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ABSTRACT
The clinical and molecular implications of DNA methylation alterations remain unclear among the 
majority of glioblastomas (GBMs) without glioma-CpGs island methylator phenotype (G-CIMP); integrative 
multi-level molecular profiling may provide useful information. Independent cohorts of non-G-CIMP GBMs 
or IDH wild type (wt) lower-grade gliomas (LGGs) from local and public databases with DNA methylation 
and gene expression microarray data were included for discovery and validation of a multimarker 
signature, combined using a RISK score model. Bioinformatic and in vitro functional analyses were 
employed for biological validation. Using a strict multistep selection approach, we identified eight 
CpGs, each of which was significantly correlated with overall survival (OS) of non-G-CIMP GBMs, indepen-
dent of age, the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, treatments and 
other identified CpGs. An epigenetic RISK signature of the 8 CpGs was developed and validated to robustly 
and independently prognosticate prognosis in different cohorts of not only non-G-GIMP GBMs, but also 
IDHwt LGGs. It also showed good discriminating value in stratified cohorts by current clinical and 
molecular factors. Bioinformatic analysis revealed consistent correlation of the epigenetic signature to 
distinct immune-relevant transcriptional profiles of GBM bulks. Functional experiments showed that 
S100A2 appeared to be epigenetically regulated by one identified CpG and was associated with GBM 
cell proliferation, apoptosis, invasion, migration and immunosuppression. The prognostic 8-CpGs RISK 
score signature may be of promising value for refining current glioma risk classification, and its potential 
links to distinct immune phenotypes make it a promising biomarker candidate for predicting response to 
anti-glioma immunotherapy.
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Introduction

Glioblastomas (GBMs) are the most frequent and devastat-
ing glioma subtype, and are heterogeneous groups of dis-
eases with various molecular and clinical features.1,2 The 
apparent heterogeneity of GBMs is likely to be driven by 
a plethora of multi-level molecular events which collabora-
tively determine biological phenotypes, clinical prognoses, 
and treatment responses.3–5 Integrative multi-platform 
molecular profiling represents the most powerful approach 
to the comprehensive molecular characterization of this 
clinically refractory disease.5

Among all molecular machinery, epigenetics and DNA 
methylation in particular play key roles in cancer formation 
and progression mainly via regulating gene expression and 
chromatin structure.6 Previous studies have outlined the 

genome-wide landscape of cancer-specific DNA methylation 
changes, which is characteristic of global hypomethylation at 
gene-poor DNA repeats and large hypomethylated blocks at 
gene regions concurrent with mosaicked CpGs island (CGI) 
hypermethylation.6–8 Recently, The Cancer Genome Atlas 
(TCGA) Research Network has identified a distinct epigenetic 
subcluster of glioma-CGI methylator phenotype (G-CIMP) 
GBMs, which is featured by IDH mutations, highly concordant 
hypermethylation at a large number of CpGs, and favorable 
prognosis.9,10 Unfortunately, the impacts of DNA methylation 
aberrations remain unknown among the majority of GBMs 
without G-CIMP since no apparent clinical correlations have 
been observed for non-G-CIMP subclasses.9,10 Moreover, there 
appeared to be lack of validated prognostic biomarkers that 
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could provide information on the likely outcome of GBMs 
independent of treatment, after the exclusion of the favorable 
G-CIMP tumors.

In this study, by analyzing high-throughput DNA methyla-
tion and gene expression microarray data from independent 
cohorts of non-G-CIMP GBMs, we established a novel epige-
netic signature of eight CpGs for optimal prognostication of 
non-G-CIMP patients; the epigenetic signature was closely 
associated with differential transcriptional statues of immune- 
relevant phenotypes of GBM cells. In vitro experiments on 
S100A2, the expression of which appeared to be epigenetically 
regulated by one of the eight CpGs provided additional biolo-
gical evidence for the immune-relevant epigenetic signature.

Materials and methods

Non-G-CIMP GBMs from Rennes and Angers University 
Hospital

One-hundred twenty five primary non-G-CIMP GBMs were 
collected between 2004 and 2013 from the Neurosurgery 
Departs of Rennes and Angers University Hospitals, includ-
ing a published cohort of forty eight samples (RAUH- 
GSE22891, deposited in the Gene Expression Omnibus 
[GEO] at https://www.ncbi.nlm.nih.gov/geo/),11 and a new 
cohort of seventy seven samples (RAUH-new cohort, depos-
ited in The ArrayExpress at http://www.ebi.ac.uk/arrayex 
press/under the accession number of E-MTAB-4969).12 

Snap-frozen samples were collected at the time of surgery, 
following written informed consent, in accordance with the 
French regulations and the Helsinki Declaration. Initial 
histological diagnoses were confirmed by a central review 
panel including at least two neuropathologists. Degree of 
surgical resection as defined by MRI 72 h after surgery. All 
patients were treated with radiotherapy (RT) plus concur-
rent and adjuvant temozolomide (TMZ). Only samples with 
> 80% tumor cells were selected for microarray profiling 
and molecular detection. DNA methylation profiling by 
Infinium HumanMethylation 27k or 450k BeadChip and 
gene expression profiling by Agilent Whole 
HumanGenome 4 × 44 K or 8 × 60 K Microarray Kit for 
the two RAUH datasets were reported previously.11,12 

G-CIMP phenotype was determined by K-means clustering 
on the 1503 featured probes reported by Noushmehr et al.9 

Additional sample information was reported in 
Supplementary Methods.

