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ABSTRACT
Background. Recent studies have shown that long non-coding RNAs (lncRNAs) may
play key regulatory roles in many malignant tumors. This study investigated the use of
novel lncRNA biomarkers in the diagnosis and prognosis of breast cancer.
Materials andMethods. The database subsets of The Cancer Genome Atlas (TCGA) by
RNA-seq for comparing analysis of tissue samples between breast cancer and normal
control groups were downloaded. Additionally, anticoagulant peripheral blood samples
were collected and used in this cohort study. The extracellular vesicles (EVs) from
the plasma were extracted and sequenced, then analyzed to determine the expressive
profiles of the lncRNAs, and the cancer-related differentially expressed lncRNAs were
screened out. The expressive profiles and associated downstream-mRNAswere assessed
using bioinformatics (such as weighted correlation network analysis (WGCNA), Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) enrichments,
Receiver-OperatingCharacteristic (ROC) curve and survival analysis, etc.) to investigate
the diagnostic and prognostic values of these EV lncRNAs and their effectors.
Results. In this study, 41 breast cancer-related lncRNAs were screen out from two
datasets of tissue and fresh collected plasma samples of breast cancer via the tran-
scriptomic and bioinformatics techniques. A total of 19 gene modules were identified
with WGCNA analysis, of which five modules were significantly correlated with the
clinical stage of breast cancer, including 28 lncRNA candidates. The ROC curves of
these lncRNAs revealed that the area under the curve (AUC) of all candidates were great
than 70%. However, eight lncRNAs had an AUC >70%, indicating that the combined
one has a good diagnostic value. In addition, the results of survival analysis suggested
that two lncRNAs with low expressive levels may indicate the poor prognosis of breast
cancer. By tissue sample verification, C15orf54, AL157935.1, LINC01117, and SNHG3
were determined to have good diagnostic ability in breast cancer lesions, however, there
was no significant difference in the plasma EVs of patients. Moreover, survival analysis
data also showed that AL355974.2 may serve as an independent prognostic factor and
as a protective factor.
Conclusion. A total of five lncRNAs found in this study could be developed
as biomarkers for breast cancer patients, including four diagnostic markers
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(C15orf54, AL157935.1, LINC01117, and SNHG3) and a potential prognostic marker
(AL355974.2).

Subjects Bioinformatics, Molecular Biology, Oncology, Women’s Health
Keywords Breast cancer, Exosome, lncRNA, Biomarker, Diagnosis, Prognosis

INTRODUCTION
Breast cancer is the most common malignant tumor for women worldwide. It can result
in great physical and mental harm to patients, a poor quality of life, and a heavy family
and societal burden (Siegel, Miller & Jemal, 2018). The incidence of breast cancer has
many complex high-risk factors and interactions (Plagens-Rotman et al., 2017). The breast
cancer diagnosis may be missed or misdiagnosed when patients are in an early stage of
the disease, since lesions at this point are heterogeneous, and patients may be without
typical symptoms. Currently, via the popularization and promotion of routine screening,
early diagnosis and effective treatments of breast cancer have been significantly improved,
and the risk of patient death has been remarkably reduced (Ravert & Huffaker, 2010).
Therefore, understanding the risk factors, drug targets, and the molecular pathogenesis
and regulation mechanisms are of great interest in breast cancer research.

The rapid development of high-throughput technology in multi-omics has resulted in
that the mining of biomarkers has important clinical value in early screening, differential
diagnosis, and the precise treatment and prognosis of breast cancer. BRCA1 and BRCA2
have been shown to be biomarkers for predicting the familial hereditary of breast cancer
(Lou et al., 2014). Estrogen receptor (ER) and progesterone receptor (PR) can be used as
targets for the treatment of breast cancer to decide if the patients are suitable for endocrine
therapy (Group EBCTC, 2005). Human epidermal growth factor receptor 2 (HER2) may
also be used as a biomarker for the targeted therapy and prognosis of this disease (Ross et al.,
2003). Many nucleic acids, proteins, and metabolites are candidates that may be involved
in the carcinogenesis of breast cancer at different stages. These have been identified in
preliminary research and have the potential for clinical application (Schwarzenbach &
Pantel, 2015; Beretov et al., 2015; Speers et al., 2016).

LncRNA is one subtype of noncoding RNAs. LncRNA was thought to be made up of
non-functional sequences that were produced during transcription. Recently, scientists
have shown that lncRNAs may play the roles of ‘‘signal’’, ‘‘guide’’, ‘‘scaffold’’, and ‘‘space
occupying binding’’ in the process of transcription, post transcription, and epigenetic
modification. LnRNAs are involved in the regulation of DNA methylation, histone
modification, chromosome rearrangement, activation or silencing of target genes and
other processing of molecular biology (Ponting & Belgard, 2010; Derrien, Guigó & Johnson,
2012; Wilusz, Sunwoo & Spector, 2009; Wang & Chang, 2011). Presently, many lncRNAs
(such as H19, HOTAIR, MEG3, GAS5, and UCA1) have been shown to be closely related to
the carcinogenesis of breast cancer (Su et al., 2014; Liu & Marie Pyle, 2015; Liu et al., 2013;
Pickard & Williams, 2016;Huang et al., 2014). However, there are additional lncRNAs, that
may play roles in the development of this disease.

