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Abstract: Herein, we investigate a novel set of polarizing
agents—mixed-valence compounds—by theoretical and exper-
imental methods and demonstrate their performance in high-
field dynamic nuclear polarization (DNP) NMR experiments
in the solid state. Mixed-valence compounds constitute a group
of molecules in which molecular mobility persists even in
solids. Consequently, such polarizing agents can be used to
perform Overhauser-DNP experiments in the solid state, with
favorable conditions for dynamic nuclear polarization forma-
tion at ultra-high magnetic fields.

Dynamic nuclear polarization (DNP)[1, 2] has become
a widely used method for signal enhancement in various
nuclear magnetic resonance (NMR) experiments. DNP NMR
has allowed applications that were not deemed feasible
before: from proteins in cells,[3] to atomistic studies of
mesoporous materials,[4,5] and to clinical applications of
dissolution DNP.[6] The idea of DNP is to transfer equilibrium
polarization of electron spins to nuclear spins by pumping
electron paramagnetic resonance (EPR) transitions of stable
paramagnetic compounds added to the sample, i.e., “polar-
izing agents”. Ideally, the NMR signal enhancements are
reaching a value equivalent to the ratio ge/gN (with ge and gN

being the electron and nuclear gyromagnetic ratios), which is
equal to 660 for protons, i.e., for nuclei with the highest g-
ratio. However, achieving the maximal theoretically allowed
enhancement (or even approaching it) is still a big challenge,

notably, in high magnetic fields where the polarization
transfer efficiency is expected to decrease.

Historically, the first DNP mechanism to be discovered
was the Overhauser mechanism,[7] relying on electron–
nuclear cross-relaxation and thus requiring fluctuations of
the electron–nuclear hyperfine coupling (HFC). In insulating
solids, the Overhauser mechanism was deemed to be ineffi-
cient. For this reason, solid-state DNP has relied on other
mechanisms, known as solid effect,[8, 9] cross effect[8, 10, 11] and
thermal mixing.[12] However, quite surprisingly, in some cases
the Overhauser effect is operative in insulating solids,[13]

moreover, the enhancement scales favorably with the mag-
netic field (increasing upon the field increase from 9.4 to
18.8 Tesla).[14] It is worth noting that in the case of Overhauser
DNP, microwave pumping is performed on allowed NMR
transitions, which are easier to saturate, providing a possible
solution to the problem of limited microwave power available
at high frequencies. Since Overhauser DNP in solids is an
efficient mechanism at high magnetic fields (used to improve
the NMR resolution) investigation of this phenomenon and
further optimization of the enhancement are of great interest.
So far, Overhauser DNP in insulating solids has been reported
for a single specific polarizing agent—the BDPA radical.[13,14]

Ab initio electronic structure calculations have shown that
this radical is a mixed-valence compound[15] in which the
electron spin density is spontaneously hopping between the
two sites, giving rise to fluctuations of the HFC and,
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consequently, to cross-relaxation.[16, 17] According to molec-
ular dynamics simulations the spectral density of the fluctua-
tions is peaking at frequencies around 100–700 GHz, provid-
ing favorable conditions for electron–nuclear cross-relaxation
at high fields and thus to DNP enhancements.[17] Interestingly,
a similar mixed-valence behavior was reported even before
the BDPA for a flavin derivative.[18] Presently, experimental
data on Overhauser DNP in insulating solids are limited, as
the effect has been reported for a single polarizing agent. The
goal of this work is thus (i) to verify the theoretical prediction
that mixed-valence compounds are suitable polarizing agents
for Overhauser DNP and potentially (ii) improving the
enhancement provided by Overhauser DNP in solids at high
magnetic fields. To this end, we here study a new set of mixed-
valence radicals, namely N1,N1,N4,N4-tetrakis(4-methoxyphe-
nyl)benzene-1,4-diamine (1-4-amine) radical, and
N1,N1,N3,N3-tetrakis(4-methoxyphenyl)benzene-1,3-diamine
(1-3-amine) radical shown in Figure 1 and compare their
performance in DNP experiments to those of the 1,3-
bis(diphenylene)-2-phenylallyl (BDPA) radical. Based on
our previous work, these radicals were chosen from a theo-
retical screening of a larger number of potential mixed-
valence candidates using electronic structure calculations.
The most promising candidates were synthesized, and we here
present the data of an EPR study of these new radicals and
also the results of DNP experiments performed at the
magnetic field of 18.8 Tesla. Our results indeed show that
mixed-valence compounds are suitable polarizing agents for
DNP and support the idea that Overhauser DNP in solids is
due to the transitions between “alternative” valence struc-
tures of such compounds, which give rise to the required
fluctuations of HFCs.