Non-G-CIMP GBMs and IDHwt lower grade gliomas (LGGs) 
from public databases

The Cancer Genome Atlas (TCGA)
Multi-platform molecular datasets of 303 non-G-CIMP GBMs 
(TCGA-GBM) were obtained from TCGA data portal4 at https:// 
tcga-data.nci.nih.gov/tcga/; secondary, recurrent or previously 
treated cases were excluded; only those with known treatments 
(RT/TMZ or RT alone) were included for study (Figure 1a). For 
additional validation, DNA methylation and gene expression 
data of 94 adult IDH-wild type (wt) LGGs (grade II to III; 
TCGA-LGG)5 were obtained from TCGA (Figure 1a).

Gene Expression Omnibus (GEO)
Four molecular datasets of non-G-CIMP GBMs were obtained 
from GEO, including GSE50923 (n = 49),13 GSE60274 (n = 60; 
recurrent cases were excluded),14 and GSE36278 (n = 45; 
tumors harboring H3F3A mutations and those from TCGA 
were excluded).10 A cohort of sixty IDH-wt LGGs was also 
obtained from GEO (GSE48462).15

All included patients were older than 18 years old, and those 
with missing survival data or with a follow-up data of < 1 
month were excluded for survival analysis.

Molecular data sets of non-tumor brains (NTBs) from each 
database were included as controls. In addition, DNA methyla-
tion data of twenty NTBs from GSE6334716 (median age: 59; 
female/male: 9/11; brain locations: temporal or frontal cortex) 
were selected as controls for TCGA methylation data. All NTBs 
were obtained from apparently healthy individuals without 
pathological evidence of other neurological or psychiatric dis-
eases. Patient and molecular information for all included data-
sets are shown in Figure 1a and Suppl. Table S1. Additional 
sample information is reported in Supplementary Methods.

Multi-step probe selection and RISK score construction

Initial probe selection was performed by removal of probes 
not covered on both 27k and 450k platforms, those targeting 
X and Y chromosomes, and those relevant to single- 
nucleotide polymorphisms (SNPs). Each CpG was classified 
into CGI, Shores (1 to 2,000 bp from island), Shelves (2,001 
to 4,000 bp from island) and Open seas (>4,000 bp from 
island) on the basis of the distance to relevant island regions. 
To make DNA methylation microarray data comparable, 
batch effects between each platform and dataset were 
adjusted by M-value transformation and the empirical 
Bayes approach (ber R package).17 Missing β values were 
imputed by impute R package. Discovery-validation 
approach was used for prognostic model construction. Both 
RAUH-GSE22891 and TCGA-GBM cohorts were used for 
discovery phase. Selected probes with higher variability in 
DNA methylation data (top 20% of standard deviation of β 
value) across RAUH-GSE22891 tumors were included to 
correlate with overall survival (OS) by univariate Cox regres-
sion analysis and permutation test (Figure 1b). After the 
removal of inconsistent results from the discovery cohorts, 
an overlap of 108 CpGs (permutation p < .2) were kept and, 
respectively, subjected to 1) multivariate Cox model within 
the combined discovery sets adjusted by age, treatment and 
cohort, and 2) multivariate Cox model within combined 
discovery patients with RT/TMZ, adjusted by age, 
O-6-methylguanine-DNA methyltransferase (MGMT) methy-
lation status and cohort (Figure 1b). Then, a total of 54 
CpGs were kept for the next multivariate Cox regression 
analyses with gradually stricter p-values for significance 
(p < .5, <0.2, <0.1 and <0.05), which incorporated all sig-
nificant CpGs as well as age, MGMT methylation status, 
treatment, and cohort (Figure 1b). Finally a panel of eight 
CpGs was identified for constructing a RISK score model, 
which is the sum of β values of each CpG weighted by their 
multivariate Cox coefficients, adjusted by age, MGMT 
methylation status, cohorts, and other loci (Figure 1c). The 
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cutoff for low-risk and high-risk tumors were predefined as 
the median risk score from the discovery cohorts.

Multi-platform molecular data analysis

Differentially expressed microRNAs (DEmiRs) were computed 
by two-sample standard t test with confidence level of false 
discovery rate (FDR) assessment = 80% and maximum allowed 
proportion of false-positive genes = 10%, within BRB-Array 
Tools (https://brb.nci.nih.gov/BRB-ArrayTools). Somatic 
mutation data were analyzed by MutSigCV module on 
GenePattern (https://genepattern.broadinstitute.org/gp) with 
FDR q-value ≤ 0.05 for significance.18 Segmented copy number 

data were analyzed by GISTIC2.0 module on GenePattern with 
default parameters.19 MGMT promoter methylation status was 
determined using a logistic regression model based on two 
Illumina array probes, i.e., cg12434587 and cg12981137.20 

The gene expression subtypes were predicted by Binary tree 
classification prediction using the 840 classifiers reported by 
Verhaak et al.3 Gene set enrichment analysis (GSEA) was run 
to evaluate functional profiles between grouped samples using 
the gene sets of the Gene Ontology Biological Processes from 
Molecular Signature Database (MSigDB),21 with both nominal 
p-values ≤ 0.05 and false discovery rate (FDR) q-values ≤ 0.25 
for significance. Single-sample (ss)GSEA was also performed to 
calculate a separate enrichment score for each pairing of 
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Figure 1. Molecular data information and study workflow of CpGs selection; (a) molecular data type and sample size of included datasets of non-G-CIMP GBMs (grade IV) 
and IDHwt LGGs (grade II to III); (b) schematic diagram for the multi-step probe selection based on multivariate analysis; (c) the characteristics of the eight CpGs with 
high clinically informative value; Cox coefficients are calculated from multivariate analysis adjusted by age, treatment, MGMT methylation status, cohort, and all the 8 
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Open seas (> 4000 bp from Island); G-CIMP = glioma-CpG island methylator phenotype; IDHwt = IDH wild type; GBM = glioblastoma; LGG = lower-grade glioma.
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a sample and gene set, which represents the degree to which the 
genes in a particular gene set are coordinately up- or down- 
regulated within a sample.21 The abundance of tumor- 
infiltrating immune cells was estimated by CIBERSORTx 
(https://cibersortx.stanford.edu/) based on gene expression 
microarray data of tumor samples.22