Wang et al. (2022), PeerJ, DOI 10.7717/peerj.13641 2/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.13641


High-throughput gene sequencing and microarray gene chip advancements have
led to the establishment of The Cancer Genome Atlas (TCGA) and other public database
platforms (Xu et al., 2015). The TCGA database can be used to search andmine biomarkers
closely related to diseases. This tool has been used successfully to identify the regulatory
mechanisms associated with some key targets linked to breast cancer lesions (Liu et al.,
2018; Bhandari et al., 2018).

Extracellular vesicles (EVs) are discoid vesicles that exist throughout human organs
and bodily fluids. EVs are approximately 40–1,000 nm in diameter with a lipid
double-layer membrane. They contain nucleic acids, proteins, metabolites, and other
molecules/substances. EVs are active organisms and are secreted from almost all cells
under physiological and pathological conditions. They are involved in aspects such as
the immune response, inflammatory response, cell differentiation, cell migration, tumor
invasion, and metastasis (Boukouris & Mathivanan, 2015; He & Zeng, 2016; Gu, Hu & Li,
2017; Azmi, Bao & Sarkar, 2013; Whiteside, 2016). However, not much research has been
conducted on the roles of plasma EV in breast cancer.

The weighted correlation network analysis (WGCNA) method helps to more
comprehensively and systematically understand the occurrence and development of
tumors. It has been widely used in various kinds of tumors including colon cancer, liver
cancer, and glioblastoma multiforme (Zhai et al., 2017; Yin et al., 2018; Yang et al., 2018).

In this study, we attempted to find a number of key lncRNAs related to the carcinogenesis
of breast cancer by comparing breast cancers to normal controls from the sequencing data
of plasma EVs and tissue data from the TCGA database. We predicted their potential
biological functions using WGCNA, and analyzed the function of those new biomarkers by
Receiver-Operating Characteristic (ROC) curve and survival analyses to determine their
diagnostic, therapeutic, and prognostic values in breast cancer.

MATERIALS & METHODS
Transcriptome sequencing data with clinical information collected
from databases of breast cancer tissues
Using the TCGAbiolinks (Colaprico et al., 2016) R package, the breast cancer subdata of the
transcriptome sequence from TCGA (the HTSeq-Counts type) were downloaded, resulting
in a total of 1,222 breast tissue samples. The data from 794 cases of diagnosed invasive
ductal carcinoma in breast tissues and 92 cases with normal tissue were also collected and
downloaded with their clinical information.

Screening of differentially expressed lncRNAs and mRNAs in breast
cancer
The Deseq2 of R package was used to screen out the differentially expressed genes (DEGs)
between the breast cancer and paracancerous tissue groups. |Log2 fold change| ≥ 1 and
adjust p value <0.05 were applied as the selected threshold, and then the annotations
were performed based on those candidates. The annotation films of Gencodev27.gtf in the
GENCODE database (https://www.gencodegenes.org) served to distinguish the lncRNAs
from RNA molecules.
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lncRNA sequencing data with correlation analyses between
extracellular vesicles in plasma and tissues of breast cancer
patients
The plasma samples of breast cancer and benign breast tumor groups (20 cases/group)
for EV extracts were collected and treated from the 6th Affiliated Hospital of Shenzhen
University, according to documents approved by the Medical Ethics Committee of the
Union Shenzhen Hospital, Huazhong University of Science and Technology (0720001,
ky-2020-039-02), and clinical trial registration (ChiCTR19002505). A written informed
consent was obtained from every participant for this study.

Before RNA-seq, 10 plasma samples were pooled into one with an equal volume
from same group, and the total RNAs of plasma were extracted using the exoRNeasy
Serum/Plasma Maxi Kit (QIAGEN, USA). The large RNA molecules were sequenced to
detect and analyze the expression levels of the lncRNAs.

The data were also compared with the expression of plasma EVs in other cancers from
the exoRbase in order to find the disease-related lncRNAs in breast cancer. The lncRNA
candidates of plasma EV were compared with lncRNAs of tissues, in order to screen out
cancer-related lncRNAs, which were both differentially expressed in plasma EVs and breast
tissues.

