accession number for the ARIC data set is: phs000280.
v1.p1. Supplemental material available at Figshare: https://
doi.org/10.25386/genetics.7754549.

Results

Simulations

In both simulation settings, the proportion of variance
explained by a SNP set was estimated with almost no bias
using both Gaussian and BayesC priors (see Figure 1 and
Figure S5 for the first and second simulation scenarios, re-
spectively). The SEs were higher for AAs compared with
those for EAs, which was expected given that the sample size
was smaller for AAs. As one would expect, the SE also in-
creased with the number-of-loci/sample-size ratio. Using the
BayesC prior, the estimates of proportion of variance
explained by a SNP set were mildly biased across all values
of true effect correlation when the number of QTL was .
10,000. There was a mild to moderate bias in the group with
smaller sample size when the true proportion of variance
explained in this group went from high (0.8) to low (0.2)
(see Figure 2 and Table S2).

Estimates of effect correlations were also nearly unbiased
(see Figure 2 and Figure S6), especially when the true pro-
portion of variance explainedwas high in groupswith smaller
sample sizes. However, the SEs were very large, particularly
when the correlations were low. In scenarios involving ,
100 or . 5000 QTL, we observed small biases (Figure 2
and Figure S6). The average SE of the estimated correlation
was high with the smallest (100) and the largest (10,000)
numbers of QTL, and lower for scenarios in between. With
low simulated trait heritability (0.2) and small group sample
size (AAs), we observed an upward (downward) bias when
the simulated correlation was low (high) (see Table S3).

Analyses of complex human traits

Since our simulations revealed that an n=pratio of at least 1/
3 results in nearly unbiased estimates of proportion of vari-
ance explained by a SNP set, we fitted our model to subsets of
markers instead of using whole-genome data (see Methods
for a description of how these subsets were obtained). Figure
3 shows the estimated proportion of variance explained by a
SNP set obtained using the BayesC prior, by trait, ethnicity,
and the set of SNPs used (the results obtainedwith the Gauss-
ian prior are displayed in Figure S7). As expected, the esti-
mated proportion of variance explained by a SNP set
increased with the number of SNPs used. Interestingly, this
parameter was systematically higher in EAs than in AAs for
height and HDL, and the order was reversed in other traits
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(LDL and serum urate). However, the credibility intervals
between both ethnic groups overlapped for all traits except
height. The estimated proportion of variance explained by a
SNP set obtained with the Gaussian prior were similar to the
ones found with the BayesC prior (see Figure S7) for all traits
except serum urate, which yielded larger estimates for AAs
than those obtained using the BayesC prior.

The estimated average correlation of effects (Figure 4)
ranged from 0.711 [for height with the SNP set obtained
with 2log10(P-value) cutoff of 8] to 0.500 [for HDL with
the SNP set obtained with a 2log10(P-value) cutoff of 2.3].
Overall the correlation of effects was highest for height and
serum urate, and lowest for LDL and HDL. In all traits except
HDL, the correlation of effects tended to decrease as more
SNPs were added in the model; however, the confidence re-
gions for the different SNP sets overlapped. The estimated
correlation of effects with the Gaussian prior for marker ef-
fects was similar to those obtained using the BayesC prior,
with subtle differences between the two priors for height,
HDL, and LDL (Figure S8).

Figure 5 shows the estimated proportion of nonzero SNP
effects obtained with the BayesC prior, by trait, ethnic group,
and SNP set. For both groups, the proportions of nonzero
effects were high at large 2log10(P-value) cutoffs and de-
creased as the number of markers included in the model in-
creased. For height, the proportions of nonzero effects were
similar between EAs and AAs. However, for LDL (and serum
urate to a lesser extent), the decrease in the proportion of
nonzero effects was stronger in EAs. Figure S9 displays the
proportion of nonzero main and interaction effects. The pro-
portion of nonzero main effects decreased as the number
of SNPs increased and the proportion of nonzero interac-
tion effects tended to remain constant (except for the LDL

interactions for EAs). Interestingly, the proportion of nonzero
effects dropped very fast with the number of SNPs for HDL,
LDL, and serum urate, but not for height.

