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Abstract

Cell replacement therapy is a promising treatment for irreversible retinal cell death in

diverse diseases such as Stargardt's disease, age-related macular degeneration, and ret-

initis pigmentosa. The final impact of all retinal dystrophies is the loss of photorecep-

tors; hence, there is a pressing need for research into replacement. Seminal work has

shown that a simple three-dimensional culture system enables differentiation of human

pluripotent stem cells to retinal organoids containing large numbers of photoreceptors

developing alongside retinal neurons and Müller glia cells in a laminated structure that

resembles the native retina. Despite these promising developments, current protocols

show different efficiencies across pluripotent stem cells and result in retinal organoids

with a mixture of photoreceptor cells at varying maturation states, along with non-

photoreceptor cell types. In this study, we investigated the impact of stage-specific

addition of retinoic acid (RA), 9-cis-retinal, 11-cis-retinal, levodopa (L-DOPA), triiodo-

thyronine (T3), and γ-secretase inhibitor ((2S)-N-[(3,5-Difluorophenyl)acetyl]-L-alanyl-2-

phenyl]glycine1,1-dimethylethyl ester2L [DAPT]) in the generation of cone and rod

photoreceptors. Our results indicate that addition of RA + T3 during days 90 to 120 of

differentiation enhanced the generation of rod and S-cone photoreceptor formation,

while the combined addition of DAPT from days 28 to 42 with RA during days 30 to

120 of differentiation led to enhanced generation of L/M-cones at the expense of rods.

L-DOPA when added together with RA during days 90 to 120 of differentiation also

promoted the emergence of S-cones at the expense of rod photoreceptors. Collec-

tively, these data represent an advance in our ability to direct generation of rod and

cone photoreceptors in vitro.
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1 | INTRODUCTION

Degenerative diseases of the retina represent one of the main causes

of visual impairment and blindness, which culminate in the loss of

photoreceptors and remain incurable.1 Cell transplantation

approaches for the replacement of lost or damaged photoreceptors

have been investigated over the last decades in preclinical animal

models of retinal degeneration with some promising results2;

suggesting that cell replacement therapies may be feasible for the

treatment of retinal dystrophies. Human embryonic stem cells

(hESCs)3 and induced pluripotent stem cells (hiPSCs)4 provide a suit-

able tool because both cell types can be expanded indefinitely and

have the capacity to produce cone and rod precursors as well as more

mature photoreceptor progeny in vitro.5 The ability to generate retinal

organoids from hESCs/hiPSCs under three-dimensional culture condi-

tions has been a great advance toward the generation of clinically rel-

evant cell populations that closely follow in vivo retinogenesis.6,7 In

the last 7 years, intense work has been performed by several groups

worldwide to improve the robustness and efficiency of differentiation

protocols and to understand the factors and signaling pathways that

F IGURE 1 Diagram of the
experimental design, showing the
addition of retinoic acid, 9-cis-
retinal, 11-cis-retinal, levodopa,
triiodothyronine, and DAPT
individually or in combination with
each other as well as the
emergence of retinal cell types at
different time points during the
differentiation of retinal organoids

Significance statement
The generation of retinal organoids from human pluripotent

stem cells provides an in vitro model for disease modeling and

replacement therapies. To date, the efficiency of protocols for

generating retinal organoids is variable, resulting in the emer-

gence of all retinal cell types, including photoreceptors, but in

different ratios and at different maturation stages. Our data

show that the addition of retinoic acid in combination with

T3, levodopa, or (2S)-N-[(3,5-Difluorophenyl)acetyl]-L-alanyl-

2-phenyl]glycine1,1-dimethylethyl ester2L at specific time

intervals promotes cone and/or rod formation.
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are required to enhance retinal specification.8,9 As such, developing

methods to modulate cell composition and align differentiation states

in vitro is critical for the path toward clinical transplantations. In this

study, we investigated the impact of stage-specific addition of six

reagents and established a simple method to enhance the generation

of cone or rod photoreceptors in vitro.

2 | MATERIALS AND METHODS

A detailed description of all experimental procedures is presented in

the online Supporting Information.

3 | RESULTS AND DISCUSSION

The CRX-GFP (H9) hESC line was expanded and differentiated to reti-

nal organoids, which were collected at day 150 and processed for

quantitative reverse transcription polymerase chain reaction (qRT-

PCR) and immunohistochemistry. The following reagents: retinoic acid

(RA), 9-cis-retinal, 11-cis-retinal, levodopa (L-DOPA), triiodothyronine

(T3), and (2S)-N-[(3,5-Difluorophenyl)acetyl]-L-alanyl-2-phenyl]gly-

cine1,1-dimethylethyl ester2L (DAPT) were added at specific time

intervals during differentiation as shown in Figure 1. All these supple-

ments have been shown to promote cone or rod photoreceptor for-

mation in other species. For example, RA enhances rod differentiation

in vivo and in vitro,10,11 expression of rod photoreceptor transcription

factor neural retina leucine zipper,12 and red cone opsin development

in vivo.13 T3 is also required for rod photoreceptor development in

vivo,14 regulating the ratio and patterning of cone opsin expression,15

specifying cone subtype generation16 as well as suppressing cone via-

bility.17 In accordance with these published data, the combined addi-

tion of RA and T3 during days 90 to 120 of differentiation resulted in

the highest gene expression of Rhodopsin (rod marker; Figure 2A).