Immunofluorescence staining

Formalin-fixed paraffin-embedded (FFPE) samples of nine 
primary gliomas were collected from the Department of 
Neurosurgery, Xijing Hospital (Grade II, n = 3; Grade III, 
n = 3, Grade IV, n = 3). FFPE tissues were employed for 
immunofluorescence staining with anti-S100A2 antibody 
(Abcam, #ab109494). The intensity and percentage of positive 
cells were evaluated in at least five separate fields at × 400 
magnification. The scores were evaluated by two researchers 
who were blinded to clinical data. Immunoreactivity was 
scored as follows: 0, no staining; 1, weak staining in < 50% 
cells; 2, weak staining in ≥ 50% cells; 3, strong staining in < 
50%, cells; and 4, strong staining in ≥ 50% cells.23 Disputes 
were resolved through discussion. All patients provided written 
informed consent and this study was approved by the 
Institutional Review Board.

In vitro functional experiments

The human glioma cell lines U87, U251, U373, and T98G were 
obtained from American Type Culture Collection (ATCC) and 
were cultured in Dulbecco’s modified

Eagle’s medium supplemented with 10% fetal bovine serum 
(FBS) at 37°C in 5% CO2. Total RNA, DNA and proteins were 
extracted as reported previously.12 Gene expression was deter-
mined using cDNA SYBR Master Mix by quantitative real-time 
PCR (qRT-PCR, Takara). The expression values were normal-
ized to the levels of GAPDH. Total DNA was extracted and 
bisulfate-modified using EZ DNA Methylation-GoldTM Kit 
(Beijing Tianmo). Pyrosequencing was performed by 
Pyromark Q96 ID platform and analyzed by PyroMark CpG 
software (Qiagen). Protein level was detected by western blot. 
The primary antibodies against S100A2 (Abcam, #ab109494), 
FGL2 (Proteintech, #11827-1-AP), phosphor-NF-κB p65 
(Ser536, Cell Signaling Technology, #3033) and GAPDH 
(Santa Cruz, #SC-32233) were used according to the manufac-
turers’ instructions. Stable U251 and U87 cells silenced for 
S100A2 expression were generated using lentiviral vectors 
expressing small hairpin RNAs (e.g., shS100A2-I, shS100A2- 
II, shS100A2-III), with nontargeting sense sequence 
(shControl) as control (Genechem). Cell viability was mea-
sured by CCK-8 assay (Yeasen). Cell cycle was evaluated by 
flow cytometric analysis (FACS) with propidium iodide (PI) 
staining (Sigma). Apoptotic cells were detected by FACS with 
Annexin V-FITC/PI double staining (Beyotime). Cell migra-
tion and invasion were tested by Transwell and Matrigel 
Chamber assays (Corning). Protein levels of FGL2 in cell 
culture supernatant were determined by an enzyme-linked 
immunosorbent assay (ELISA) kit (Cusabio, #E09569h). 
Detail information on in vitro experiments was provided in 
Supplementary Materials.

Statistical analysis

Differences in clinical and molecular features within each sub-
group were tested by unpaired t test, wilcoxon test, Fisher’s 
exact or Chi-square test. Variances in expression levels were 
compared by F test. Pearson correlation was used to correlate 
DNA methylation and gene expression data. Overall survival 
(OS) was the time interval from the date of diagnosis or treat-
ment to the date of death or last follow-up. Progression-free 
survival (PFS) was the time interval from the date of diagnosis 
or treatment to the date of progression defined by the 
Macdonald criteria or Response Assessment in Neuro- 
Oncology (RANO) criteria,24,25 or the date of death or last 
follow-up. Survival data were estimated by the Kaplan–Meier 
Method, and compared by log-rank test. Univariate and multi-
variate Cox regression analysis was used to evaluate the prog-
nostic correlation and independence of each variable. All the 
calculations were done with SPSS statistics (SPSS software Inc.) 
and R software, with two-side p value ≤0.05 for significance.

Results

Identification of a RISK score signature of eight CpGs for 
prognostication of non-G-CIMP GBMs

According to the multi-step selection approach (Figure 1b), we 
identify a panel of 8 CpGs from the two discovery cohorts; each 
CpGs significantly prognosticate OS of non-G-CIMP GBMs, 
independent of age, treatment, MGMT methylation status, and 
other identified CpGs (Figure 1c). DNA methylation data of 
the 8 CpGs and corresponding gene expression patterns are 
reported in Suppl. Table S2; one CGI shore locus (cg19764418) 
is found to be significantly hypermethylated in non-G-CIMP 
GBMs whilst three CpGs from open seas (cg09196959, 
cg13997435 and cg05342835) appear to be focally hypomethy-
lated, independent of large hypomethylation blocks (Suppl. 
Fig. S1). These CpGs are combined by a RISK-score model, 
which is constructed as follows: RISK score = (1.097 × β value 
of cg27413508) + (1.462 × β value of cg19764418) + (1.652 × β 
value of cg00919857) + (1.262 × β value of cg25341653) + 
(−0.891 × β value of cg09196959) + (−1.311 × β value of 
cg13997435) + (−1.457 × β value of cg18123948) + 
(−1.586 × β value of cg05342835).

Using the median RISK score as cutoff (1.4188), patients are 
divided into low-risk and high-risk groups. In RAUH- 
GSE22891, high-risk patients are associated with shorter OS 
than low-risk ones (p < .0001; Figure 2a). Similarly, within 
TCGA-GBM, high-risk patients have poorer OS than low-risk 
patients (p < .0001; Figure 1b).

