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Abstract

Identifying the factors controlling the spatial variability of soil metal elements could be a chal-

lenge task due to the interaction of environmental attributes and human activities. This study

aimed to investigate the critical explanatory variables controlling total Ca, Cd, Cr, Cu, Zn,

Fe, Mn, Mg, Pb, and Zn variations in the arable topsoil using classical statistics, principal

component analysis, and random forest techniques. The work was conducted in the core

region of the Three Gorges Reservoir of China. The explanatory variables included soil,

topography, climate, vegetation, land use type, and distance-related parameters. Average

concentrations of the metal elements were in order of Fe >Mg > Ca >Mn > Zn > Cr > Ni >
Pb > Cu > Cd. Soil Cr, Fe, and Pb showed low variability while others presented medium

variability. Average concentrations of Cr, Fe, Cd, and Mg exceeded their corresponding

background values. There were highly positive correlations between all metal elements

except Pb, Cd and Cr. The principal component analysis further demonstrated that the

sources of Pb, Cd, and Cr differed with other elements. The results of random forest sug-

gested that soil properties followed by topography were critical parameters affecting the var-

iations of Ca, Mg, Mn, Fe, Ni, Zn, and Cu. Agricultural activities and soil properties were

major factors controlling the variations of Pb, Cr, and Cd. Further study should be conducted

to understand the relations between the metal elements and soil properties.

Introduction

Soil is an important part of terrestrial ecosystems [1]. Soil metal elements, such as Co, Cu, Fe,

Mn, Mo, Ni, and Zn, are essential for plant normal growth and development [2, 3]. However,

some of metal elements, such as As, Cd, Hg, and Pb, that do not perform any known physio-

logical function in plants, are not essential. In general, deficient or excessive concentrations of

the metal elements may have adverse effects on plant growth, environmental quality, and

human health [4, 5]. Soil metal elements mainly originate from the soil parent material [6, 7],

and then are redistributed by pedological activities [5].
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Topography significantly affects runoff, drainage, soil temperature, and soil erosion, which

consequently results in the spatial variability of soil chemical and physical properties [8–21].

In the areas with complicated topography, landform offers a diverse geopedological condition

and thus influences on the spatial distribution pattern of soil metal elements. For example,

Rezapour et al. [19] analyzed the variations of total Fe, Mn, Zn, Cu, and Ni in a mountainous

area. They found that the difference in the concentration of soil metal elements between topo-

graphic aspects was mainly due to the different weathering rate of source rocks on north-fac-

ing slope and south-facing slope. In the dry-hot valley of Upper Red River, the concentrations

of metal elements in the topsoil were controlled by soil and topographic factors [20]. Higher

concentrations of Cr, Ni, Zn, and Pb were found at lower elevation and slope areas. In a hilly

area of SE Poland, the highest concentrations of total Cu and Zn occurred at the bottoms of

depressions and at the foot of slopes because of soil erosion [21].

At larger scales, the effect of climate on soil metal elements variations will be enhanced. For

instance, Ren et al. [22] concluded that the variations of metal elements were mainly influ-

enced by longitude, pH, mean annual temperature and precipitation after analyzing over 50

elements based on 9830 topsoil samples across an area of 39000 km2 in southeast China. Mar-

tin et al. [23] reported that soil elements variations were closely linked to variations of source

geology, soil type, climate and topography based on a database of the regional geochemical

baseline soil survey in southern New Zealand. In southern Norway, transboundary atmo-

spheric transport is a major source of metal elements (e.g., Pb, As, and Cd) to surface soils

[24].

It has been found that anthropogenic activities resulted in relatively high concentrations of

some elements (e.g., S, P, Cd, Pb, and Hg) in topsoil [25, 26]. In intensely agricultural areas,

the applications of inorganic fertilizers, manures, agrochemicals, and irrigation water are the

major anthropogenic sources of metal elements [25–27]. Additionally, traffic might be the

main source for Pb accumulation in surface soils [28].

