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A glimpse at the aging eye
Jonathan B Lin1,2, Kazuo Tsubota3 and Rajendra S Apte1,2,4,5

Extensive investigations have demonstrated that organismal aging is associated with tissue dysfunction in many organs. The eye is
no exception to this rule. Under healthy conditions, the eye is designed like an advanced camera with the central role of translating
light from the external world into a coherent neural signal that can be transmitted to the brain for processing into a precise visual
image. This complex process requires precisely maintained machinery. At the front of the eye, the transparency of both the cornea
and the lens are crucial to allow passage of photons to the light-sensitive portion of the eye. Similarly, the highly organized
structure of the retina located at the back of the eye is indispensable to allow for effective signal transduction and efficient signal
transmission. Aging affects ocular structures in various ways, and these sequelae have been well defined as distinct clinical entities.
In many instances, aging leads to ocular tissue dysfunction and disease. Nonetheless, despite clear evidence that age-associated
visual impairment has significant psychosocial consequences, current treatment paradigms for many of these conditions are
inadequate. In addition, strategies to decelerate or reverse age-associated deterioration in ocular function are still in their infancy.
This review focuses on the cellular and molecular pathophysiology of the aging eye. Ultimately, we hope that a refined
understanding of the aging eye can guide targeted therapies against cellular aging and disease.
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INTRODUCTION
Advancements in modern medicine have contributed to a marked
increase in average life expectancy (lifespan) in recent decades.
Nonetheless, the healthy aging process (healthspan) is often
accompanied by numerous instances of age-associated dysfunc-
tion, which affect a broad range of organs, including the eye. The
eye is composed of highly specialized tissues that must each
maintain precise function to preserve vision. The eye is built much
like a camera: light enters the front of the eye through a clear
structure known as the cornea. After passing through the aqueous
humor, light passes through the pupil (the dark central part
encircled by the colored iris) before being focused by the
crystalline lens. The light must then pass through the vitreous
humor before contacting the first light-sensitive neurons of the
retina, the rod and cone photoreceptors. From there, the neural
signals are passed to secondary neurons (bipolar cells) and tertiary
neurons (retinal ganglion cells; RGCs) with modulation from
intervening neurons (horizontal and amacrine cells) before
coalescing into the optic nerve (cranial nerve II) to be sent
to the visual cortex of the brain. A hematoxylin and eosin
(HE)-stained mouse retina, which is very similar to human retina, is
presented in Figure 1 to demonstrate the highly organized
structure of this organ. Even minor age-associated deviations from
normal function at any step of this process can have tremendous
consequences on visual function.
For example, one debilitating complication of aging is age-

related macular degeneration (AMD), a leading cause of blindness
in adults over 50 years of age. This disease causes deterioration of
the central retina—known as the macula—and consequently, loss
of the most precise central vision. Moreover, lens fibers and

zonules stiffen with age, resulting in loss of accommodation and
difficulty seeing nearby objects (clinically known as presbyopia).
Finally, proteins in the lens called crystallins lose transparency over
time, leading to cataracts, a major cause of blindness worldwide.
Research suggests that oxidative stress may have an important
pathogenic role in the development of senile cataracts.1,2

However, the detrimental effects of aging are not limited to the
retina and the lens; they also affect the cornea, the ocular surface
and ocular adnexa. The cells of the corneal endothelium are
terminally differentiated and responsible for maintaining the
cornea’s structural integrity. Although the aging process involves
some loss of corneal endothelial cells over a lifetime, an
accelerated loss of endothelial cells, as observed in Fuchs’
endothelial cell dystrophy, is associated with corneal edema and
bullous keratopathy.3 Although Fuchs’ dystrophy has been
associated with mutations in numerous causal genes, research
suggests that they are linked by the fact that they all reduce the
ability of endothelial cells to handle oxidative stress, thereby
leading to accelerated cell death.4–9 Thus, targeted pharmacother-
apy to enhance antioxidant capacity and reduced exposure to
ultraviolet (UV) light to minimize UV light-induced oxidative stress
are being investigated as potential therapeutic approaches. Even
iatrogenic bullous keratopathy has an age association,3 as older
patients are more likely to undergo ocular surgery, often to treat
another age-associated condition.
Because it is continually exposed to UV light, the ocular surface,

including the corneal and conjunctival epithelium, is also
susceptible to the detrimental effects of oxidative stress.10,11