Validation of the epigenetic RISK score signature in 
independent cohorts

We then apply the RISK score signature to independent valida-
tion cohorts of non-G-CIMP GBMs with different treatments, 
two with RT/TMZ, one with RT/TMZ or RT monotherapy, 
and one with unknown regimens. In those cohorts, the 8-CpGs 
RISK classifier could stratify patients into two subgroups with 
apparent different prognoses; low-risk patients are associated 
with longer OS than high-risk ones in RAUH-new cohort 
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(p = .0048), GSE60274 (p = .0482), GSE50923 (p = .0534), 
GSE36278 (p = .0279; Figure 2b). The RISK score signature is 
also validated in RAUH-new cohort in terms of PFS outcome 
(p = .0288; Figure 2c).

The RISK scores are significantly different across non- 
G-CIMP (or IDHwt) gliomas of different grades, and specifi-
cally increased with tumor grade (Figure 2d). The RISK score 
signature is further validated in two cohorts of IDHwt LGGs 
with various regimens; one from TCGA-LGG (p = .0020), and 
the other from GSE48462 (p = .0312; Figure 2c), with median 
RISK score from each cohort as cutoff (Figure 2e).

Risk classification of the 8-CpGs signature in clinically or 
molecularly stratified cohorts

To further evaluate its prognostic ability, we apply the 8-CpGs 
signature in stratified cohorts by MGMT status (methylated vs. 
unmethylated), patient age (< vs. ≥ 65 years old) from the 
combined RAUH cohorts (RAUH-GSE22891 and RAUH-new 
cohort collectively) and TCGA-GBM. In each cohort, the 
8-CpGs signature shows good discriminating value for 

prognosis among patients with each MGMT status and age 
subclass (Figure 3a,b).

We also test the prognostic performance in stratified 
cohorts by different treatments and gene expression subtypes 
within TCGA-GBM. The 8-CpGs signature significantly prog-
nosticates OS of non-G-CIMP patients in each treatment 
group including RT/TMZ, RT alone, and bevacizumab- 
contained therapy (either first-line or at progression; Figure 
3c). Similarly, the epigenetic RISK classifier also shows consis-
tent discriminating value within each gene expression subtype 
(Figure 3d).

The 8-CpGs signature is an independent prognosticator 
for non-G-CIMP GBMs

Within the combined RAUH cohorts, univariate Cox regres-
sion analysis shows that age, MGMT methylation status, and 
the epigenetic signature are significantly correlated with OS of 
patients (Table 1). The multivariate analysis incorporating all 
significant variables from univariate model then demonstrates 
the 8-CpGs RISK score signature as an independent prognostic 
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Figure 2. Prognostic performance of the 8-CpGs RISK score signature (a) in two discovery cohorts of non-G-CIMP GBMs, one with RT/TMZ (RAUH-GSE22891), and the 
other with both RT/TMZ and RT monotherapy (TCGA-GBM); (b) in four independent validation cohorts of non-G-CIMP GBMs, including RAUH-new cohort with RT/TMZ, 
GSE50923 with RT/TMZ, GSE60274 with both RT/TMZ and RT monotherapy, and GSE36278 with unknown regimens. Prognostic performance of the 8-CpGs RISK score 
signature in terms of PFS outcome (c) in RAUH-new cohort; (d) RISK scores in non-G-CIMP GBMs (grade IV), IDHwt LGGs (grade II to III), and NTBs; Prognostic 
performance of the 8-CpGs RISK score signature (e) in two independent validation cohorts of IDHwt LGGs, including GSE48462 with RT/PCV and RT monotherapy and 
TCGA-LGGs with various regimens; * indicates p value for TCGA G2 vs. TCGA NTB (or GSE63347 NTB) < 0.05; OS = overall survival; PFS = progression-free survival; 
G-CIMP = glioma-CpG island methylator phenotype; IDHwt = IDH wild type; GBM = glioblastoma; LGG = lower-grade glioma; RT = radiotherapy; TMZ = temozolomide; 
PCV = procarbazine, lomustine, and vincristine; NTBs = non-tumor brains.
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factor (Table 1). Similar results are yielded by Cox regression 
analyses from TCGA-GBM, confirming its independent prog-
nostic ability for non-G-CIMP GBMs (Table 1).

Clinical and molecular correlations of the RISK subclasses 
using TCGA multi-platform data

Within TCGA-GBM, correlation with known clinical and 
molecular features shows that the RISK subclasses are not 
apparently correlated with gender, MGMT methylation status, 
and the five non-G-CIMP DNA methylation clusters reported 
by Brennan et al. (Figure 4 and Suppl. Table S3). However, the 
defined risk subgroups appear to be correlated with 1) the four 
gene expression subtypes by Verhaak et al.3 with proneural 

subtype being more enriched in low-risk tumors and high-risk 
tumors being largely classical and mesenchymal subtypes; 
and 2) the pan-glioma subtypes by Ceccarelli et al.5 with Lm6- 
GBM cluster being highly enriched in low-risk tumors (Figure 
4 and Suppl. Table S3). Moreover, low-risk patients are slightly 
younger than high-risk patients (median age: 60 vs. 62 years 
old, P = .017; Suppl. Table S3). These correlation features are 
mostly consistent in non-TCGA samples (Suppl. Fig. S2 and 
Table S3).