Construction of weighted gene co-expression network
A weighted gene co-expression network analysis (WGCNA) was conducted (Langfelder &
Horvath, 2008) to investigate the function of the lncRNAs by extracting their expression
data from the TCGA and obtaining the clinical information from the samples. The data
were processed and the function ‘‘goodSamplesGenes’’ was used to test the gene expression
matrix to confirm whether there was a missing value. The ‘‘hclust’’ function was used to
cluster the samples to remove the outlier samples. Using the Pearson correlation coefficient,
the linear correlation degree between the two genes was analysed and the gene expression
matrix was transformed into the gene relationship matrix. Then the inter-gene relationship
matrix was transformed into a weighted scale-free network; the index β (soft threshold)
was taken for the previously obtained Pearson correlation coefficient between genes, and
the β value was adjusted to make the network meet the scale-free characteristics, resulting
in the adjacency matrix of genes. The adjacency matrix was upgraded to a more rigorous
and reliable topological overlap matrix (TOM). Using the difference degree of TOM as
the clustering distance for cluster analysis, the last branch of the cluster tree represented
genes, and the genes with a high overlap were clustered together to form large branches.
Using the dynamic tree pruning (DynamicTreeCut), all genes were divided into different
modules, and the number of genes contained in the module were not less than 30, and the
modules were distinguished by colour (Langfelder, Zhang & Horvath, 2008). The genes in
the module were highly related, and there were a small number of genes, which reflected
the expression characteristics of the whole module. This was called the feature vector gene
(Module eigengene, ME) of the module.
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Identification of the key lncRNA with clinical information
After the module identification was completed, it was combined with clinical information
for analysis. The operation ofWGCNAwas based on continuous variables and classification
variables, such as sample type (tumour or normal). The TNM was set to continuous
variables. The sample type was converted to 0 or 1 min and the TNM staging was converted
to the corresponding number (0, 1, 2, 3, 4, 5). If there was no clear clinical information in
the sample, the samples were treated as a null value. Other clinical data such as age and
survival time were not modified. The correlation between the modules and clinical features
was achieved by calculating the Pearson correlation coefficient between ME and clinical
features. Additional studies were performed to analyse the gene composition in the selected
modules, identify the lncRNAs and the top five mRNAs related to lncRNAs, use Cytoscape
to visualize the results, and apply g:profiler (Raudvere et al., 2019) for enrichment analysis
to predict the potential biological functions of lncRNA in breast cancer.

Assessment of biomarker function of core lncRNAs
The ROC curve was used to evaluate the diagnostic ability of the key lncRNAs to distinguish
between breast cancer samples (n= 794) and normal samples (n= 92); the standard of
screening was AUC area >70%. Univariate cox regression analysis was used in conjunction
with the clinical information to study the relationship between the initial age at diagnosis,
tumour stage, expression of key lncRNA, and total survival time. The initial age at diagnosis
was categorized into a young and old group according to the median age. According to
the tumour stage, stage I and II were classified as early stage, and stage III and greater
were classified as late stage. The selected factors were then analysed by multivariate cox
regression analysis to screen the factors with independent prognostic function.

Partial verification of key lncRNA
The expression data of EV RNA (118 cases of normal and 140 cases of tumour) and tissue
RNA (12 cases of normal and 74 cases of tumour) of breast cancer were downloaded from
exoRBase and Gene Expression Omnibus database (GEO). Log 2 (TPM+1) was used as
the expression of key lncRNA, and the expression of key lncRNA was analysed using the
Student’s t -test. ROC curves were then used to analyse the diagnostic roles of key lncRNAs
in EVs and tissues, respectively.

Statistical analysis
All data statistics were carried out by R software (version 3.5). The screening of differentially
expressed genes (DEGs) was completed by R packet Deseq2. Genes with an |Log2 fold
change | ≥1 and adjusted p-value <0.05 were considered to be differentially expressed. The
resulting adjusted p-value was obtained using the Benjamini and Hochberg’s approach.
The diagnostic ability and prognostic ability of lncRNA were performed by ROC curve
(R packet pROC) and survival analysis (R packet survival and survminer), respectively.
Univariate cox regression analysis andmultivariate cox regression analysis were used to find
lncRNA with independent prognosis; HR 6= 1 and p< 0.05 were used as screening factors.
In the verification analysis, the expression of lncRNA was treated with log2 (TPM+1), and
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Figure 1 Expression profiles of lncRNAs andmRNAs in breast cancer and adjacent tissues. The red
dots indicated that were up-regulation and blue dots pointed down-regulation. (A) Volcano plot of differ-
entially expressed lncRNAs; (B) heat maps of differentially expressed lncRNAs; (C) volcano plot of differ-
entially expressed mRNAs; (D) heat maps of differentially expressed mRNAs.

Full-size DOI: 10.7717/peerj.13641/fig-1

the comparison of expression levels between normal tissues and tumors was analyzed using
the Student’s t -test.

RESULTS
Differential expression and gene annotation of lncRNAs in breast
cancer tissues
A total of 11,321 differentially expressed genes (|log2Fold Change| ≥ 1, adjusted p-value
<0.05) were obtained from 56,512 genes of 886 tissue samples using DESeq2. These were
combined with the annotation information in GENCODEv27.gtf and 4,879 differentially
expressed lncRNAs and 5,304 differentially expressed mRNAs were obtained. Further study
showed that 2,883 of these differentially expressed lncRNAs were up-regulated and 1,996
were down regulated. Of the differentially expressed mRNAs, 3,226 were up-regulated and
2,078 were down-regulated. The different expression patterns of lncRNAs and mRNAs are
shown in Fig. 1.