Aging of the ocular surface can lead to pterygium, a benign tumor
on the corneal limbus, or conjunctival chalasis, loosening of the
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conjunctiva.12,13 Ocular adnexa, such as the lacrimal and
meibomian glands, are also significantly affected by aging,
resulting in tear deficiency and dry eye syndrome. Epidemiological
studies have reported that the prevalence of dry eye syndrome
increases with age.14 The disease affects at least 14% of
individuals over the age of 50 in the United States,3,15 significantly
reducing these patients’ quality of life and generating an
enormous socioeconomic burden from the perspective of
healthcare costs and lost productivity.
A summary of the major age-associated ocular diseases is

presented in Figure 2. Collectively, age-associated eye disease
causes visual impairment in a substantial population: estimates of

the prevalence of vision impairment in adults over the age of
65 range from 4% to as high as 20%, depending on how
impairment is defined.16 Elderly patients with low vision
commonly report reduced quality of life, symptoms of depression
and feelings of anxiety,16–18 highlighting the importance of
developing more effective therapies for age-associated eye
disease. This review elaborates on how the eye changes during
the aging process. We hope that continued research in these areas
will uncover the mechanisms that underlie age-associated ocular
dysfunction and, ultimately, lead to novel targeted therapeutic
approaches to delay or to prevent these sequelae and promote
‘productive aging.’

THE AGING RETINA
The neurosensory retina is a highly organized, light-sensitive
structure located at the posterior pole of the eye that is
responsible for transducing visual input into neural signals to be
sent to the brain. Because of their function, retinal cells are
exposed to a large amount of light throughout their lifetime,
making them vulnerable to light-induced damage. Psychophysical
studies have reported age-associated declines in visual acuity,19

color perception20 and dark adaption thresholds.21 Moreover,
functional testing has revealed that scotopic and photopic
sensitivity (i.e., sensitivity under low light and well-lit conditions,
respectively) worsens in a linear fashion during the course of
adulthood.22

Retinal function can be tested with electrophysiological tools
such as electroretinography (ERG). ERG non-invasively measures
the retina’s precise electrical response to varying flashes of light
with electrodes placed on the ocular surface. Different compo-
nents of the characteristic ERG response correlate with the
function of distinct retinal structures. Researchers have used ERG
to identify age-associated declines in the amplitudes of outer
retina-generated a-waves and inner retina-generated b-waves,23,24

along with increased b-wave implicit times.23 In addition, recent
studies have reported reductions in the amplitudes of rod- and
cone-driven oscillatory potentials by the age of 40, which may
precede the gross changes in a- and b-wave amplitudes.25 Finally,
the elderly have slower macular recovery after light stress,

Figure 1. Glutaraldehyde-/formalin-fixed mouse retina stained with
hematoxylin and eosin (HE) depicting the layers of the retina and
other ocular structures: lens, inner limiting membrane (ILM), nerve
fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL),
inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear
layer (ONL), external limiting membrane (ELM), inner segments (IS) &
outer segments (OS) of the photoreceptors, retinal pigment
epithelium (RPE), choroid and optic nerve.