For somatic mutations, we identify a total of 99 and 99 
significantly mutated genes for each risk subgroup, 57% of 
which are subgroup-specific (56 for each subgroup; Suppl. 
Table S4-5). However, there appear to have no recurrent muta-
tions with apparent preferential occurrence for each subgroup 

Rennes-two cohorts
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TCGA-GBM

TCGA-GBM

TCGA-GBM

TMGMtemnuTMGMtemsry56≥ega

TMGMtemnuTMGMtemsry56≥egasry56<ega

enolaTRZMT/TR

lamyhcneseMlacissalClarueNlaruenorP
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Bevacizumab

Figure 3. The prognostic performance of the 8-CpGs RISK score signature in molecularly and clinically stratified cohorts; (a, b) risk classification in the subclasses with 
different age at diagnosis (< or ≥ 65 yrs), and MGMT methylation status (methylated or unmethylated) from (a) the combined RAUH cohorts (RAUH-GSE22891 and 
RAUH-new cohort collectively), and (b) TCGA-GBM; (c) risk classification in the subclasses with different treatment regimens (RT/TMZ, RT monotherapy, or bevacizumab 
at any time during the course of their disease) from TCGA-GBM; (d) risk classification in the subclasses with each TCGA gene expression subtype from TCGA-GBM; 
RT = radiotherapy; TMZ = temozolomide; GBM = glioblastoma.
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(data not shown). For somatic copy number variations 
(SCNVs), broad-level GISTIC analysis shows that the risk 
subgroups exhibit quite similar alterations at arm level 
(Suppl. Fig. S3). However, focal-level analysis reveals 
a number of distinct regional SCNVs for each risk subgroup; 
56% (35 of 63) and 50% (29 of 58) of the focal deleted peaks are 
specifically observed in the low-risk and high-risk group whilst 
27% (9 of 33) and 31% (12 of 39) of the amplified peaks are 
specific for low-risk and high-risk tumors (Suppl. Fig. S3 and 
Table S6-7).

The epigenetic subclasses are associated with distinct 
immune-relevant expression profiles

GSEA on TCGA transcriptome data reveals very distinct 
expression profiles between the risk subgroups; high-risk 
tumors appear to be highly enriched with gene sets related 
to the regulation of immune response and lymphocyte- 
mediated immunity in particular, as well as NF-κB activity 
(Figure 5 and Suppl. Table S8) whilst low-risk tumors 
appear to be enriched with gene sets related to the main-
tenance of normal brain functions (Suppl. Table S8). GSEA 
on transcriptome data of non-TCGA samples, including 
non-G-CIMP GBMs and IDHwt LGGs, yields consistent 
and significant results (Figure 5 and Suppl. Table S8). 
ssGSEA confirmed the differential statues of the represen-
tative gene sets between the risk subgroups across each 
dataset (Suppl. Fig. S4). In addition, DEmiRs are calculated 
from TCGA-GBM; totally we identify 28 DEmiRs between 
the risk subgroups, of which 6 miRs are relatively upregu-
lated in high-risk tumors, with 5 being reported to have 
roles in immunity, and 22 miRs are relatively upregulated 
in low-risk tumors, with 13 being involved in neuroglial 
cell development and differentiation (Suppl. Fig. S5). 
However, CIBERSORTx analysis estimates that the 22 
types of tumor-infiltrating immune cells are evenly distrib-
uted between the risk subgroups both in TCGA and non- 
TCGA samples (Suppl. Fig. S6). In summary, the above 

data reveal the potential linkages of the epigenetic sub-
classes to distinct immune-related transcriptional profiles 
of tumor bulks in available datasets of not only non- 
G-CIMP GBMs, but also IDHwt LGGs, which may not be 
conferred by differential abundance of the tumor- 
infiltrating immune cells in bulk samples.

S100A2 appears to be epigenetically allowed for 
up-regulation and contribute to cell proliferation, 
invasiveness, migration, and immunosuppression in GBM 
cells

To gain biological insight into the multimarker epigenetic 
signature, we select one of the 8 CpGs (cg13997435) for further 
analysis (Figure 1c). This single CpG is located at the non-CGI 
transcriptional regulatory region of the gene S100A2. The CpG 
methylation is decreased with tumor grade and is significantly 
hypomethylated in GBMs (Figure 6a,b). The CpG methylation 
is also decreased in non-G-CIMP (or IDHwt) gliomas as com-
pared to those G-CIMP (or IDHmut) tumors (Figure 6c). 
Correspondingly, S100A2 expression is increased with tumor 
grade and is up-regulated in gliomas of grade III and IV 
(Figure 6d,e). S100A2 expression is also increased in non- 
G-CIMP (or IDHwt) gliomas as compared to those G-CIMP 
(or IDHmut) tumors (figure 6f). Immunofluorescence staining 
on gliomas of different grades confirms the increased S100A2 
protein levels with tumor grade (Figure 6g). Moreover, the 
CpG methylation is consistently and significantly in negative 
correlation with S100A2 expression in each database (Figure 
6h). These data suggest the possibility of an epigenetic regula-
tory role of the single CpG methylation on S100A2 expression. 
In GBM cell lines, the CpG is almost unmethylated whilst 
S100A2 is expressed in various levels (Figure 6i–k). S100A2 is 
also associated with high variability in gene expression for 
tumor-NTB comparison (all P < .001, Figure 6d,e). The data 
together indicate that the up-regulation of S100A2 may be 
epigenetically initiated by loss of non-CGI methylation, but 
ultimately determined by other transcriptional regulatory 

Table 1. Univariate and multivariate Cox regression analyses in G-CIMP GBMs.