Compounds like BDPA are known as mixed-valence
compounds. Such systems are also called (pseudo) Jahn–
Teller systems,[15, 19] where electronic and vibrational degrees
of freedom are coupled. According to a classification scheme
by Robin and Day,[20] BDPA belongs specifically to the
class II mixed-valence compounds.[16] Such compounds have
a localized electronic state with a barrier in the center.
Accordingly, the two valence states exhibit a coupling inter-
action of intermediate strength. The interaction is sufficiently
weak to prevent a collapse into one symmetric state but
strong enough to reduce the height of the energy barrier in the
middle. In general, the interconversion of two structures

occurs upon excitation: thermally, when higher vibrational
states are populated, or via tunneling through the barrier.[21,22]

It is worth mentioning that changes of HFC pattern with
temperature are often used to estimate the electron transfer
rate in mixed-valence compounds.[15, 23] Recently, some of us
have confirmed that BDPA belongs to class II mixed-valence
compounds using high level electronic structure methods.[16]

Novel radicals have been chosen based on intensive literature
search with a few considerations in mind, i.e., fast electron
transfer rate and narrow EPR line.[15, 24, 25] Both 1-3-amine and
1-4-amine have been reported to have a mixed-valence
character close to the class II/III border.[15, 23, 26] Calculations
of the g-tensor revealed that both radicals have relatively
narrow EPR lines at high fields (ganiso(1-3-amine) = 0.0006,
ganiso(1-4-amine) = 0.0007, ganiso(BDPA) = 0.0003, ganiso =

(gzz�gxx)/giso). In 1-3-amine spin density is mostly localized
on one side of the molecule, which is indicated by values of
the isotropic hyperfine coupling constants (see Figure 2, a full
list of HFC constants is provided in the Supporting Informa-
tion). DFT calculations of 1-4-amine in vacuum yielded
a class III structure where spin density is delocalized over the
entire molecule.[27] However, preliminary CASSCF calcula-
tions point to a class II structure. Furthermore, solvent and
counter-ion effects are known to influence the class of mixed-
valence compounds: polar solvents as well as more compact
counter-ions tend to stabilize localized class II structures.

EPR spectra of the compounds under study obtained at
6.4 Tesla are shown in Figure 3, along with the spectrum of
BDPA shown for comparison. Both 1-3-amine and 1-4-amine

Figure 1. Set of the radicals investigated: N1,N1,N4,N4-tetrakis(4-
methoxyphenyl)benzene-1,4-diamine (1-4-amine), N1,N1,N3,N3-tetra-
kis(4-methoxyphenyl)benzene-1,3-diamine (1-3-amine), and 1,3-bis(di-
phenylene)-2-phenylallyl (BDPA) radical.

Figure 2. Changes in hyperfine coupling pattern due to electron trans-
fer in 1-3-amine (BMK/EPR-III calculation). Rate of the electron trans-
fer was estimated by Uebe et al.[23]

Figure 3. EPR spectra of the solutions of radicals in TCE at 50 K,
acquired on a 180 GHz EPR spectrometer.
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exhibit a narrow EPR line corresponding to g = 2.00359,
which is inhomogeneously broadened due to g-tensor aniso-
tropy. Compared to BDPA, the resonance is found at a lower
field, and the EPR line is almost two times broader. However,
the EPR linewidth (when measured in frequency units) is still
smaller than the NMR frequency wN at the same field.
Consequently, in DNP experiments one should expect clearly
resolved contributions from the solid effect and Overhauser
effect, as previously observed for BDPA.[13]

Figure 4 shows the DNP enhancement measured at
a constant microwave frequency of 527 GHz as a function
of the external magnetic field, which was incremented in small
steps between subsequent DNP measurements. In accordance
with our expectations, individual components are clearly
resolved in each spectrum, with the outer components
(negative component at lower field and positive component
at higher field) corresponding to the solid effect and the
central component corresponding to Overhauser DNP, in
qualitative agreement with studies on BDPA reported
before.[13] However, the newly proposed radicals show
a better performance not only in terms of the maximum
enhancement (found for the central component correspond-
ing to Overhauser DNP) but also in terms of the ratio of the
enhancement determined for the central component and

outer components (which stands for the relative efficiency of
Overhauser DNP and solid-effect DNP). The maximal
enhancement factor found here reaches approximately 30
for 1-4-amine and 20 for 1-3-amine, whereas we found for
BDPA a maximum enhancement of 8 under the same
conditions.