Comparative analysis of plasma lncRNAs in plasma EV of breast
cancer patients
According to the threshold value of | log2Fold Change | ≥1 and adjust p value <0.05,
a total of 2,714 DEGs were screened using DESeq2 software. Then 155 lncRNAs and
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Figure 2 Disease related lncRNAs expression profile in plasma exosomes. (A) Volcano plot of differ-
ential expression of lncRNAs; (B) differential expression of lncRNAs of four kinds of cancer; (C) Venn di-
agram of differential expression of lncRNAs in breast cancer tissues and plasma EVs. Abbr: CRC, colon
cancer; HCC, liver cancer; PAAD, pancreatic cancer; BC, breast cancer.

Full-size DOI: 10.7717/peerj.13641/fig-2

2,450 mRNAs were selected by annotating the differentially expressed genes. Among the
differentially expressed lncRNAs, 72 were up-regulated and 83 were down-regulated. In
addition, among the differentially expressed mRNAs, 1,619 were up-regulated and 831
were down regulated (Fig. 2). The top 20 differentially expressed lncRNAs are shown in
Table 1. A total of 12 samples of blood extracellular vesicles (GSE100063) frompatients with
colon cancer (CRC), 21 samples of blood extracellular vesicles (GSE100207) from patients
with hepatocellular carcinoma (HCC), and 12 samples of blood extracellular vesicles
(GSE100207) from patients with pancreatic cancer (PAAD) were downloaded from the
exoRBase database. Furthermore, the expression profiles of these samples were analysed
using Limma package software, and lncRNAs were re-annotated by GENCODEv27.gtf.
Thirty-seven differentially expressed lncRNAs were found in CRC, of which 33 were
up-regulated and four were down-regulated; sixty-nine were found in HCC, of which 21
were up-regulated and 48 were down-regulated; a total of 28 were found in PAAD, of
which 25 were up-regulated and three were down-regulated. A comparison of lncRNAs
related to these diseases with those of the breast cancer lncRNAs showed that 149 lncRNAs
were highly correlated with breast cancer. The data were further compared with lncRNAs
in tissue expression profiles and 41 lncRNAs were found to be differentially expressed in
both breast cancer tissues and plasma EVs.
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Table 1 Differentially expressed lncRNAs at top 20 in plasma EV of breast cancer.

ID Symbol Biotype log2FoldChange Padjust

ENSG00000242791 AC117395.3 lincRNA 11.4652 0.0094
ENSG00000206573 THUMPD3-AS1 antisense_RNA 10.5516 0.0094
ENSG00000260196 AC124798.1 antisense_RNA 11.4021 0.0094
ENSG00000224699 LAMTOR5-AS1 processed_transcript 11.2664 0.0094
ENSG00000276672 AL161891.1 sense_intronic 11.2902 0.0095
ENSG00000213279 Z97192.2 lincRNA 11.3280 0.0095
ENSG00000251022 THAP9-AS1 antisense_RNA 11.1038 0.0096
ENSG00000203875 SNHG5 processed_transcript 9.3252 0.0104
ENSG00000163597 SNHG16 processed_transcript 10.7346 0.0104
ENSG00000270069 MIR222HG lincRNA 10.8513 0.0104
ENSG00000247516 MIR4458HG lincRNA −12.0827 0.0086
ENSG00000270681 AC095055.1 antisense_RNA −12.0568 0.0086
ENSG00000279347 AC021945.1 TEC −11.7505 0.0092
ENSG00000226419 SLC16A1-AS1 antisense_RNA −9.3304 0.0094
ENSG00000260025 AC009414.2 lincRNA −11.5678 0.0094
ENSG00000269793 ZIM2-AS1 antisense_RNA −11.3366 0.0095
ENSG00000244055 AC007566.1 antisense_RNA −11.0982 0.0100
ENSG00000266049 AP001011.1 antisense_RNA −11.0034 0.0104
ENSG00000236445 LINC00608 antisense_RNA −10.9120 0.0104
ENSG00000271963 AC026786.2 antisense_RNA −10.7291 0.0106

Construction of weighted correlation network
We extracted information on the expression of 41 lncRNAs and clinical information from
the TCGA database for 866 tissue samples. This was integrated with the data previously
obtained for 5,304mRNA from theTCGA tissue samples to construct aweighted correlation
network. The screening range threshold was defined as 0 to 30 and the correlation degree
of log (k) and log (p (k)) under each threshold, as well as the corresponding average
connectivity and average correlation degree were calculated. The soft threshold β = 3
met the requirements of scale-free network (Fig. S1). Therefore, the soft threshold = 3
was selected to calculate the adjacency matrix. The adjacency matrix was promoted to
the TOM matrix, and the degree of TOM dissimilarity was used as the clustering distance
for clustering analysis. A total of 5,345 genes were divided into different modules. As
the number of genes contained in the module were not less than 30, and these modules
were distinguished by the colour, a total of 19 gene modules were obtained. The Pearson
correlation coefficient analysis module was used to analyse the correlation degree of each
clinical feature and disease. Five modules (blue–green module, yellow module, purple
module, blue module, and brown module) were found to have a relatively high correlation
with the T stage and the TNM comprehensive stage of breast cancer (Fig. 3).