Figures 3-5 correspond to overall summaries (proportion of
variance explained by a SNP set, average correlation of effects,
and proportion of nonzero effects). However, themodels used
also render SNP-specific summaries. Figure 6 shows the pos-
terior mean of the correlation of effects between ethnic
groups for individual SNPs by trait for the SNP set obtained
using a 2log10(P-value) cutoff of 2. We had no SNP with a
negative posterior correlation of effect. For height, the pos-
terior correlation of individual SNP effects ranged from 0.4 to
0.8. However, for HDL, LDL, and serum urate, there wasmore
variability among SNPs, with several SNPs having posterior
correlation of effects . 0.8 and many with posterior correla-
tion of effects smaller than 0.4.

Figures S10 and S11 correspond to the proportion of
variance explained, and average correlation of effects, be-
tweenEAsandAAs fromrandomlychosen setsofmarkers.The
estimates of both the proportion of variance explained by a
SNP set (for EAs and AAs) as well as effect correlations are far
lower than those obtained using GWAS-selected markers
(Figure 3 and Figure S7).

Figures S12 and S13 correspond to the estimates of pro-
portion of variance explained and the average correlation of
effects fromGWAS-selectedmarkersby randomlydividing the
EAs into two groups, such that the sample size of one of two
groups is same as that of the AA data set. As expected, the
estimates of the proportion of variance explained are similar
within EAs, and the estimates of effect correlation are much
higher within EAs than between EAs and AAs across all traits
(in particular, the effect correlation estimates are . 0.90 for
height across all SNP sets).

Figure 1 Average estimates of proportion of variance explained by a SNP set obtained in the first simulation scenario, by prior and number of SNPs
used. The simulated heritability was 0.5, bars represent the average estimates over 200 Monte Carlo replicates, and the vertical lines give 6 SE. Results
for the second simulation scenario are presented in Figure S5. AAs, African-Americans; EAs, European-Americans.
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Discussion

GWAS have been conducted predominantly in Caucasian
populations (Haga 2010; Rosenberg et al. 2010). Although
more recent works have recognized the inclusion of diverse
ethnic groups, especially AAs (e.g., Taylor et al. 2016; Brant
et al. 2017; Park et al. 2017), the total number of GWAS
studies for AAs is still fairly low compared with populations
of European ancestry (Peprah et al. 2015) and replication of
signals in AA populations is much less common (Marigorta
and Navarro 2013). Moreover, the associations reported to
be strong in Caucasians have been weaker (or even nonsig-
nificant) in other ethnic groups (Gudbjartsson et al. 2007;
Omori et al. 2008; Yamada et al. 2009; Barnholtz-Sloan
et al. 2011; Tsai et al. 2014; Prasad et al. 2017) and some
studies have reported effects with opposite sign in different
populations (Lewis et al. 2008; Yamada et al. 2009). More
recent studies have also confirmed the presence of genetic
heterogeneity between ethnic groups for various traits
(Brown et al. 2016; de Vlaming et al. 2017; Zhou et al.
2018). While some of these differences could be attributed
to small sample size [some well-powered studies have
shown strong overlaps in GWAS-significant variants be-
tween Europeans and other ethnic groups (Franceschini
et al. 2013; Okada et al. 2014)], there is substantial evi-
dence supporting effect heterogeneity. Understanding the
reasons that underlie these differences and quantifying
the degree of similarity in the architecture of a trait across
populations represents an important research goal.

In humans, Shi et al. (2017) estimated local correlations
between traits using individual-level data while Brown et al.
(2016) considered quantifying the average correlation of

effects between populations using summary-based associa-
tion statistics. Their approach extended LD score regression
(Bulik-Sullivan et al. 2015) to multiple ethnic groups and has
the advantage that it can be used with summary statistics.
However, some authors have questioned the assumptions of
the LD score regression method (Speed and Balding 2018)
and accurate estimation requires using several thousands of
SNPs. Thus, the method is not well-suited for studying effect
similarity within genomic regions, something that the
method proposed here can achieve without requiring access
to good-quality external reference panels or being restricted
to an infinitesimal model assumption.