Identifying the critical factors influencing the variability of soil metal elements could be a

challenging task due to the interaction of environmental attributes and human activities, since

these factors might differ with the area of interest. For instance, some authors found that

higher concentrations of soil metal elements were observed in the areas with lower elevation

[20, 21], while others reported an opposite result [29]. In consideration of the potential adverse

effects of metal elements on plant growth, the current study made an attempt to investigate the

variations of total metal concentrations (Ca, Cd, Cr, Cu, Zn, Fe, Mn, Pb, Mg, and Ni) in the

cultivated soils within an intensely agricultural area. The objectives were to (1) analyze the

concentrations and variations of soil metal elements and (2) determine relative importance of

explanatory variables (e.g., soil, topography, climate, vegetation, land use type, and distance-

related parameters) controlling metal elements variations. Specifically, two well-known tech-

niques, i.e. principal component analysis (PCA) and random forest (RF), were used in this

work.

Materials

Study area

The study area (108˚13’-108˚18’E, 30˚39’-30˚42’N) covering about 18 km2 is located in the

Ganning town in the core region of the Three Gorges Reservoir of China (Fig 1). The elevation

varies between 247 and 658 m with a mean of 433 m. The slope changes between 0.45˚ and

63.9˚ with a mean of 12.72˚. It has a humid subtropical monsoon climate characterized by hot

summer and warm winter. Annual precipitation is 1293 mm which mainly occurs in summer.

Mean annual temperature is 17˚C. Average annual sunshine hour is 1204.5 h and relative
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humidity is 81%. The frost free period varies between 260 and 283 d. The Ganning river with

five streams flows through the study site. This resulted in the flat valley bottom lying in the

middle of the area. The main land use types are paddy field (23.63%), dry land (16.89%) and

orchard (12.48%). The dry land is mostly located in the areas with elevation (mean = 432 m)

varying between 252 and 650 m and slope (mean = 11.8˚) changing between 0 and 55˚. The

paddy field is sited in the areas with elevation (mean = 461 m) varying between 265 and 651 m

and slope (mean = 7˚) changing between 0 and 25˚. The orchard is mainly distributed in lower

places with elevation (mean = 382 m) varying between 269 and 617 m and slope (mean = 7˚)

changing between 0 and 26˚. The dryland is planted with winter rapeseed (Brassica napus L.)

—corn (Zea mays L.) or sweet potato (Ipomoea batatas L.). The orchard is grown with blood

oranges (Citrus sinensis (L.) Osbeck). The paddy field is planted with single rice (Oryza sativa
L.) from April to September and retains water in winter. In the current study area, farmers

generally tend to apply inorganic fertilizers, manures, and urea. They seldom applied potas-

sium fertilizer in agricultural activities.

The soil parent material is Shaximiao formation which was deposited during the middle

Jurassic period. Soil developed from this geological unit is classified as pup-orthic-Entisol,

Regosols, and Entisol according to the Chinese Soil Taxonomy, the FAO Soil Classification,

and the USDA taxonomy, respectively [30]. The parent material is Shaximiao formation which

Fig 1. Maps of study area locations, soil sample sites, digital elevation model, and land use type.

https://doi.org/10.1371/journal.pone.0254928.g001
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was deposited during the middle Jurassic [30]. Soil pH varies between 4.63 and 8.43 with a

mean of 6.23.

Soil sampling and analysis

Within the study area, 300 samples (paddy field: 127, dryland: 98, orchard: 75) were collected

based on a mixture of random and systematic sampling strategies. The study did not involve

private land, protected land, endangered or protected species. No specific permissions were

required for these locations/activities. Fig 1 showed the distribution map of the sampling sites.

The points were selected to cover the entire study area. The work was conducted in March,

2019. For each sampling site, a mixed sample (3 to 5 subsamples within 5–10 m radius of the

site) with an approximate weight of 500 g were collected. All the sampling locations were

recorded by Global Positioning System (GPS). Standard measurements were performed on the

soil samples. Samples were air-dried and passed through a 2 mm soil sieve before laboratory

analyses.

Soil chemical analyses were conducted according to the methods recommended by CGS [31,

32]. Soil pH was measured in 1:2.5 soil-water suspension with a pH meter. Soil organic matter

(SOM) was determined using the oil bath-K2Cr2O7 titration method [33] and total nitrogen

(N) was measured using the Kjeldhal method [34]. Soil organic carbon (SOC) was calculated

based on the assumption that SOM contains 58% carbon. Total calcium (Ca), chromium (Cr),

iron (Fe), manganese (Mn), phosphorus (P), and potassium (K) were determined by X-Ray

Fluorescence Spectrometry (XRFS) method [31, 32]. Total cadmium (Cd), copper (Cu), nickel

(Ni), lead (Pb), and zinc (Zn) were measured by Inductively Coupled Plasma-Mass Spectrome-

try (ICP-MS) method [31, 32]. Total magnesium (Mg) was quantified by Inductively Coupled

Plasma-Optical Emission Spectrometry (ICP-OES) method. The accuracies and precisions of

all elements were satisfied with the analytical requirements of CGS [31, 32].