These results were further corroborated by the immunohistochemical

F IGURE 2 Characterization of Rhodopsin expression in retinal organoids derived from human embryonic stem cells at day 150 of differentiation. A,
Gene expression analysis of Rhodopsin at all time points during differentiation revealed a significant increase in RA + T3 days 90 to 120 condition
compared with vehicle control at days 90 to 120. B, Representative examples of Rhodopsin immunoreactivity (red) in all conditions (a–g) from days 90 to
120 stage-specific additions, showing the highest number of Rhodopsin+ cells in RA + T3 condition (g). Higher magnification demonstrated the typical
morphology of rod photoreceptors (g0). Double staining with Rhodopsin (magenta) and Synaptophysin (red) indicated the possible formation of synapses
in the developing OPL (h). CRX (green) represents the endogenous GFP expression and nuclei are counterstained with Hoechst (blue). Scale bars: 50 μm
(Ba–h), 10 μm (Bg0). C, Immunohistochemistry quantification revealed a reduction of Rhodopsin+ cells in RA, 11-cis-retinal, RA + L-DOPA, and RA + DAPT
condition and a significant increase in RA + T3 condition compared with vehicle control. Data are shown as mean ± SEM (n = 5) and statistical significant
differences were considered at *P < .05, **P < .01, ***P < .001, ****P < .0001. Abbreviations: CRX, cone rod homeobox; GFP, green fluorescent protein;
L-DOPA, levodopa; OPL, outer plexiform layer; RA, retinoic acid; RHO, Rhodopsin; T3, triiodothyronine
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analysis, which revealed a significantly higher number of rods (identi-

fied by the marker protein Rhodopsin), compared with the control

group (vehicle alone) and the groups supplemented with 9- or 11-cis

retinal, RA, RA + L-DOPA, or RA + DAPT (Figure 2Ba–f,2C and

Figure S1). 9-cis-retinal has been shown to encourage rod differentia-

tion in developing mammalian retina.18,19 11-cis-retinal, the light-

sensitive component of rod and cone photoreceptors, has been

shown to activate Rhodopsin expression in vitro.20 Despite these

findings, our data show that the number of Rhodopsin positive cells

were lower in RA alone, 9- and 11-cis retinal (Figure 2Ba–f,C) when

compared with the control group. In all conditions, rods were located

in the apical layer of the retinal organoids, forming a putative outer

nuclear layer (ONL): furthermore, higher magnification observations

indicated the typical morphology of mature rods (Figure 2Bg–g0). Syn-

aptic connections between mature rod photoreceptors and second

order neurons (horizontal and bipolar cells) within the outer plexiform

layer (OPL) were observed by double staining with Rhodopsin and

Synaptophysin, a marker for synapses, showing Synaptophysin

expression underneath the ONL of retinal organoids (Figure 2Bh and

Figure S1).

Addition of RA and T3 also resulted in the highest expression of

S-cone photoreceptor marker (OPN1SW; Figure 3A). Immunohisto-

chemical analysis confirmed these findings, but also highlighted

another group (RA + L-DOPA) to be equally efficient for the genera-

tion of S cones (Figure 3B,C, Figures S2 and S3). L-DOPA is produced

by the retinal pigment epithelium: its absence results in reduced rod

F IGURE 3 Characterization of OPN1SW (S cones) expression in retinal organoids derived from human embryonic stem cells at day 150 of
differentiation. A, qRT-PCR analysis of OPN1SW at all time points during differentiation showed an increase in RA + T3 condition compared with
vehicle control (P < .05) at days 90 to 120. B, Expression of OPN1SW (magenta) was found in all conditions at time point days 90 to 120 (a–g).
The highest number of OPN1SW+ cells was observed in RA + T3 and RA + L-DOPA conditions (g, d) highlighting cells in the higher magnification
image (g0). Double staining with OPN1SW (magenta) and Bassoon (red; h) or Ribeye (red; i), respectively, indicated putative ribbon synapse
formation in the developing OPL (arrowheads). CRX (green) represents the endogenous GFP expression and nuclei are counterstained with
Hoechst (blue). Scale bars: 50 μm (Ba–i), 10 μm (Bg0). C, Immunohistochemistry quantification analysis showed a significant increase of OPN1SW+

cells in RA + L-DOPA and RA + T3 condition compared with vehicle control. Data are shown as mean ± SEM (n = 5) and statistical significant
differences were considered at *P < .05, **P < .01, ***P < .001. Abbreviations: CRX, cone rod homeobox; GFP, green fluorescent protein; L-
DOPA, levodopa; OPL, outer plexiform layer; RA, retinoic acid; T3, triiodothyronine
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numbers with no effect on the cone population in mouse ESC

