
at three other trinucleotides was also significantly higher in
relapsed AML compared to presentation disease (Table 1),
suggesting the presence of mutation signatures from other
chemotherapy agents.
In summary, these data demonstrate that Ara-C preferentially

induces mutation at 5′TpGpA3′/5′TpCpA3′ sequences which are
significantly elevated in relapse disease after exposure to Ara-C-
containing regimens. Given the relationship between Ara-C dose
and mutagenicity reported here, a consideration of chemotherapy-
induced mutagenicity could be important when developing
strategies for treating AML that maximise the likelihood of remission
whilst minimising the risk of mutation in surviving cells which could
contribute to evolution of relapse disease.
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MARIMO cells harbor a CALR mutation but are not
dependent on JAK2/STAT5 signaling
Leukemia (2015) 29, 494–497; doi:10.1038/leu.2014.285

Mutations in calreticulin (CALR) were recently described to be present in
the majority of patients with a JAK2-unmutated myeloproliferative
neoplasm (MPN).1,2 This discovery has had rapid clinical impact, and
testing for CALR has been embedded in national and international
diagnostic guidelines.3–5 However, a human MPN-derived cell line
harboring a CALR mutation has not been reported and the
mechanisms by which mutated-CALR results in an MPN remain unclear.
To begin to investigate the pathogenetic consequences of mutant

CALR, we searched for patient-derived cell lines harboring CALR
mutations. None were identified by exome sequencing of 1015 cell
lines, including 37 derived from hematopoietic neoplasms.1 We
therefore looked for cell lines derived from patients with leukemic
transformation of a preceding MPN. Given that CALR and JAK2
mutations are almost completely mutually exclusive,1,2,6 we focused

on four such lines known to lack a JAK2 mutation (MONO-MAC-6,
MARIMO, GDM-1 and ELF-153), and also tested a further 52 other
predominantly myeloid cell lines (Supplementary Table 1).
Mutation screening was done by Sanger sequencing as previously
described,1 and details of other methods are in the Supplementary
Information.
The only cell line found to harbor a CALR mutation was

MARIMO, originally derived from a 68-year-old female with
AML-M2, and an antecedent history of ET.7 MARIMO is negative
for JAK2V617F and MPL exon 10 mutations (data not shown)
and carries a heterozygous 61-basepair (bp) deletion in CALR
exon 9 (c.1099_1159del; L367fs*43), which, like all other
reported CALR mutations, results in a +1- bp shift in the reading
frame and thus generates a novel C terminus (Figure 1a). In
patients, the commonest two CALR mutations, accounting for
85% of cases, are a 52-bp deletion (type 1; c.1099_1150del;
L367fs*46) and a 5-bp insertion (type 2; c.1154_1155_ins;
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K385fs*47).8 Both the type 1 deletion and the MARIMO deletion
are immediately preceded by a nucleotide sequence identical
to that at the 3’ end of the deletion (Figure 1a). The 61-bp

MARIMO deletion is readily detected by fragment analysis and
represents a useful positive control for diagnostic clinical testing
(Figure 1b).
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Figure 1. Identification of a CALR-mutated human cell line. (a) Top panel shows the mutated region in CALR exon 9 (red bases). The
commonest CALR mutations are shown above the DNA sequence. Solid gray line shows type 1 (52- bp deletion; c.1099_1150del; L367fs*46)
and gray arrow shows type 2 (5- bp insertion; c.1154_1155_ins; K385fs*47 mutations). The CALRmutation in human cell line MARIMO is shown
below the DNA sequence. Solid red line and capillary sequencing image show a heterozygous 61-bp deletion (c.1099_1159del; L367fs*43) in
MARIMO. Dashed gray and red lines represent the homologous sequence flanking the deleted regions in type 1 and MARIMO mutations,
respectively, also highlighted in the capillary sequencing image (pale blue) for MARIMO. Lower panel shows the predicted protein sequence
of the commonest CALR mutations and of MARIMO with total protein sizes. Amino acids (AA) in the new reading frame are shaded blue and
the common novel peptide sequence shared by the different CALR variants are in bold blue. (b) PCR amplification of CALR exon 9 followed by
fragment size analysis, as used for diagnostic testing for CALR mutations. Vertical heights of peaks represent dye signal intensity and
horizontal position of peaks reflect the fragment size of the PCR amplicon. Wild type (wt) peak occurs at 132- bp. Left panel shows wt and
mutated alleles of MARIMO (61-bp separation in peaks), middle panel shows Type 1/L367fs*46 with peak separation of 52 bp and right panel
shows Type 2/K385fs*47 peaks separated by 5 bp. (c) Agarose gel image showing wt (upper band) and mutated-CALR (lower band) in
MARIMO DNA and cDNA. (d) Quantitative real-time PCR of total CALRmRNA levels expressed as a fold change relative to house-keeping RPLP0
levels, for the cell lines MARIMO, the BCR-ABL1+ CML cell line K562, and the JAK2V617F+ cell lines HEL, UKE-1 and SET-2. Graph depicts all data
points generated in two independent experiments performed in duplicate. ***Po0.001 (e) Western blot showing total CALR protein levels of
MARIMO and four other myeloid cell lines.
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Allele-specific PCR demonstrated expression of the mutant CALR
allele (Figure 1c). Compared with other cell lines derived from patients
with JAK2V617F (HEL, UKE-1 and SET-2) or CML (K562) total CALRmRNA
levels were 10-fold higher in MARIMO (Figure 1d) and total CALR
protein levels were also increased albeit more modestly (Figure 1e).
MARIMO cells expressed cell surface marker CD15 but not other