Figure 2. Major age-associated ocular diseases and the structures that they affect.
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potentially due to reduced efficiency of photopigment
restoration.26

These functional changes have also been correlated with
various age-associated structural changes. For example, aging
causes loss of retinal neurons, including rod photoreceptors,27

RGCs28,29 and rod bipolar cells.30 Similarly, other non-neural cells,
such as retinal pigment epithelium (RPE) cells, appear to decrease
in density over the course of a lifetime.29 Beyond loss of retinal
cells, aging is also associated with accumulation of both intra-
cellular and extracellular deposits. Intracellularly, lipofuscin, also
commonly found in other organs, deposits in the RPE, where it can
generate reactive oxygen species after exposure to oxygen and
light.31,32 Recent studies have suggested that various components
of these heterogeneous lipofuscin deposits may drive immune
dysregulation via monocyte and microglial activation.33 Extra-
cellularly, aging also leads to thickening of the acellular lamina
between the RPE and the underlying choriocapillaris (also known
as Bruch’s membrane; BM). In addition, there is an increase in
basal laminar and basal linear deposits in BM with aging. At the
transition between aging and disease, there is accumulation of
esterified and unesterified cholesterol-rich material known as
drusen between the RPE and BM.34,35 Importantly, the presence
of many large drusen in the macula is the sine qua non of
nonexudative or dry AMD.

AGE-RELATED MACULAR DEGENERATION AND THE IMMUNE
SYSTEM
AMD is a complex multifactorial disorder and a leading cause of
blindness in adults over the age of 50. Early AMD is characterized
by the presence of lipid-rich deposits (drusen) in the subretinal
space. Progression of disease can manifest in two forms: dry AMD,
characterized by geographic atrophy (GA), and wet AMD,
characterized by choroidal neovascularization (CNV). Both types
can lead to vision loss. Fundus photographs depicting drusen, GA
and CNV are presented in Figure 3. Among other contributors, the
immune system has a crucial role in AMD pathogenesis. For
example, a common variant in the complement factor H (CFH)
gene (i.e., Tyr402His) confers a significantly increased risk of
developing AMD, as the variant CFH protein has a reduced ability
to regulate the alternate pathway of complement activation.36–38

Oxidative damage and inflammation also play important roles
in disease progression in dry AMD. AMD donor eye tissues have
been shown to contain more carboxyethylpyrrole (CEP)-adducted
proteins in the outer retina compared with donor eye tissues from
healthy controls,39 and a follow-up study in a mouse model
demonstrated that these CEP-modified proteins may contribute to
the development of RPE lesions mimicking GA through immune-
mediated damage.40 Other groups using mouse models have

found that subretinal infiltration of proinflammatory M1
macrophages41 and antigen-specific T cells activated by oxidative
damage42 may also have a role in causing RPE death. Finally,
age-associated DICER1 deficiency in the RPE of patients with GA
leads to accumulation of repetitive element-derived Alu RNA
transcripts,43 which leads to inflammasome activation in a
mouse model and may thereby contribute to the pathogenesis
of dry AMD.44

In contrast, many research efforts on the pathogenesis of wet
AMD have focused on the role of macrophage aging. Studies
involving mouse models have revealed that classically activated,
M1-like macrophages tend to be anti-angiogenic.45 However, as
macrophages age, they tend to polarize to an alternative, M2-like
phenotype with an altered cytokine profile.46 This alteration
contributes to aberrant inflammation and the inability to inhibit
abnormal angiogenesis,46 thereby permitting CNV in advanced
wet AMD and causing vision loss. Old macrophages also exhibit
impaired cholesterol efflux, leading to dysregulated inflammation
and pathologic vascular proliferation.47 The interaction between
macrophages and the lipoproteinaceous drusen found in AMD
patients48 may promote abnormal macrophage activation.47