(mESC).21 In contrast, our results in the human system revealed that

the addition of RA + L-DOPA during days 90 to 120 of differentiation

led to the enhancement of S-cone formation at the expense of rods

(Figure 3C and Figure S3). In this group, possible synapse formation

between OPN1SW+ cells and second order neurons within the puta-

tive developing OPL was confirmed by the expression of Bassoon, an

essential component of the ribbon synapses (Figure 3Bh, arrowheads)

and Ribeye, the main protein component of synaptic ribbons

(Figure 3Bi arrowheads).

The γ-secretase inhibitor DAPT, a known Notch signaling inhibitor,

has been reported to increase cone or rod cell differentiation when

added at specific stages of mESC differentiation.22,23 Our qRT-PCR

analysis showed the highest expression of OPN1MW (M-cone photo-

receptor marker) and OPN1LW (L cone photoreceptor marker) in the

retinal organoids that had been exposed to the combined addition of

RA + DAPT from days 30 to 120 of differentiation (Figure 4A). Addi-

tionally, immunohistochemical analysis and its quantification indicated

a significant increase in the percentage of mature L/M cones in this

group at the expense of rods compared with the vehicle control

(Figure 4Ba–g0 ,C and Figures S3 and S4). In comparison to the vehicle

control alone, all culture conditions revealed a slightly higher expres-

sion of OPN1MW/LW+ cells, except for the RA condition (Figure 4C).

Furthermore, the formation of cone pedicles in the putative OPL,

where they form ribbon synapses with Horizontal/Bipolar cells, was

demonstrated by the immunoreactivity of Bassoon and Ribeye,

respectively (Figure 4Bh–i). Interestingly, in contrast to Nakano et al.,6

the DAPT treatment did not interfere with the tissue architecture and

the lamination of the retinal organoids (Figures S5 and S6). More

extensive comparisons with work performed by others on the impacts

F IGURE 4 Characterization of OPN1MW/LW (L/M cones) expression in retinal organoids derived from human embryonic stem cells at day
150 of differentiation. A, Gene expression analysis of OPN1MW (left) and OPN1LW (right) at all time points during differentiation revealed a
significant increase in the expression of both genes in RA + DAPT condition compared with vehicle control at days 30 to 120. B, Representative
examples of OPN1MW/LW expression (red) in all conditions at time point days 30 to 120 (a–g), indicating the highest number OPN1MW/LW+

cells in RA + DAPT condition (g). Higher magnification demonstrated the morphology of L/M cones g0, Ribbon synapse formation was
demonstrated by double staining of OPN1MW/LW (magenta) with Bassoon (red; h) or Ribeye (red; i), respectively. CRX (green) represents the
endogenous GFP expression and nuclei are counterstained with Hoechst (blue). Scale bars: 50 μm (Ba–i), 10 μm (Bg0). C, Quantification of
OPN1MW/LW+ cells revealed a significant increase of L/M cones in RA + DAPT condition compared with vehicle control. Data are shown as
mean ± SEM (n = 5) and statistical significant differences were considered at *P < .05. Abbreviations: CRX, cone rod homeobox; GFP, green
fluorescent protein; L-DOPA, levodopa; RA, retinoic acid; T3, triiodothyronine
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of DAPT on retinal cell formation and maturation are not possible, as

different groups use different media compositions for the culture of

retinal organoids. Nonetheless, our study shows an advance in the

field, as we were able to demonstrate that addition of RA and T3

results in generation of all cone subtypes as well as rods at day 150 of

differentiation, unlike the Eldred et al. study where by day 150 of dif-

ferentiation only S cones were found within the retinal organoids with

L/M cones and rods observed later during the differentiation

process.16

4 | CONCLUSION

The results of this study indicate that addition of RA + T3 at specific

stages of differentiation of retinal organoids, leads to enhanced gener-

ation of rod and S-cone photoreceptors, which were able to form syn-

aptic connections with the appropriate interneurons in the putative

OPL. Combined additions of RA + L-DOPA or RA + DAPT led to selec-

tive enhancement either of S-cone photoreceptor or L/M-cone pho-

toreceptor generation, respectively, at the expense of rod formation.

Together, our data show that addition of specific reagents at selected

differentiation time points can provide a useful strategy for the gener-

ation of retinal organoids enriched for specific photoreceptor subtype

of interest.
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