In this study, we proposed to study ethnic differences in the
architecture of traits using a random effect Bayesian interac-
tion model. The proposed approach can be used to estimate
whole-genome summaries such as (a) the proportion of var-
iance explained by SNPs, (b) the average effect correlation,
and (c) the proportion of nonzero effects, as well as finer
features of the trait architecture (e.g., SNP-specific correlation
of effects). Similar approaches have been considered in ani-
mal and plant breeding (e.g., Wei and van der Werf 1994;
García-Cortés and Toro 2006; Christensen et al. 2014;
Lehermeier et al. 2015) and in human genetics (e.g., Lee
et al. 2012; de Candia et al. 2013) for the analysis of data
from heterogeneous populations. However, previous studies
were based on Gaussian assumptions and only offeredwhole-
genome summaries of the trait architecture. The approach
presented in this study is more flexible in that it can be used
with both shrinkage and variable selection priors (Ishwaran
and Rao 2005; Park and Casella 2008), and can be used to
infer not only whole-genome features but also regional and
SNP-specific features of the trait architecture.

Figure 2 Average estimates of the correlation of effects in the first simulation scenario by prior and number of SNPs used. The simulated heritability was
0.5; bars represent the average estimates over 200 Monte Carlo replicates and the vertical lines give6 SE. Results for the second simulation scenario are
presented in Figure S6. AAs, African-Americans; EAs, European-Americans; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
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We evaluated the proposed methodology under two dif-
ferent priors (Gaussian and BayesC) using simulations, and
applied it to real human data to study the genetic architec-
ture of four traits (height, HDL, LDL, and serumurate) in EAs
and AAs. Our simulation study (based on real EA and AA
genotypes from ARIC) revealed that both Gaussian and
BayesC priors yield nearly unbiased estimates of proportion

of variance explained by a SNP set and of effect correlations.
We observed mild-to-moderate upward (downward) bias
in low- (high-) effect correlations when the proportion of
variance explained was low (0.2), the sample size was small
(, 2000), and the number of considered SNPs was large
relative to sample size. Given the small sample size available
for our real data analyses and considering our simulation

Figure 3 Proportion of variance explained by subsets of SNPs obtained with the BayesC-interaction model, by trait, ethnicity, and SNP set. Estimated
(median) proportion of variance explained by a SNP set (y-axis) is plotted by trait, ethnicity, and log10(P-value) cutoff used to choose markers from GWAS
consortia (excluding ARIC data). Numerals above the bars indicate the proportion of variance explained by either ethnic group and the corresponding
number of SNPs used for model fitting (in parentheses at the bottom). Vertical lines give estimates of 6 posterior SD. ARIC, multi-ethnic Atherosclerosis
Risk in Communities; GWAS, genome-wide association study.
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results, we applied the proposed methodology to subsets of
SNPs preselected using GWAS results obtained from other
(independent) data sets.

From our real data analyses, we observed similar propor-
tions of variance explained with both BayesC and Gaussian
priors for marker effects (Figure 3 and Figure S7). The Gauss-
ian prior is a special case of the BayesC prior, thus BayesC

is more flexible. Whether these two methods will render
different estimates would critically depend on the trait
architecture.

With the exception of height, the average proportions of
variance explained across all marker sets were similar
between EAs and AAs. For height, the average proportion
of variance explained was greater among EAs than among

Figure 4 Estimated correlation of effects between AAs and EAs obtained with the BayesC-interaction model, by trait and SNP set. Estimated correlation
of effects between AAs and EAs (y-axis) is plotted by trait using markers selected from GWAS consortia (excluding ARIC). In each plot, the numerals
above the bars indicate the median correlation of effects and the number of SNPs used for model fitting (in parentheses at the bottom). Vertical lines
give estimates of 6 posterior SD. AAs, African-Americans; ARIC, multi-ethnic Atherosclerosis Risk in Communities; EAs, European-Americans; GWAS,
genome-wide association study; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
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AAs. This is likely due to the fact that the SNPs used for the
analysis of height were selected using GWAS results en-
tirely based on data from Caucasians (UK Biobank); the
same trend was not observed for other traits, perhaps
because there was some mixture in ethnicity in the other
GWAS consortia from which markers were chosen (GLGC

andGUGC).Whenwefitted similarmodels using randomly
chosen markers (Figure S10), we observed that the pro-
portion of variance explained by randomly selected
markers was smaller than that explained by regression
on markers selected from GWAS results for both EAs
and AAs. This showed that, indeed, selection based on