Composition and function analyses of important modules
The blue–green, yellow, purple, blue and brown modules related to TNM staging closely
were analysed, and the lncRNAs and mRNAs with similar expression in the same module
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Figure 3 Construction of weighted correlation network. (A) Gene module cluster diagram was iden-
tified by dynamic pruning. The upper layer was the sample cluster tree, and the lower layer was the co-
expression module of gene, and a total of 19 modules were obtained; (B) correlation heat maps between
modules and different clinical characteristics. The abscissa is the clinical feature, the left ordinate is the
module name, the right ordinate represents the threshold range of Pearson correlation coefficient, the cor-
relation coefficients and p values of modules and traits are shown in the figures.

Full-size DOI: 10.7717/peerj.13641/fig-3

Table 2 A list of important gene modules related to breast cancer with gene numbers.

Modules Blue–Green Yellow Purple Blue Brown

LncRNA 19 2 0 4 3
mRNA 2273 289 108 658 573
Total 2292 291 108 662 576

were identified, with a total of 28 of lncRNAs and 3,901 of mRNAs (Table 2). g: profiler was
used to analyse the functional enrichment of important modules to explore their important
role in breast cancer (Fig. 4). Among them, the genes of blue–green module were involved
in the interaction of neuroactive ligand receptors and played roles in the cAMP signalling
pathway, transcriptional imbalance in cancer, peroxisome proliferator activated receptors
(PPARs) pathway, and PI3K Akt signalling pathway. The genes of yellow module might be
involved in the formation of adhesive plaque and the interaction of extracellular matrix
(ECM) receptors; the genes of purple module gene might be related DNA replication, cell
cycle regulation, homologous recombination and the p53 signalling pathway related to the
occurrence and development of breast cancer; while the genes of brown module might
be involved in pyrimidine nucleotide metabolism and other processes. In the blue–green
module, 19 lncRNAs and 2,273 mRNAs were obtained; in the yellow module, two lncRNAs
and 289 mRNAs were obtained; in the purple module, 108 mRNAs were obtained; in the
blue module, four lncRNAs and 658 mRNAs were obtained; in the brown module, three
lncRNAs and 573 mRNAs were obtained.

Furthermore, the candidate lncRNAs in themodules were further analysed and sorted by
TOM value to find the mRNAs with a relatively high TOM value, which were the potential
targeted regulatory genes of the lncRNAs. The top five were selected (Table 3), and the
co-expression network was constructed according to the regulatory relationship among of
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Figure 4 Function enrichment analysis of important modules. (A) Enrichment analysis of blue–green
module; (B) enrichment analysis of yellow module; (C) enrichment analysis of purple module; (D) enrich-
ment analysis of blue module; (E) enrichment analysis of brown module. The vertical axis represents the
items of enrichment analysis, the horizontal axis represents the number of genes, and different colors rep-
resent BP, CC, MF, KEGG and other classifications.

Full-size DOI: 10.7717/peerj.13641/fig-4
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Table 3 lncRNAs andmatchedmRNAs in the modules.

Module lncRNA mRNA

AC124798.1 TGFBR2 LDB2 LHFPL6 PEAR1 RBMS3
AL355974.2 LHFPL6 LDB2 TGFBR2 RBMS3 JAM2
AC084757.3 EBF1 CAV1 AOC3 ABCA8 HSPB6
AC009414.2 CAV1 PDE2A CD300LG EBF1 NPR1
AC093297.3 MRPS30 FOXA1 TGFBR2 FAM49A CAV2
MIR222HG STARD9 RBMS3 TGFBR2 LDB2 PLSCR4
AC110995.1 CAV1 TGFBR2 CHRDL1 EBF1 ABCA8
AC145124.1 LDB2 LHFPL6 TGFBR2 PEAR1 RBMS3
AP001033.1 TGFBR2 LDB2 CAV1 EBF1 PDE2A
KCNJ2-AS1 TGFBR2 LDB2 LHFPL6 RBMS3 PDE2A
AC135584.1 AOC3 EBF1 PLIN1 HSPB6 CD300LG
HOXA-AS3 LDB2 TGFBR2 LHFPL6 RBMS3 PDE2A
Z97192.2 TGFBR2 LDB2 CAV1 EBF1 PDE2A
AL157935.1 TGFBR2 CAV1 EBF1 LDB2 CAV2
LINC01117 CCDC82 FAM49A MRAS CDC14B CAV2
LINC01220 AOC3 CAV1 EBF1 CD300LG HSPB6
LINC00514 KCNA5 TGFBR2 LDB2 RBMS3 PLSCR4
MBNL1-AS1 CAV1 EBF1 AOC3 CHRDL1 HSPB6