Recent studies also suggest that both the rho-associated, coiled-
coil-containing protein kinase (ROCK)49 and the IL10-driven STAT3
signaling pathways50 may drive aging-dependent alternate
activation of macrophages.
Aberrant activation of the renin–angiotensin system (RAS) has

also been shown to have a pathogenic role in the development of
CNV in the setting of wet AMD. Using the laser-induced mouse
model of CNV, Nagai et al.51 showed that treating mice with the
angiotensin II type 1 receptor (AT1R) antagonist telmisartan
reduced CNV volumes, perhaps by blocking downstream AT1R-
mediated inflammation. A follow-up study from the same group
demonstrated that this suppression of CNV could also be achieved
upstream through (pro)renin receptor blockade.52 Taken together,
these studies provide strong evidence for involvement of the RAS
in the pathophysiology of wet AMD.
Other studies have focused on the multifactorial contributions

to AMD pathogenesis. For example, one group demonstrated
that a mouse model combining three known AMD risk factors—
age, high-fat diet and a particular apolipoprotein E genotype—
exhibits disease manifestations that resemble those found in
AMD patients, including sub-RPE deposits and drusenoid
deposits.53 This same group recently reported that a different
mouse model combining advanced age, high-fat diet and
decreased CFH also exhibits human AMD-like features.54 These
findings confirm that the mechanisms underlying AMD patho-
genesis are complex and involve both genetic and environ-
mental factors.

Figure 3. Fundoscopic images from AMD patients demonstrating hallmarks of disease, such as drusen (a; examples indicated by arrows),
geographic atrophy (b; roughly outlined by dashed white line) and choroidal neovascularization (c; roughly outlined by dashed white line).
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Unfortunately, there is no current medical or surgical treatment
for dry AMD, although randomized clinical trials have reported
that oral supplementation of various antioxidants (i.e., vitamins C
and E, beta carotene, zinc, lutein and zeaxanthin) may reduce the
odds of disease progression.55,56 Currently, the main treatments
for wet AMD are targeted therapies against vascular endothelial
growth factor, e.g., aflibercept, ranibizumab and bevacizumab,57,58

or photodynamic therapy to reduce the development of abnormal
blood vessels. However, these approaches treat the symptoms
rather than the underlying causes of this complex disease.59

Further research to dissect the molecular mechanisms underlying
AMD may lead to the development of much-needed novel
therapies.

GLAUCOMA AND THE FUTURE OF NEUROPROTECTION
Age is also a significant risk factor for glaucoma, a neurodegen-
erative disease characterized by loss of visual fields and death of
RGCs. Glaucomatous optic nerve damage can be easily visualized
with biomicroscopy by examining the cup-to-disc ratio as a
surrogate measure of RGC health (Figure 4). Current therapeutic
strategies focus on reducing intraocular pressure (IOP), either by
reducing aqueous humor production, increasing uveoscleral
outflow or increasing outflow through the trabecular meshwork.
Although this strategy works in some patients, other patients
show disease progression despite treatment. In addition, some
patients develop glaucomatous optic nerve damage in the
absence of elevated IOP; this condition is clinically known as
normal-tension glaucoma. Research has shown that RGC death
associated with glaucoma may be mediated by numerous
mechanisms, including but not limited to glutamate-mediated
excitotoxicity,60,61 oxidative stress62–64 and mitochondrial dysfun-
ction.65 However, most neuroprotection strategies thus
far—notably including the large memantine trial—have been
unsuccessful, highlighting the need for additional research to
develop novel therapeutic targets.66

DRY EYE SYNDROME
Dry eye syndrome (DES) is an under-recognized health hazard,
affecting millions of people in the world.67 Although some DES
patients have a near normal-appearing ocular surface, they have
an unstable tear film, which leads to symptoms such as ocular
fatigue, eye irritation and blurred vision. Figure 5 shows an
example of a patient with severe dry eye with abnormalities of the
cornea and the conjunctival epithelium. Extensive use of portable
electronic devices, such as smartphones and laptops, may
contribute to the development of DES by decreasing blink
rate.68 Tear production by the lacrimal gland also decreases with
age,69,70 further contributing to DES, but the mechanism of this
age-associated change is unknown. Similarly, the meibomian
glands, which produce the lipid component of tears, are also