Variables

Univariate Cox model Multivariate Cox model

HR 95% CI P value HR 95% CI P value

RAUH-two cohorts (RT/TMZ, n = 125)
Patient age (increasing years) 1.022 1.001–1.044 0.038 1.022 1.000–1.045 0.054
KPS (≥ 70 vs. < 70 vs.) 0.841 0.454–1.559 0.582
The 8-CpG signature (high vs. low) 2.911 1.916–4.421 <0.001 2.462 1.600–3.788 <0.001
MGMT methylation status (methylated vs. unmethylated) 0.411 0.267–0.634 <0.001 0.436 0.278–0.683 <0.001
Gene expression subtype (proneural vs. non-pronerual) 0.804 0.488–1.327 0.394
Extent of surgery (total or partial or biopsy) 0.834 0.600–1.158 0.277
Bevacizumab at recurrence (yes vs. no) 0.907 0.585–1.408 0.665
TCGA-GBM (RT/TMZ or RT alone, n = 303a)
Patient age (increasing years) 1.026 1.014–1.038 <0.001 1.014 1.002–1.027 0.022
The 8-CpG signature (high vs. low) 2.014 1.515–2.679 <0.001 2.112 1.567–2.847 <0.001
MGMT methylation status (methylated vs. unmethylated) 0.630 0.473–0.841 0.002 0.591 0.440–0.795 <0.001
Gene expression subtype (proneural vs. non-pronerual) 0.880 0.621–1.246 0.470
Treatment (RT/TMZ vs. RT alone) 0.343 0.252–0.466 <0.001 0.419 0.299–0.585 <0.001
Bevacizumab at any time (yes vs. no) 0.499 0.360–0.693 <0.001 0.736 0.517–1.047 0.088

RAUH = Rennes and Angers University Hospitals; TCGA = The Cancer Genome Atlas; G-CIMP = glioma-CpGs island methylator phenotype; GBM = glioblastoma; 
KPS = Karnofsky performance score; TMZ = temozolomide; RT = radiotherapy; 

aTotally 294 TCGA patients are included for Cox regression analyses after the exclusion of nine patients with follow-up data < one month 
In bold are significant results
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machineries, dependent on distinct molecular backgrounds of 
tumor cells.

Knockdown of S100A2 by two different shRNA sequences 
reduces the proliferation rates of U251 and U87 cells (Figure 
7a,i). Cell cycle analysis confirms that S100A2 down-regulation 
in U251 and U87 cells apparently decreases the proportion of 
S phase and increased the proportion of G2/M phase (Figure 
7b,j). Flow cytometric analysis shows that depletion of S100A2 
initiates apoptosis in U251 and U87 cells (Figure 7c,k). 
Moreover, S100A2 knockdown inhibits the migration and 
invasion rates of U251 and U87 cells (Figure 7d,e,l,m) 
Western blot shows that the decreased S100A2 is associated 
with decreased activity of NF-κB in U251 and U87 cells (figure 
7f,n).To investigate the relevance of S100A2 to glioma- 
mediated immunosuppression, we correlate the mRNA levels 
of S100A2 with a set of glioma-related immunosuppressive 
factors (reviewed by Nduom et al.26) using TCGA data (data 
not shown). We find that only the mRNA levels of S100A2 and 
FGL2, a key hub of glioma-mediated immunosuppression,27 

are significantly in positive correlation (Pearson r = 0.3028, 
p < .01; Suppl. Fig. S7). In vitro experiments further validate 
that S100A2 knockdown reduces the expression of FGL2 in 
U251 and U87 cells (figure 7f-h).n-p The above data suggested 
that S100A2 may contribute to tumor proliferation, invasive-
ness, migration, and immunosuppression in GBMs.

Discussion

Molecular marks with high clinically informative value are of 
crucial use in precision oncology.28 DNA methylation has long 
been the leading candidate for cancer biomarker development 
as it has many advantages over genetic- or expression-based 
information such as having reliable DNA samples, altered 
patterns that have stability, tolerance of non-tumor cell con-
tamination, multi-level biological relevance, and drug-induced 
reversibility.29 There have been precedents of DNA methyla-
tion as more powerful indicator than other molecular informa-
tion, such as methylation status of MGMT for prediction of 
TMZ outcome,30 and hypermethylation of the glutathione 
S-transferase (GSTP1) for detection of prostate cancer.31 

Those single-gene (or locus) epigenetic marks have provided 
critical but limited information. Therefore, the development of 
powerful prognostic indicator that could take advantage of 
high-throughput DNA methylation data will be greatly helpful 
for refining cancer patient management.

Recent whole-genome epigenetic studies have identified 
a molecularly and clinically distinct subgroup of GBMs with 
G-CIMP phenotype, characteristic of IDH mutations, concor-
dant DNA methylation at a large number of loci and favorable 
prognosis. However, the clinical and molecular correlations of 
DNA methylation variations among the majority (about 90%) of 
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non-G-CIMP subsets remained largely unclear.9,10 In this study, 
the Illumina 450k array provided a dramatic increase in the 
genomic coverage of CpGs compared to the 27k array. 
However, only a limited number of samples were available 
with Illumina 450k data. To ensure that there were enough 
samples to employ a discovery-validation approach, we decided 
to limit CpGs to those that appeared both on the 27k and 450k 
arrays, at the expense of higher genomic coverage. By employing 
the high-throughput DNA methylation microarray data and the 
stricter multistep selection strategy, we identified a total of eight 
highly informative CpGs, each of which strongly prognosticates 
survival of non-G-CIMP GBMs, independent of age, treatment, 
MGMT methylation status, and other identified CpGs. To coor-
dinate these 8 CpGs, a RISK score algorithm was used to produce 
a multimarker signature. Applying the signature to different 
validation cohorts of various treatments showed that it was 
a general and independent prognostic biomarker for non- 
G-CIMP GBMs, which could provide information on the likely 
outcome of those tumors regardless of treatment. Given the 

remarkable molecular and clinical similarity of LGGs with 
IDHwt to primary non-G-CIMP GBMs by recent studies, 
which greatly supported the potential inclusion of this LGGs 
subtype within the broad spectrum of GBM-related clinical 
investigation and biomarker validation,5 we also expanded the 
GBM-derived epigenetic signature into two cohorts of IDHwt 
LGGs, and validated its prognostic nature in the similar mole-
cular background. Together the epigenetic RISK signature may 
represent a promising prognosticator for diffuse gliomas without 
G-CIMP phenotype or IDH mutations.