Figure 5 Estimated proportion of nonzero effects between AAs and EAs obtained with the BayesC-interaction model, by trait and SNP set. Estimated
proportion of nonzero effects between AAs and EAs (y-axis) is plotted by trait using markers selected from GWAS consortia (excluding ARIC) at six
different 2log10(P-value) cutoffs. In each plot, the numerals above the bars indicate the proportion of nonzero effects obtained using either ethnic
group and the corresponding number of SNPs used for model fitting (in parentheses at the bottom). Vertical lines give estimates of 6 posterior SD. AAs,
African-Americans; ARIC, multi-ethnic Atherosclerosis Risk in Communities; EAs, European-Americans; GWAS, genome-wide association study; HDL,
high-density lipoprotein; LDL, low-density lipoprotein.
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GWAS results leads to more informative markers in both
populations.

Our analyses also revealed important differences in
the correlation of effects between traits. The estimated
correlation of effects ranged from 0.482 to 0.728, indicat-
ing the presence of genetic heterogeneity across all four
traits, even for strongly associated markers (Figure 4). For
height, the correlation of effects was highest when using
SNPs that had the smallest GWAS P-value (likely SNPs
with relatively large effects and not very extreme allele
frequencies), suggesting that the correlation of effects

may be lower for SNPs with small effects and extreme al-
lele frequencies. Another possible explanation for effect
heterogeneity could also be the tagging differences be-
tween EAs and AAs, especially in the polygenic tail for a
given trait.

HeighthadhighercorrelationofeffectsbetweenEAsandAAs
than serum urate and lipid traits, suggesting that height may
have a more similar genetic architecture between EAs and
AAs than the other traits (especially than the lipid traits).
Furthermore, we found differences in the estimated pro-
portion of nonzero effects between EAs and AAs for HDL,

Figure 6 Posterior correlations of individual SNP effect between AAs and EAs, by trait for SNPs that clear a2log10(P-value) of 2. Plots are categorized by
trait and, in each plot, the estimated effect correlation of individual SNP effects (y-axis) is plotted against chromosome number (x-axis). AAs, African-
Americans; EAs, European-Americans; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
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LDL, and serumurate, but not for height, reinforcing that the
genetic architecture of height may be more similar between
EAs and AAs in comparison to the other three traits (Figure 5
and Figure S9).

The proportion of nonzero effects markedly decreased
with the2log10(P-value); this is expected since relaxing the
threshold used to preselect SNPs is likely to lead to the in-
clusion of SNPs with no effect. This was particularly clear for
lipid traits. This trend is largely driven by the proportion of
nonzero main effects for both ethnic groups (i.e., effects
common to both ethnic groups; Figure S9). Finally, we also
observed greater variability in posterior correlation of ef-
fects among lipid traits and serum urate in comparison with
height (Figure 6).

If ethnicity correlates with lifestyle, diet, income and other
environmental factors, then, genetic-by-environmental inter-
actions may lead to effect heterogeneity between ethnically
diverse groups. Interestingly, the three traits that are more
affected by diet and lifestyle (LDL, HDL, and serum urate)
showed stronger evidence of effect heterogeneity thanheight.
Likewise, unaccounted epistasis, coupled with differences in
allele frequencies, may also lead to effect heterogeneity in
additive models. Indeed, some authors (Mackay and Moore
2014) have argued that the epistasis may be responsible for
the majority of the small-effect additive effect affecting com-
plex traits, and previous studies have attributed the nonrep-
lication of genetic associations in different populations to
epistasis (Greene et al. 2009). Thus, epistatic gene action
can also have a role in explaining differences in the allelic
substitution effects of SNPs and can consequently induce ef-
fect heterogeneity.

In conclusion, we have proposed a versatile methodology
based on random effect interactions that can apply non-
Gaussian priors to marker effects for quantifying the extent
of effect heterogeneity between ethnically diverse groups
using a combination of variable selection and shrinkage. This
proposed approach can yield estimates of proportions of
variance explainedbyaSNPset, average correlationof effects,
and the proportion of nonzero effects, as well as SNP-specific
attributes in genomic regions of interest. According to our
simulations, the methodology renders nearly unbiased esti-
mates provided that the n/p ratio is notmuch smaller than1/3.
Of the traits considered in our study, effect heterogeneity
was lower for height than for traits influenced by lifestyle.
We postulate that differences in allele frequency and in LD
patterns, together with epistasis and G3E, can contribute to
effect heterogeneity between AAs and EAs.
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