Explanatory variables

A set of climate, topography, vegetation, land use type, soil property (pH, SOC, N, K, and P),

and distance-related parameters were used to explain the variability of soil metal elements

(Table 1 and Fig 1). The topographic factors were elevation, slope, and aspect, which were

Table 1. Explanatory variables used in the study.

Attribute Brief description Unit

Elevation Land surface elevation above mean sea level m

Slope Maximum rate of change between cells and neighbors Degree

Aspect Direction of the steepest slope from the north Degree

MAT Long-term mean temperature ˚C

MAP Long-term mean precipitation mm

NDVI Normalized difference vegetation index Non-dimensional

Land use type Three land use types: orchard, dry land, and paddy field Non-dimensional

D2Road Distance to road m

D2House Distance to house m

D2River Distance to river m

pH Soil pH

N Soil total nitrogen mg/kg

P Soil total phosphorus mg/kg

K Soil total potassium %

SOC Soil organic carbon %

https://doi.org/10.1371/journal.pone.0254928.t001
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calculated from a digital elevation map (DEM) with a resolution of 5 m using SAGA GIS soft-

ware [35]. The climate parameters including long-term mean temperature (MAT) and precipi-

tation (MAP) were obtained from the WorldClim Database (http://www.worldclim.org) with

a resolution of 1000 m [36]. The long-term normalized difference vegetation index (NDVI)

with a time resolution of 16 days and a spatial resolution of 250 m was downloaded from

LAADS DAAC (http://ladsweb.nascom.nasa.gov), and the averaged NDVI as a proxy for vege-

tation was calculated with ArcGIS v.10.5 software. Three land use types were dryland, paddy

field, and orchard, which were recorded during soil sampling. Distance to river (D2River),

house (D2House), and road (D2Road) was calculated for each site.

Methodology

Statistical analysis. Spearman correlation analyses were applied to calculate the relation-

ships between soil metal elements and explanatory variables. Mann-Whitney test was used to

evaluate the difference in soil metal elements between land use type.

Principal component analysis (PCA). Principal component analysis (PCA) is a well-

known method for dimension reduction. In PCA, the d-dimensional data are reduced into a

lower-dimensional space by creating a set of new orthogonal variables (principal components)

based on the original dataset. Variables input for PCA included the studied metal elements

(Ca, Cr, Cu, Fe, Mn, Pb, Zn, Cd, Mg, and Ni). The data were examined by Kaiser-Meyer Olkin

(KMO) and Bartlett tests. The KMO test is used for evaluating the number of samples and the

Bartlett test for homogeneity of variances. The PCA result was rotated using varimax with Kai-

ser normalization method to minimize the variations among the variables for each factor. A

principal component with an eigenvalue > = 1 was considered. These principal components

were then used as the dependent variables for random forest to explore the effects of environ-

mental and soil properties on metal elements.

Random forest. Random forest (RF) was proposed by Breiman in 2001 [37]. It creates a

forest based on bagging [37] and random features selection [38–40]. Bagging generates a set of

subsets of the original dataset uniformly and with replacement. Each individual tree is trained

on the bootstrapped samples from the training data and tested on the reminders. During this

procedure, a random subset of features is selected to split the nodes of the tree. Then, diverse

but approximately unbiased base models are created and this could guarantee the predictive

accuracy of random forest. It contains a set of classification and regression trees. RF imple-

ments a classification task if the response is a categorical variable and carries out a regression

job if the response is a continuous variable. For classification tasks, the results are based on a

majority voting strategy. For regression tasks, the predictions are the averages of the trees

according to the following equation,

�t xð Þ ¼
1

n

Xn

i¼1
tðX; viÞ ð1Þ

where �tðxÞ is a predicted value, n is the number of trees, t(X; vi) is an outcome of a tree, X is an

input matrix, vi is the ith random vector having independent and uniformly distributed.