blue–green

AC127502.2 EBF1 AOC3 PLIN1 HSPB6 CD300LG
LINC01340 DST FAM126A KLHL29 SCN2B TCEAL7

yellow
AC005722.2 DST KLHL29 TCEAL7 SCN2B GPRASP1
AL136162.1 KIFC1 AURKB HJURP PLK1 TPX2
WFDC21P SERPINB10 CDC20 AURKB KIFC1 PLK1
ZIM2-AS1 CDCA8 HJURP EXO1 TPX2 KIFC1

blue

AC128689.1 KIFC1 HJURP TPX2 CDCA8 PLK1
AC021016.3 NUBP2 MRPS34 MCRIP2 NME3 FAM173A
SNHG3 UBE2S ALYREF LSM4 RNASEH2A RTKNbrown
AC092979.1 PGA3 CCDC24 LMNTD2 PPM1J PCSK4

them (Fig. 5). In the co-expression network, TGFBR2, CAV1, PDE2A, LDB2, EBF1, and
other key genes were regulated by multiple lncRNAs.

Capability analysis of key lncRNAs as biomarkers
In order to explore the diagnostic ability of the 28 candidate lncRNAs in breast cancer,
the ROC curve was analysed. An AUC value >70% was set as the screening criteria; a total
of eight lncRNAs were found to be able to be used for diagnosing breast cancer. Among
them, the AUC values of LINC00514 (AUC = 86.7928%), C15orf54 (AUC = 86.8365%),
WFDC21P (AUC = 77.7562%), AL157935.1 (AUC = 76.484%), AC124798.1 (AUC =
75.0541%), AL136162.1 (AUC = 70.6103%), LINC01117 (AUC = 70.9059%), SNHG3
(AUC= 70.6789%) were >70% (Fig. 6). In combination with the clinical information, the
age of initial diagnosis, tumour stage, and the role of AL355974.2 (HR = 0.79, p= 0.0077)
in prognosis were determined using univariate cox regression analysis (Table 4). These
factors were analysed bymultivariate cox regression analysis, and it was found that the early
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Figure 5 Co-expression network of lncRNAs andmRNAs. The triangle represents lncRNAs, the circle
represents mRNA, the thickness of the line represents the strength of the correlation between lncRNA and
mRNA, the size of the shape and the depth of the color represents the importance of mRNAs in the net-
work. In addition, the shape is larger, the color is deeper, and the dot is more important in this network.

Full-size DOI: 10.7717/peerj.13641/fig-5

Table 4 Results of univariate regression analysis.

coef HR (95% CI for HR) p. value

stage 0.94 2.6 (1.7–3.8) 1.90E−06
AL355974.2 −0.24 0.79 (0.66–0.94) 0.0077
age_group −0.48 0.62 (0.42–0.9) 0.013
ZIM2AS1 0.063 1.1 (0.99–1.2) 0.11
AC124798.1 −0.11 0.9 (0.78-1) 0.14

diagnosis of the tumour (young diagnosis age, early tumour stage) was of great significance
for improved survival. AL355974.2 (HR = 0.8103, p= 0.02298) could also be used as an
independent prognostic factor, and as a protective factor as its high expression helps to
maintain the survival rate of patients. Our results were statistically significant (HR 6= 1 and
p <0.05), as shown in Fig. 7.

Extending verification of key lncRNAs
In order to further confirm the function and role of these lncRNA, we downloaded the
RNA expression data in EVs and tissues of breast cancer from exoRBase (GSE93078)
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Figure 6 The ROC curves of key lncRNAs. The longitudinal axis shows the sensitivity of the biomarker,
and the transverse axis shows the specificity of the biomarker. The AUC areas of all curves were>70%.

Full-size DOI: 10.7717/peerj.13641/fig-6

Figure 7 Survival analysis of key lncRNAs. The forest map shows the results of multivariate regression
analysis of diagnostic age, tumor stage and AL355974.2. HR 6= 1 and p< 0.05 were used as the criteria for
screening prognostic factors.

Full-size DOI: 10.7717/peerj.13641/fig-7

Wang et al. (2022), PeerJ, DOI 10.7717/peerj.13641 13/23

https://peerj.com
https://doi.org/10.7717/peerj.13641/fig-6
https://doi.org/10.7717/peerj.13641/fig-7
http://dx.doi.org/10.7717/peerj.13641


Figure 8 Expression of key lncRNAs in EV verification data. The vertical axis is the expression of
lncRNA, which was expressed by log 2(TPM+1), and the transverse axis is divided into lncRNA groups:
the normal group and the tumor group. The t -test was used for comparing the expression of the two
groups.