To gain additional insight into the DNP process we have
also measured the dependence of the enhancement on the
pumping power for the central component and one of the
outer components. Such dependencies are expected to be
different[13] because in the former case pumping is performed
on the “allowed” EPR transition, whereas in the latter case
“forbidden” EPR transitions are irradiated. Hence, different
transitions are expected to be saturated at different micro-
wave power. As shown in Figure 5 this is indeed the case for
both radicals under study. Notably, for the central transition
the enhancement approaches its maximal value at the power
of 3.5 Watt, whereas for the forbidden transitions the
enhancement keeps increasing even at the highest available
power. The enhancement coming from the Overhauser effect
thus scales favorably with microwave power, in contrast to
solid-effect DNP. Lastly, we also investigated the MAS
dependence (Figure 6) for the new radicals, which showed
a similar behavior to previous OE DNP studies.[28]

Figure 4. Field profiles for the set of radicals measured at 100 K in
TCE (90D:10H) matrix under 8 kHz MAS. Sample preparation details
are given in the SI.

Figure 5. Normalized 1H DNP enhancement as a function of MW power for different components of the field profile: for BDPA (left) and 1-4-
amine (right). Data for 1-3-amine are shown in Figure S2 in the SI.

Figure 6. Normalized enhancement as a function of MAS frequency
for the studied radicals.
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In summary, we have experimentally observed novel
mixed-valence radicals inducing hyperpolarization based on
the Overhauser mechanism in insulating solids. Our findings
are based on a set of complementary methods: computer
simulations, high field EPR and DNP measurements. We plan
to continue our investigation of mixed-valence polarizing
agents with special focus on their stability under physiological
(i.e., aqueous solution, higher temperature) conditions both
experimentally and theoretically.

Experimental Section
Computational details. DFT calculations were performed using

Gaussian16.[29] Geometry optimization was performed at the BMK/
TZVPP level,[30, 31] followed by calculations of magnetic properties at
the BMK/EPR-III level;[32] ultrafine convergence and integral treat-
ment were employed in all calculations. CASSCF calculations were
done in ORCA at the CASSCF(3,3)/def2-TZVP level of theory.[31, 33]

Experimental details. Synthesis and sample preparation details
are given in the Supporting Information. Echo-detected EPR spectra
were obtained using a home-built Gband EPR spectrometer
(180 GHz, 6.4 T).[34] EPR spectra were recorded in a 1,1,2,2-tetra-
chloroethane (TCE) matrix with a radical concentration of 0.1–
0.5 mm. G-band echo-detected EPR spectra were recorded at 50 K
using a pulse length of 44 ns and 70 ns for p/2 and p pulses,
respectively; the inter-pulse delay was 200 ns. To determine the
values of the g-factor of nitroxides, we placed a 55Mn2+ standard
sample (g(Mn2+) = 2.00101) in the resonator together with the studied
sample. The g-tensor parameters of all radicals under study were
obtained from simulation of the G-band EPR spectra with the
EasySpin program[35] using function pepper in the corresponding
solid-state regime.

DNP experiments were performed on an 800 MHz/527 GHz
NMR/DNP spectrometer (Bruker BioSpin) equipped with a sweep
coil that allowed to vary the B0 magnetic field in the range of� 45 mT.
The MAS frequency was set to 8 kHz unless stated otherwise. The
DNP enhancement was obtained by comparing the 1H signals of TCE
with and without MW irradiation using a rotor-synchronized Hahn
echo pulse sequence after a series of saturation pulses. The DNP
build-up times TB as well as the spin–lattice relaxation times T1 for the
radicals under investigation were measured using the same pulse
sequence by altering recovery times. While the T1 times were virtually
the same for all radicals 35 s, the TB were 36 and 44 s for 1-3-amine
and 1-4-amine, respectively.
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