Each tree is trained by about two-third of the data and tested by the others. The testing data

are out-of-bag (OOB) samples and the OOB error is calculated [37]. The OOB error is an unbi-

ased estimator. It is similar with the prediction error produced by an independent testing data-

set. The mean square error (MSEOOB) of a forest is calculated by

MSEOOB ¼
1=n

Xn

i¼1
ðti � t̂ iOOBÞ

2
ð2Þ

where ti is the OOB prediction of the ith sample, t̂iOOB is the average of OOB predictions.
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Additionally, variable importance is calculated based on mean decrease in accuracy (MDA)

and mean decrease in Gini (MGD) [37]. The MDA measures a variable importance according

to its contribution to the prediction accuracy. The MDG measures a variable importance

according to the split quality of a decision tree based on the variable. A variable with higher

homogeneity in splitting has a higher MGD [37]. In the current work, the variable importance

was produced by MDA, since it is more reliable than MDG [37]. The relative importance of

each explanatory variable was then calculated based on MDA.

For RF, the obtained principal components were response variables, the environmental

(topography, climate, vegetation, land use, distance-related parameters) and soil properties (N,

P, K, SOC, pH) were explanatory variables.

Performance evaluation. Leave one out cross validation method was applied to assess

model performance based on a set of statistical error indicators. Coefficient of determination

(R2), root mean square error (RMSE), and Lin’s concordance correlation coefficient (LCCC)

were used in the current study.

R2 ¼

Pn

i¼1

ðQpi �
�QoÞ

2

Pn
i¼1
ðQoi �

�QoÞ
2

ð3Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðQoi � QpiÞ

2

n

s

ð4Þ

LCCC ¼
2Rsosp

s2
o þ s

2
p þ ð

�Qo þ
�QpÞ

2
ð5Þ

where n is the number of data, Qoi and Qpi are the measured and predicted contents of the ith
soil sample, respectively, �Qo and �Qp are the mean values of the measurement and prediction,

σo and σp are the variances of the measurements and predictions. The most accurate model

has the lowest value of RMSE and highest values of R2 and LCCC. The LCCC measures the

agreement between measured and predicted values. It combines both precision and bias to

determine how far the data deviate from the 1:1 line. The value of LCCC changes between -1

and 1, with 1 representing perfect agreement, 0.9–1 excellent agreement, 0.8–0.9 substantial

agreement, 0.65–0.8 moderate agreement, and values <0.65 poor agreement [41].

Software. Basic statistical analyses and PCA were performed with SPSS v18.0. Model

development and evaluation were conducted by using R v3.6.1 (http://www.r-project.org).

The package of randomForest implemented in R software was used in the current study. A

combination of ntree {(100, 3000), 100} and mtry {1, 15} was tested to optimize the parameters

for RF. Finally, the optimal parameters of ntree and mtry were 2900, 5 for PCA1 and 200, 9 for

PCA2, respectively. All the calculations were performed in a computer with Intel Core CPU

i3-4160 @ 3.6 GHz and 4 GB of RAM memory.

Results

Preliminary analysis

The basic statistics of the metal concentrations and explanatory parameters were shown in

Table 2, with last column presenting the background values for the same metal elements in

China [42]. Average concentrations of the metal elements were in the following descending

order: Fe> Mg> Ca > Mn> Zn > Cr> Ni > Pb > Cu > Cd. The 300 soil samples showed
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average values of Ca, Cu, Mn, Pb, Zn, and Ni below their corresponding background values,

while others slightly surpassed the values. Three soil samples had higher concentration of Ca

than the background value. About half of the samples presented higher concentrations of Cu

(49%), Mn (45%), Pb (43%), Zn (46%), and Ni (54%) than their background values. About

70% samples had higher concentrations of Cr (71%), Fe (71%), and Mg (76%) than their back-

ground values. Almost all samples (98%) had higher concentration of Cd than its background

value, indicating that the analyzed sampling sites within the study area were notably accumu-

lated Cd. In terms of coefficient of variation (CV%), Cr, Fe, and Pb showed low variability

(<25%) while others presented medium variability (25%-75%). For the explanatory parame-

ters, elevation, MAT, MAP, NDVI, soil pH, and K had low variability, slope, D2Road, and

D2River displayed high variability, and others showed medium variability.