Full-size DOI: 10.7717/peerj.13641/fig-8

Table 5 AUC values of key lncRNA in EV verification data.

lncRNA AUC

AC124798.1 52.1247
AL136162.1 55.2058
AL157935.1 46.8826
C15orf54 35.0998
LINC00514 49.1525
LINC01117 59.3856
SNHG3 44.0285

and GEO (GSE134359). In the EV dataset, seven lncRNAs expression data, including
LINC00514, C15orf54, AL157935.1, AC124798.1, AL136162.1, LINC01117 and SNHG3
were extracted (Fig. 8). The expression levels of C15orf54, LINC01117 and SNHG3 varied
between normal and tumour groups, and LINC01117 showed an up-regulated trend in
tumours, while C15orf54 and SNHG3 showed a down-regulated trend in tumours. The
AUC value of the seven lncRNAs were all less than 70% (Table 5), indicating that these
lncRNAs do not have good diagnostic ability in the EV for breast cancer.
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Figure 9 Expression of key lncRNAs in tissue verification data. The vertical axis is the expression of
lncRNA, which is expressed by log 2(TPM+1), and the transverse axis is divided into lncRNA groups: the
normal group and the tumor group. The t -test was used to compare the expression of the two groups.

Full-size DOI: 10.7717/peerj.13641/fig-9

In the tissue data set, the expression data of five lncRNAs, such as LINC00514, C15orf54,
AL157935.1, LINC01117 and SNHG3 were extracted, and the expression levels are shown
in Fig. 9. Among them, the expression levels of C15orf54, AL157935.1, LINC01117 and
SNHG3 were different between normal and tumour groups, and all of them were up-
regulated in tumours. The ROC curves of five lncRNAs were drawn, as shown in Fig. 10.
LncRNAs such as C15orf54 (AUC= 100%), AL157935.1 (AUC= 99.4369%), LINC01117
(AUC = 76.3514%) and SNHG3 (AUC = 88.4009%) had good diagnostic ability in tissue
samples.

DISCUSSION
WGCNA is a popular systematic research method in biological research. It is widely used
to analyse the patterns of gene intrinsic association among different samples. Specifically,
a large number of genes are identified to express similar genes and form collections, and
to find gene sets and core genes that are closely related to the clinical phenotype. WGCNA
has shown great value in the field of disease mechanism, classification of disease subtypes,
diagnosis, and prognosis. Based on this, the expression profiles were obtained from 794
tissue samples of invasive breast ductal carcinoma and 92 cases of normal tissues from
TCGA. The lncRNAs and mRNAs were separated according to annotation information.
Then, plasma EVs from patients with invasive breast cancer and benign tumour was
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Figure 10 The ROC curves of key lncRNAs in tissue verification data. The longitudinal axis shows the
sensitivity of the biomarker, and the transverse axis shows the specificity of the biomarker. The AUC areas
of all curves were>70%.

Full-size DOI: 10.7717/peerj.13641/fig-10

collected, and large RNAs (such as lncRNAs and mRNAs) were extracted from plasma
EVs, and RNA sequencing was performed. A total of 2,450 mRNAs and 155 lncRNAs were
identified by differential expression analyses. According to the trend of gene expression of
plasma EVs between in breast cancer and benign tumour samples, among 155 differentially
expressed lncRNAs, including 72 up-regulated and 83 down-regulated. Among them,
the top 10 up-regulated lncRNAs were AC117395.3, THUMPD3-AS1, AC124798.1,
LAMTOR5-AS1, AL161891.1, Z97192.2, THAP9-AS1, SNHG5, SNHG16, andMIR222HG.
The top 10 down-regulated lncRNAs were MIR4458HG, AC095055.1, AC021945.1,
SLC16A1-AS1, AC009414.2, ZIM2-AS1, AC007566.1, AP001011.1, LINC00608, and
AC026786.2. Some studies have shown that these lncRNAs play important roles in breast
cancer. For example, SNHG5 can promote the proliferation and cell cycle progression of
breast cancer cells by stimulating the overexpression of proliferating cell nuclear antigen
(PCNA) (Chi et al., 2019). Four lncRNAs associated with breast cancer prognosis were
identified by an analysis of breast cancer gene co-expression network, including SNHG16
(Li et al., 2019). In the differentially expressed lncRNAs of breast cancer triple negative
(ER, PR and Her-2 negative), human epidermal growth factor receptor 2 (HER2) positive,
lumen A positive, and lumen B positive, a total of 37 lncRNAs were found to bemaladjusted
in four subtypes of breast cancer, and THAP9-AS1 was one of them (Li et al., 2020). This
study also reflected the reliability of our data from sequencing and analysing results. The
candidate lncRNAs were shown to be associated with breast cancer lesions. In order to
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further search for lncRNAs that could reflect the characteristics of breast cancer, lncRNAs
in EVs related sequencing data from existing public databases were searched, and lncRNAs
in EVs data of colon cancer, liver cancer and pancreatic cancer from the exoRBase database
were downloaded. These data were then compared with the sequencing data of breast
cancer from this study. A total of 37 differentially expressed lncRNAs were obtained from
colon cancer samples; 69 differentially expressed lncRNAs were obtained from liver cancer
samples; and 28 differentially expressed lncRNAs were obtained from pancreatic cancer
samples.