progenitor or lineage-affiliated markers (Supplementary Table 2). The
proliferation and cell cycle status of MARIMO was unremarkable
compared with other myeloid lines (Supplementary Figure 1). We
next analysed cellular calcium stores since CALR has an important
role in endoplasmic reticulum (ER) mediated calcium homeostasis9

and mutant CALR protein lacks variable numbers of calcium binding
sites present in the wild-type C terminus. No significant differences
in basal cytoplasmic calcium levels were found amongst the six

cell lines tested (Figure 2a). Cell lines were then treated with
1 μM thapsigargin, which blocks ER Ca2+-ATPase channels
resulting in ER calcium depletion and increased cytosolic
calcium levels.10 MARIMO cells showed the slowest rate of
increase of cytoplasmic calcium levels upon addition of
thapsigargin (Figure 2b), consistent with the concept that
mutant CALR alters ER dependent calcium homeostasis.
The mutual exclusivity of JAK2 and CALR mutations argues that

they may share pathogenetic mechanisms and has been used to
suggest that CALR mutations may activate JAK2/STAT5 signaling. This
concept is supported by expression profiling of patient-derived
granulocytes11 together with a report that expression of CALR in Ba/
F3 cells confers interleukin-3 independence and is accompanied
by increased STAT5 phosphorylation.2 However other studies have
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Figure 2. Characterization of the cell line MARIMO. (a and b) Basal cytoplasmic calcium level (a) and changes in cytoplasmic calcium levels
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reported distinct transcriptional signatures in JAK2V617F-mutated and
JAK2V617F-unmutated MPNs.12,13 Interpretation of these apparently
conflicting results is complicated by several issues including
limitations of overexpression systems, the uncertain relevance of
granulocytes to disease pathogenesis and difficulties inherent to
studies of signaling in primary cells containing variable proportions of
mutant cells. To circumvent some of these issues, and to gain insight
into the consequences of CALRmutations, we explored the properties
of MARIMO cells.
The dependence of MARIMO cells on JAK signaling was

initially assessed using the JAK inhibitors Tofacitinib (a
JAK2/3 inhibitor) and JAK-inhibitor-I (a pan-JAK inhibitor)
(Supplementary Figure 2). MARIMO cells were more resistant
to both inhibitors than seven cell lines harboring mutant JAK2 or
JAK3. Dose response studies using the clinically approved JAK-
inhibitor Ruxolitinib (INCB018424, a JAK1/2 inhibitor) showed
that HEL and UKE-1 (both JAK2V617F positive) had IC50 values of
217 and 430 nM, respectively (Figure 2c). In marked contrast the
IC50 value for MARIMO was greater than 10 000 nM, demonstrat-
ing that MARIMO was not dependent on JAK2 signaling.
Consistent with these data, western blot analysis showed that,
compared with JAK2-mutant cells, MARIMO cells contained
markedly reduced levels of JAK2, phosphorylated-JAK2 (pJAK2),
STAT5 and pSTAT5 (Figure 2d). The lack of JAK2-STAT5 signaling
was not accompanied by a compensatory increase in STAT1 or
STAT3 phosphorylation (Figure 2e). JAK2 transcript levels in
MARIMO were similar to other cell lines (Figure 2f), suggesting
either decreased translation or increased degradation of JAK2.
Together, our data demonstrate that the MARIMO cell line

harbors a CALR mutation and yet is not dependent on JAK/STAT
signaling, in marked contrast to JAK2-mutated cell lines.
Our results therefore raise the possibility that mutations of
CALR and JAK2 may share activation of pathways other than the
STATs. Superficially our data appear to contrast with reports that
JAK2-unmutated and CALR-mutated MF patients respond to
ruxolitinib.14,15 However in JAK2V617F-positive patients studies
of mutant allele burden show that Ruxolitinib has a minimal
effect on the mutant clone.15 It is therefore likely that the clinical
responses to Ruxolitinib (reduced splenomegaly and improved
constitutional symptoms) do not reflect a cytotoxic effect of the
drug on the neoplastic clone, but instead are at least in part due
to down-modulation of pro-inflammatory signaling cascades.16
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