Treatment decision can be highly complicated toward the 
heterogeneous population of GBM patients, and especially for 
those unmethylated MGMT tumors and the elderly 
subpopulation.32,33 The combination of RT and TMZ has 
been generally standard of care for newly diagnosed GBMs.34 

However, aggressive combination treatment conferred very 
limited benefits for unmethylated MGMT tumors, and was 
commonly accompanied with high risk of unaffordable cost 
and drug toxicity.30 The treatment decision could thus be 
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complicated in the subset of unmethylated MGMT tumors. 
The treatment choice for elderly subpopulation could also be 
complex due to their distinct physical and psychological con-
ditions such as overall poor physical status, common presence 
of co-morbidity, decreased tolerance to effective therapy, and 
expectation shifts from longer survival to better quality of 

life.32,33,35 The discovery of highly informative biomarkers for 
refining risk subclassification may represent a straightforward 
approach for improving individualized management for those 
GBM subgroups, in addition to the development of novel 
targeted and effective treatments. In our study, the 8-CpGs 
RISK signature showed good performance in the subgroups 

Figure 6. DNA methylation and gene expression of S100A2; the single CpG methylation levels of S100A2 among (a) GBMs (non-G-CIMP and G-CIMP collectively) and 
NTBs; (b) gliomas of grade II to IV and NTBs; (c) gliomas with G-CIMP (IDHmut) and non-G-CIMP (IDHwt); Gene expression patterns of S100A2 among (d) GBMs (non- 
G-CIMP and G-CIMP collectively) and NTBs; (e) gliomas of grade II to IV and NTBs; and (f) gliomas with G-CIMP (IDHmut) and non-G-CIMP (IDHwt); (g) Representative 
S100A2 immunofluorescence staining (left) and the immunoreactivity scores (right) for FFPE samples of gliomas from grade II to IV; (h) Correlation of the single CpG 
methylation and gene expression of S100A2 in each database; (i) S100A2 single CpG pyrosequencing data in each GBM cell line; (j, k) Real-time PCR and western blots of 
S100A2 in each GBM cell line; * indicates both the comparison of tumors from TCGA vs. NTB from TCGA and GSE63347 respectively; # indicates each comparison of U251 
vs. U373 (or U87 or T98G); NTBs = non-tumor brains; G-CIMP = glioma-CpG island methylator phenotype; IDHmut = IDH mutation; IDHwt = IDH wild type; 
GBM = glioblastoma; LGG = lower-grade glioma; FFPE = formalin-fixed paraffin-embedded.
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with unmethylated MGMT tumors or with older ages, where it 
could effectively distinguish patients with low risk or high risk 
of unfavorable prognosis. Moreover, it could render refined 
risk classification for GBM subgroups defined by other clini-
cally relevant factors such as treatment and intrinsic gene 
expression subtype. Therefore, we propose that the incorpora-
tion of this multi-marker biomarker testing to current risk 
classification scheme could provide more precise prediction 
for individual prognosis, and be helpful for guiding clinical 
choice toward more specified GBM subpopulation.

Contrary to the notion that the central nervous system (CNS) 
was immunologically privileged, it is now apparent that the CNS 
is capable of orchestrating intense immune responses with 
innate and adaptive immune systems.36 Increasing studies have 

highlighted the determinant roles of local immune response in 
glioma phenotype and prognosis.36,37 In this study, we evaluated 
the transcriptional profiles underlying the epigenetic subclasses 
and revealed a potential correlation between the epigenetic RISK 
signature and immune phenotypes of GBM samples. Specifically, 
epigenetically defined high-risk tumors appeared to have an 
enhanced immune phenotype with highly enriched expressions 
of a variety of validated gene sets related to the regulation of 
immune response and lymphocyte-mediated immunity in par-
ticular, which is less likely to be attributed by differential abun-
dance of tumor-infiltrating immune cells in glioma 
microenvironment. Previous studies have shown that epigenetic 
alterations could be used by tumor cells to impair their immu-
nogenicity and immune recognition via DNA hypermethylation 

Figure 7. The impacts of S100A2 expression on GBM cell lines, i.e., U251 (a–h) and U87 (i–p); Cell proliferation by CCK-8 assay in U251 (a) and U87 (i); Cell cycle 
alterations by PI-FACS analysis in U251 (b) and U87 (j); Cell apoptosis by Annexin V-FITC/PI double-staining method in U251 (c) and U87 (k); Cell migration by Transwell 
Chamber assay in U251 (d) and U87 (l); Cell invasion by Matrigel Chamber assay in U251 (e) and U87 (m); Western blots of the protein levels of S100A2, p-p65 and FGL2 
in U251 (f) and U87 (n); Real-time PCR of S100A2 expression in U251 (g) and U87 (o); Protein levels of FGL2 in cell culture supernatants of U251 (h) and U87 (p) by ELISA 
assay; PI-FACS = propidium iodide-flow cytometric analysis; ELISA = enzyme-linked immunosorbent assay.
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and epigenetically silencing the expression of key molecules 
required for efficient tumor-host immune interaction, and to 
establish intense immune responses via DNA hypomethylation 
and epigenetically activating immune-relevant genes or other 
unknown mechanisms.38 Our study suggested that the epige-
netic alterations of the 8-CpGs panel may be responsible (at least 
an indicator) for the enhanced immune phenotypes of GBM 
bulks.