affected by aging.71 One hypothesis suggests that oxidative stress
may be a cause of DES. In support, several studies show that mice
lacking superoxide dismutase 1 (SOD1) or nuclear factor erythroid
2-related factor 2 (NFE2L2, also known as Nrf2) exhibit increased
oxidative stress and subsequently develop reduced tear
production.72–74 As a result, suppression of oxidative stress with
oral supplements has become an emerging strategy for
treating DES.
Beyond modulating oxidative stress, altering metabolism may

also be a potential strategy for DES therapy. Calorie restriction and
exercise have proven to be reliable strategies for decelerating the
aging process, and these approaches have also been shown to be
effective in an animal model of DES.75,76 In support of this
potential therapeutic avenue, limited human data have also
shown that a sedentary lifestyle or the presence of metabolic
syndrome may be related to DES.77 As is the case for AMD, a
growing body of literature suggests that inflammation is a major
contributing factor to the development of DES,78,79 offering
another potential therapeutic target. Currently, the only approved
therapy for DES is an eye-drop formulation of cyclosporine A,80

but alternative approaches, such as omega-3 fatty acid (EPA/DHA)
supplements or agents that modulate the RAS within the lacrimal
gland, are being actively investigated.81–83

CIRCADIAN RHYTHMS: THE EYE’S ROLE IN THE BODY’S CLOCK
Beyond mediating vision, the eye also has a crucial role in
regulating circadian rhythms and thereby regulates broad
physiological processes, such as metabolism. The recently-
discovered intrinsically photosensitive RGCs (ipRGCs) transfer

Figure 4. Fundoscopic image from a healthy patient with a small cup-to-disc ratio and a healthy, pink optic disc surrounding the cup
(a) compared with a fundoscopic image from a severely glaucomatous patient with an enlarged cup and significant inferior thinning of the
disc rim (b). Dashed white circles roughly outline the cups; solid white circles roughly outline the discs.

Figure 5. Slit-lamp photograph of a patient with severe dry eye
syndrome whose ocular surface was stained with fluorescein. Note
the abnormal staining on the corneal epithelium (see arrows).
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nonvisual information to the suprachiasmatic nucleus of the
hypothalamus, the master controller of the body’s circadian
rhythms.84 In other words, the eye both functions as a camera and
sets the body’s clock.85

Just as aging affects the camera function of the eye, aging also
affects the ability of the eye to set the body’s clock. As the lens
ages, it becomes worse at transmitting short-wavelength visible
(i.e., blue) light, while retaining the ability to transmit longer-
wavelength visible (i.e., red) light.86 This effect of aging is
problematic since the maximal sensitivity of ipRGCs is in the
blue-light region (460–480 nm).87 Therefore, surgery to correct
cataracts, a disease of the aging lens, is important because it
restores not only visual function but also the eye’s ability to
regulate circadian rhythms.88,89 Maintenance of proper circadian
rhythms is important given its potential implications for a diverse
spectrum of diseases, such as sleep disorders, obesity, metabolic
syndrome, depression, breast cancer and prostate cancer.90–93 Of
note, despite its importance for setting circadian rhythms, blue
light is also hazardous to the aging retina,94 complicating issues
with an apparent discrepancy between the demands of the eye
and those of the whole body. Future research in this field is critical
and will likely provide important insights into the effects of
selective wavelengths of light on health and disease.

A BRIGHT FUTURE FOR THE EYE
The aging eye and how the aging process can transition to
diseases like AMD, glaucoma and DES are important issues in the
field of aging research. Interventions that decelerate or reverse
biological aging of the eye, such as modulation of the NAD+-
sirtuin axis, activation of autophagy and caloric restriction,
are attractive therapeutic strategies. Research focused on under-
standing how aging affects the eye will likely generate valuable
discoveries with important clinical and day-to-day applications.
Ultimately, these efforts will also lead to the discovery of common
unifying pathways that drive the pathobiology of age-associated
disease, both of the eye and beyond. If this goal is realized, new
therapies will no longer target just one ailment but instead can
target the far-reaching effects of systemic aging.
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