Table 3 showed the Spearman correlation coefficients between metal elements. Of course,

most of them were closely correlated. Lower correlation coefficients (< 0.6) existed between

Pb, Cd and Cr with most metal elements. Others presenting higher coefficients suggested com-

mon origin of these metal elements in the study area.

Results of Mann-Whitney U-test indicated that significant differences in Ca, Cu, Mn, Pb,

and Mg concentrations of existed between land use types (Fig 2). The orchard had significantly

higher concentrations of Mn and lower concentrations of Ca and Mg. The dryland had signifi-

cantly higher concentrations of Ca, Cu, Mg and lower concentrations of Pb. The paddy fields

had significantly lower concentrations of Ca, Cu, Mn and higher concentrations of Pb.

Table 2. Summary statistics of concentrations of metal elements and explanatory parameters (sample number = 300).

Min Max Mean Stdev CV (%) BK

Ca (mg/kg) 1635 20819 7478 2895.6 38.72 15400

Cr (mg/kg) 36.4 95.68 64.39 10.82 16.81 61

Cu (mg/kg) 7.441 36.634 20.82 5.88 28.25 22.6

Fe (mg/kg) 15301 45580 32320 6650.9 20.58 29400

Mn (mg/kg) 129.7 1059.5 527 198 37.61 583

Pb (mg/kg) 17.7 34.7 25.53 2.31 9.04 26

Zn (mg/kg) 21.94 145.42 68.22 18.21 26.70 74.2

Cd (mg/kg) 0.070 0.540 0.221 0.07 31.31 0.097

Mg (mg/kg) 2912 17649 11237 4167 37.08 7800

Ni (mg/kg) 9.31 50.1 25.79 7.63 29.58 26.9

Elevation (m) 252.28 625.00 420.23 93.53 22.26

Slope (˚) 0 54.87 8.64 7.66 88.58

Aspect (˚) 0 360 207 113 54.67

MAT (˚C) 16.46 17.54 17.13 0.29 1.70

MAP (mm) 1277 1289 1282 3.39 0.26

NDVI 0.50 0.64 0.58 0.03 4.63

D2Road (m) 0.07 333 65.91 51.01 77.39

D2House (m) 0.12 189.9 62.28 35.8 57.48

D2River (m) 1.16 1255 353.46 285.33 80.73

pH 4.63 8.43 6.26 0.83 13.22

N (mg/kg) 381 1660 888.3 243.6 27.43

P (mg/kg) 196.35 2474.9 627.64 253.08 40.32

K (%) 0.998 3.028 2.064 0.42 20.31

SOC (%) 0.147 1.404 0.787 0.209 26.53

CV: coefficient of variation; BK: background values [42].

https://doi.org/10.1371/journal.pone.0254928.t002
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Table 4 showed Spearman correlation coefficients between metal elements and explanatory

variables. Some of them were closely correlated. Specifically, all metal elements were highly

correlated with P, K, and topographical aspect (p< 0.05). Nine of them (except Pb) were

closely correlated with elevation and pH.

Principal component analysis

The value of KMO value was 0.911 and significant value of Bartlett was less than 0.001 indicat-

ing that the PCA result was acceptable. Table 5 showed the results of PCA analysis. The pro-

portion of variance explained by the first two principal components (PCA) was approximately

83.2%. The variables with the highest loadings in PCA1, which accounted for about 48.1% of

the total variance, were Ca > Mg> Mn> Fe> Ni > Zn > Cu. All these metals were probably

related to lithology. In PCA2, the metals Pb > Cr> Cd had the highest loading values and

explained 35.1% of the total variance. These metals were probably affected by both lithology

and agronomic practices, such as fertilization. In this case, Pb and Cd were positively corre-

lated with SOC while Ca, Mn, and Mg were negatively correlated with SOC (p< 0.05), also

suggesting that the origin of these metals might be different.

Model performance and variable importance

Random forest was used to explore the effects of the explanatory variables on the two principal

components (PCA1 and PCA2) over the study area. The accuracy indicators of out of bag

(OOB) and leave one out cross validation (CV) were given in Table 6. The errors of OOB and

CV for both PCA1 and PCA2 gave similar values suggesting the stability of RF. About 80%

and 53% variations of PCA1 and PCA2 could be explained by the explanatory variables,

respectively. In terms of LCCC, models gave substantial agreement for PCA1 and moderate

agreement for PCA2.