Immune-based therapy is now under extensive investigation 
as a promising combinatorial approach to standard treatment 
for gliomas; however, it exhibited very variable anti-tumor 
effects.39 It is known that current immunotherapy and immune- 
checkpoint blockers in particular will be only effective for 
tumors with a preexisting active immune response.40 Many 
studies have proposed that transcriptional profiles associated 
with immune activation could be helpful for distinguishing 
GBM patients who will benefit from immunotherapy. In this 
study, the epigenetic RISK signature has been shown to consis-
tently correlate with distinct expression profiles of immune 
signatures, and in particular the epigenetically defined high- 
risk tumors exhibited an enhanced immune phenotype, indicat-
ing the potential of our epigenetic signature for predicting 
response to immunotherapy. In addition, epigenetic drugs 
have been reported to modulate immune phenotypes of cancer 
cells, indicating a synergistic anti-tumor effect by its combina-
tion with immunotherapy.38 In this sense, DNA methylation- 
based immune parameters could also be helpful for guiding 
combinatorial epigenetic immunotherapy. Taken all, our epige-
netic signature may be a promising biomarker candidate for 
optimizing individual choice of immune-based therapy; biologi-
cal and clinical validations, however, are needed to establish 
definitive conclusion.

In our study, the biological implications of the multimarker 
signature were preliminarily exemplified by one CpG component 
and its relevant gene S100A2. S100A2 is a member of S100 family, 
encoding an EF hand calcium-binding protein that regulates 
protein phosphorylation, cytoskeletal components, and calcium 
homeostasis. Aberrant alterations in DNA methylation and gene 
expression of S100A2 have been widely reported in various 
cancers,27,41,42 exhibiting a protumorigenic role with DNA hypo-
methylation-induced gene avtivation in some cancers (e.g., ovar-
ian and pancreatic cancers) whist a tumor suppressor role with 
promoter hypermethylation-associated silencing of S100A2 in 
other cancers (e.g., prostate and breast cancers). In this study, 
S100A2 expression was found to be increased with glioma grade, 
and negatively correlated with the single CpG methylation at non- 
CGI region. It is also noted that S100A2 appear to be expressed 
with high variability in GBM cells or samples with unmethylated 
CpG, which indicates the permissive but not determinant role of 
non-CGI DNA hypomethylation in gene re-expression. In vitro 
experimental data showed that S100A2 knockdown reduced cell 
proliferation by arresting the cell cycle at the G2/M phase but not 
at the S phase, promoted cell apoptosis, and inhibited cell invasion 
and migration in GBM cell lines. All those data supported a potent 
GBM-promoting role of S100A2. Interestingly, reduced expres-
sion of S100A2 was found to be associated with reduced NF-κB 
activity in GBM cell lines. Increased evidence has shown that NF- 
κB activation is a major driver for malignant progression of 
GBMs. Therefore, the pro-tumor role of S100A2 might be due 

to its regulatory effects on NF-κB activity in GBMs.43 The cellular 
experiment results were mostly in consistent with GSEA results; 
high-risk tumors (with higher S100A2 expression; data not 
shown) in each dataset were mostly enriched with gene sets 
relevant to the regulation of cell-cell adhesion, cell migration, 
apoptotic pathway, and NF-κB activity. Considering the immune 
implications of the epigenetic signature, we also tested the tran-
scriptional correlation of S100A2 on a reported set of glioma- 
related immunosuppressive factors, and identified a co-expression 
pattern of S100A2 and FGL2, a multimodality regulator of 
glioma-mediate immune suppression.27 FGL2 has been reported 
to have multiple roles in tumor immune suppression via modu-
lating M2 polarization, T cell subpopulation and immune 
checkpoints.27 Despite not knowing the molecular mechanism 
of S100A2 on expression of FGL2, it is reasoned that the epige-
netic signature may have impacts on GBM cell immunity partially 
via influencing FGL2 activity. Gene related to other identified 
CpGs have also been reported to have implications in immunity 
and cancer including gliomas such as COX4I2,44 ELMO3,45 

TRIM40,46,47 and GATA4.48,49 Future studies will be needed to 
explore the biological relevance of the specific molecular mechan-
ism of S100A2 on FGL2 expression and glioma immunity, and the 
biological relevance of other identified CpGs and relevant genes.

Finally, increasing studies50–52 have highlighted the contri-
buting roles of cancer-linked DNA hypomethylation of gene 
regions in cancer formation and progression. In our study, 
among the 8 highly informative CpGs, we found that the 
three non-CGI CpGs were hypomethylated and predicted 
poor prognosis in non-G-CIMP GBMs, indicating protective 
roles of DNA methylation at those sites, unlike DNA hyper-
methylation at CGI-associated promoter of tumor suppressor 
genes as cancer risk factor. The findings together raised new 
concerns against the current demethylation-based epigenetic 
therapy as they may have adverse therapeutic effects by exacer-
bating cancer-linked DNA hypomethylation. Targeted epige-
netic drugs that have distinguish effects on cancer-specific 
DNA hypermethylation and hypomethylation may represent 
a rational therapeutic approach, which needs further 
investigation.

In summary, we developed and validated the epigenetic RISK 
signature of 8 CpGs as a promising prognostic biomarker with 
potential value for refining the current risk classification of non- 
G-CIMP GBMs; the epigenetic signature may confer differential 
immune-relevant phenotypes to GBMs, highlighting its potential 
role in guiding individualized immunotherapy; the glioma- 
promoting and immunosuppressive activity of S100A2, expres-
sion of which appeared to be epigenetically permissive by DNA 
hypomethylation of one of the identified CpGs, provided biologi-
cal evidence of the prognostic RISK signature. Future studies are 
needed to 1) validate the prognostic value in a prospective man-
ner; 2) test the guiding potential to glioma immunotherapy; and 3) 
explore the biological and molecular mechanisms underlying the 
epigenetic signature.
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