A total of 41 lncRNAswere obtained from the tissue and exudate of breast cancer patients
by comparing 4,879 differentially expressed lncRNAs in breast cancer tissues retrieved from
the database and 149 differentially expressed lncRNAs sequenced from plasma EVs. These
key lncRNAs and the corresponding targeted mRNAs were loaded into the co-expression
network constructed by R-package WGCNA, and 19 gene modules were obtained. After
comprehensive analysis of the modules and clinical characteristics (including age, clinical
stage, survival time and status) it was found that the five modules of blue–green, yellow,
purple, blue and brown were significantly correlated with clinical stage. A total of 28
lncRNAs and 3,901 corresponding target mRNAs were included. Then, the five modules
were enriched by g:Profiler. Among them, the blue–green module contained 19 lncRNAs.
These modules were functionally related to cancer transcriptional disorders and DNA
replication. Sultan et al. (2019) found that breast cancer-related genes weremainly involved
in the PPARs signaling pathway, which was associated with adipocyte differentiation, and
regulating the proliferation and survival of cancer cells. Recent studies have revealed that
adipocytes may enhance the proliferation and migration of breast cancer cells through
PI3K-Akt-mTOR pathway (Park et al., 2020). Dong et al. (2015) found that stimulation of
cAMP signal transduction could inhibit the migration of invasive triple negative MDA-
MB-231 breast cancer cells. Therefore, 19 lncRNAs in the blue–green module may be
involved in the regulation of proliferation and migration of breast cancer cells. The results
of enrichment analysis showed that the two lncRNAs contained in the yellow module
may be related to the signal exchange between breast cancer cells, cell adhesion and the
ECM receptor. The blue module contains four lncRNAs, which were related to cell cycle,
mitosis, and chromosome movement. This module participated in cell cycle regulation,
DNA replication, homologous recombination repair and the p53 signaling pathway. These
processes were very common in tumorigenesis, indicating that the functions of those four
lncRNAs were related to the pathogenesis of breast cancer. The brown module contained
three lncRNAs, which were involved in pyrimidine nucleotide metabolism. In addition,
mRNAs expression, which was highly similar to lncRNAs expression, was extracted from
this module as its potential target genes, including TGFBR2, CAV1, AOC3, CAV2, PLIN1,
EBF1 and KIFC1. The roles of these genes in breast cancer have been reported (Wei et
al., 2015; Qian et al., 2019; Li et al., 2015), which suggested that their functions may be
regulated by multiple lncRNAs. However, there was no lncRNA in the purple module,
and enrichment analysis showed that they might be involved in the protein digestion and
absorption process, as well as the ECM receptor interaction and relaxin pathway. In breast
cancer research (Cao et al., 2013), relaxin may enhance the invasiveness of breast cancer
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cell lines in vitro by inducing the expression of matrix metalloproteinases. This link may
show that the function of the purple module was related to the invasion of breast cancer
cells.

In addition, the clinical information of breast cancer tissue samples was used to evaluate
the clinical application of these candidate lncRNAs. The ROC curve of 28 lncRNAs in the
top five modules were drawn, and eight lncRNAs with potential diagnostic markers were
found to distinguish breast cancer patients from that in normal tissues. Then, the survival
rates of 28 lncRNA were analyzed, combined with univariate cox regression analysis,
and multivariate cox regression analysis, and identified AL355974.2, which may have a
protective effect and result in a better survival rate when it is highly expressed.

In order to verify our research results, we introduced additional data sets, including the
EV and tissue RNA data sets. In the EV dataset, the expression data for seven lncRNAs
were extracted. Compared with the EV lncRNAs obtained by our previous experimental
sequencing, there were still some differences between the two results, which may be due to
the small sample size of the test sequencing. The verification data of EV revealed that there
were three differentially expressed lncRNAs, however, they did not have a good diagnostic
ability in EV. The tissue validation data was consistent with the exploration data we
obtained from TCGA. We extracted the expression of five lncRNAs from the verification
data, among which C15orf54, AL157935, 1LINC01117 and SNHG3 were differentially
expressed and had good diagnostic ability in breast cancer tissues. There have been few
studies conducted on these specific lncRNAs, however, there have been some studies on
the function of SNHG3 in breast cancer. For example, it could promote breast cancer
progression by acting as a miR326 sponge (Zhang et al., 2020). There were few samples
with rich lncRNA and clinical information, but the function of AL355974.2 could not be
further verified. In addition, we noticed that some lncRNAs showed an opposite expression
trend in EV and the corresponding tissue samples. The cause of this is unknown and
requires further study.

CONCLUSIONS
A total of 28 breast cancer-related lncRNAs were discovered using the comparative
analysis of local tissue samples and plasma EV expression profiles. Bioinformatics analysis
revealed that they were related to molecular regulation of breast cancer. Among them,
eight candidate lncRNAs showed a good diagnostic potential. These include LINC00514,
C15orf54, WFDC21P, AL157935.1, AC124798.1, AL136162.1, LINC01117, and SNHG3.
Further verification and analysis revealed that C15orf54, AL157935.1, LINC01117 and
SNHG3 had better a diagnostic ability in tissue samples, but not in EV samples. In
addition, AL355974.2 may an independent prognostic factor and a protective factor.
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