Fig 3 illustrated the variable relative importance on PCA1 and PCA2. Obviously, soil prop-

erties followed by terrain indicators presented higher values of relative importance for both

PCA1 and PCA2. For PCA1, the most important variable was K which had much higher rela-

tive importance value than others. For PCA2, N and K had much higher relative importance

values. Topographical factors showed similar relative importance to PCA1 and PCA2. Climate

and distance-related parameters had very low relative importance values. Soil pH and P

showed relative higher values for PCA1 than for PCA2. NDVI had much higher values for

PCA2 than for PCA1.

Table 3. Spearman coefficients between metal elements (sample number = 300, p<0.05).

Ca Cu Fe Mn Zn Mg Ni Cr Cd

Cu 0.694

Fe 0.698 0.892

Mn 0.74 0.678 0.728

Zn 0.76 0.898 0.874 0.682

Mg 0.846 0.847 0.886 0.746 0.875

Ni 0.702 0.878 0.904 0.687 0.85 0.898

Cr 0.506 0.781 0.835 0.541 0.731 0.741 0.866

Cd 0.456 0.516 0.458 0.369 0.634 0.495 0.523 0.45

Pb 0.197 0.59 0.582 0.286 0.56 0.402 0.579 0.592 0.5

https://doi.org/10.1371/journal.pone.0254928.t003
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Fig 2. Box plots (in 10-25-50-75-90th percentiles) of metal elements under dryland, orchard and paddy land use (different letters within each plot

indicate significant difference in metal element between the land use type at p<0.05).

https://doi.org/10.1371/journal.pone.0254928.g002
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Discussion

The ten metal elements were reduced to two principal components (PCA1 and PCA2) accord-

ing to their homogeneity (Table 5). The higher effects of K on both PCA1 and PCA2 indicated

that these metal elements were mainly controlled by the lithogenesis over the study area, since

the farmers seldom applied K-fertilizers in agricultural activities. Besides, some authors have

reported that soil Ni is highly associated with the processes of weathering and pedogenesis [43,

44]. This further indicated that the variations of the metal elements in PCA1 were strongly

linked to soil development process over the current study area. The effect of N on PCA2

revealed by random forest suggested that the metal elements (Cr, Pb, and Cd) in PCA2 were

also closely related with N-fertilizer over the study area, because the farmers are used to apply

large amounts of N-fertilizers to get more yields. Additionally, in intensely agricultural areas,

the accumulation of Cd was often attributed to fertilizer applications [25]. Soil pH showed

Table 4. Spearman coefficient between metal elements and explanatory variables (sample number = 300, p<0.05, NS indicates no significance).

Ca Cr Cu Fe Mn Pb Zn Cd Mg Ni

Ele -0.254 -0.192 -0.261 -0.245 -0.295 NS -0.205 -0.12 -0.202 -0.199

Slope 0.223 NS NS NS 0.165 -0.141 0.151 NS 0.211 NS

Aspect -0.217 -0.24 -0.252 -0.158 -0.228 -0.198 -0.231 -0.169 -0.191 -0.213

Temp NS NS NS NS NS NS NS NS NS NS

Rain NS NS 0.162 0.13 0.129 0.163 0.124 NS 0.12 NS

NDVI NS NS NS NS NS -0.147 NS NS NS NS

pH 0.637 0.327 0.345 0.373 0.39 NS 0.394 0.353 0.484 0.46

SOC -0.266 NS NS NS -0.384 0.309 NS 0.18 -0.207 NS

N -0.139 0.193 0.127 NS -0.267 0.483 0.194 0.389 NS NS

P 0.569 0.286 0.512 0.419 0.447 0.168 0.58 0.311 0.513 0.381

K 0.73 0.709 0.809 0.812 0.672 0.449 0.845 0.489 0.898 0.86

D2Road NS NS NS NS NS NS NS NS NS NS

D2River -0.157 -0.136 -0.137 -0.128 NS NS NS -0.13 -0.126 -0.117

D2House -0.209 NS -0.195 -0.151 -0.162 -0.133 -0.188 NS -0.127 NS

https://doi.org/10.1371/journal.pone.0254928.t004

Table 5. Summary of principal component analysis (PCA).

PCA1 PCA2

Ca 0.909 0.091

Cr 0.544 0.722

Cu 0.709 0.625

Fe 0.753 0.596

Mn 0.857 0.223

Pb 0.086 0.919

Zn 0.734 0.587

Cd 0.258 0.646

Mg 0.864 0.441

Ni 0.723 0.619

Proportion of variance% 48.1 35.1

Cumulative proportion% 48.1 83.2

Extraction method: Principal component analysis

Rotation method: Varimax with Kaiser normalization

https://doi.org/10.1371/journal.pone.0254928.t005
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higher importance to PCA1 due to the strong relationship between pH and Ca (r = 0.64,

p< 0.05, Table 4), since Ca was involved in PCA1. Meanwhile, the lower relationships

between soil P and the metal elements in PCA2 could explain the lower importance of P to

PCA2. However, the relationship between K and the metal elements are unclear and further

studies are needed.

Topography plays an important role in soil formation and hence might affect soil metal ele-

ments variability. In the current study, topography was the second important parameter affect-

ing the metal elements variability. Elevation followed by slope showed highest importance to

both PCA1 and PCA2 (Fig 3). According to the Spearman correlation analysis, higher concen-

trations of metal elements (except Pb) existed in the areas with lower elevation. This was in

consistent with the reported findings that fine particle-related metals (e.g., Cr, Cu, Zn, Ni, and

Cd) are prone to accumulate at low-elevation areas [45]. Besides, in the current study site, the

parent material is composed of purple sandstone and purple shale rock and is sensitive to

physical weathering, such as gravitational collapse [46]. Therefore, metal elements were prone

to move to the lower areas with the fine fraction of the soil and thus higher concentrations of

these elements mostly existed in these areas.

NDVI which reflects the vegetation growth status had much higher importance to PCA2

than to PCA1 (Fig 3). Soil Pb involved in PCA2 was the only metal that was significantly nega-

tively correlated with NDVI. These suggested that the plants growing in the study area might

be injured by Pb.

Table 6. Coefficient of determination (R2), root mean square error (RMSE) and Lin’s concordance correlation coefficient (LCCC) of out of bag (OOB) and leave

one out cross validation (CV) of random forest for the first two principal components (PCA1 and PCA2).

R2
OOB RMSEOOB LCCCOOB R2cv RMSEcv LCCCcv

PCA1 0.8 0.447 0.875 0.817 0.447 0.875

PCA2 0.529 0.685 0.682 0.532 0.684 0.682

https://doi.org/10.1371/journal.pone.0254928.t006

Fig 3. Variable relative importance to PCA1 and PCA2 produced by RF models.

https://doi.org/10.1371/journal.pone.0254928.g003
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Although the distance to river and to house had very low relative importance to metal ele-

ments variations, the Spearman correlation coefficients showed that there were negative rela-

tionships between the distance-related indices and some metal elements. This indicated that

human daily activities, such as washing, might result in these metal accumulation in the area

around the houses and thus along the river. It has been reported that Pb in surface soils was

often accumulated by traffic [28]. However, the relative importance of the distance to road and

the Spearman correlation coefficients indicated that variation of Pb was probably ascribed to

agricultural practices over the current study area.

Conclusions

The current study applied classical statistics, principal component analysis, and random forest

to investigate the critical explanatory variables controlling the variability of metal elements in

the arable topsoil. The main findings are as follows,

1. The soil metal elements showed low to medium variability. The Spearman coefficients

between the metal elements varied from 0.197 to 0.904 (p< 0.05). The first two principal

components explained about 83.2% of the total variance.

2. Soil properties followed by topography are critical parameters affecting the variations of Ca,

Mg, Mn, Fe, Ni, Zn, and Cu. Agricultural activities and soil properties are major factors

controlling the variations of Pb, Cr, and Cd.

However, the effects of explanatory variables on metal elements are complex. Each variable

could exert its influence in different ways simultaneously. Besides, conjoining influences may

restrain or nullify each other. For instance, the effects of climate parameters and land use type

could be eliminated or replaced by topography. Some terrain indicators, such as elevation and

aspect, are closely related with the local micro-climate conditions. The distribution of land use

type is usually determined by topography, for example, the orchard and dryland located in

lower areas and paddy field in higher places in this case.
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