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Abstract

Summary: Single-cell RNA sequencing (scRNA-seq) is a technology to measure gene expression in single cells. It
has enabled discovery of new cell types and established cell type atlases of tissues and organs. The widespread
adoption of scRNA-seq has created a need for user-friendly software for data analysis. We have developed a
web server, alona that incorporates several of the most popular single-cell analysis algorithms into a flexible
pipeline. alona can perform quality filtering, normalization, batch correction, clustering, cell type annotation
and differential gene expression analysis. Data are visualized in the web browser using an interface based
on JavaScript, allowing the user to query genes of interest and visualize the cluster structure. alona accepts
a compressed gene expression matrix and identifies cell clusters with a graph-based clustering strategy. Cell
types are identified from a comprehensive collection of marker genes or by specifying a custom set of marker
genes.

Availability and implementation: The service runs at https://alona.panglaodb.se and the Python package can be
downloaded from https://oscar-franzen.github.io/adobo/.

Contact: p.oscar.franzen@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA sequencing (scRNA-seq) is a powerful technology
to measure gene expression in single cells as it provides more
detailed information than bulk RNA-seq (Sandberg, 2014). A typ-
ical scRNA-seq experiment generates hundreds to thousands of tran-
scriptomes. The rapid rise of scRNA-seq has created a wealth of
scRNA-seq data and parallel to this development an increasing need
for user-friendly data analysis software. A web server for analysis of
scRNA-seq data unlocks access to researchers without having to
learn programming.

Here, we describe alona—a public, fully automated web ser-
vice, with a core written in the Python 3 programing language—
that can be used to analyze, annotate and visualize scRNA-seq
data. The tool takes advantage of a wide range of state-of-the-art
scRNA-seq methods, normalization schemes and clustering algo-
rithms as well as an intuitive web interface for data exploration.
The web server accepts a compressed gene expression matrix in
plain text format. The uploaded data are queued, processed and
analyzed, often within an hour depending on the workload. Results
are visualized in the web browser using a light-weight JavaScript
library, which allows exploring cell clusters and gene expression
using simple interactions. In addition, the analysis script is always
provided so that the user can examine the code needed to reproduce
the results.

2 Materials and methods

The analysis framework (named adobo; https://oscar-franzen.
github.io/adobo/) is written in Python and runs on a virtual private
server shared with the PanglaoDB web server (Franzén et al., 2019).
The backend is based on the LEMP stack. Jobs are queued and exe-
cuted serially. The web interface allows the user to upload data and
select analysis parameters (the default parameters are sensible and
fit most experiments). During the data upload, the web server checks
for data consistency and reports problems to the user. A typical ex-
periment of �3000 cells is processed within 10 min; an optional e-
mail address can be specified to send a reminder when the analysis is
completed. The web server does not require registration to be used;
uploaded data are kept confidential and are automatically deleted
after 7 days. Data are only seen within the scope of the present
browser session, which is identified using a cookie containing a ran-
dom string.

Pre-processing of the raw sequencing data (barcode demultiplex-
ing, alignment and deduplication of unique molecular identifiers) is
performed using external bioinformatics tools. The input data must
be raw read counts in a matrix with genes as rows and cells as col-
umns; the input file must also be compressed with gzip, zip, bzip2 or
xz. The matrix can have a header or not. Fields are separated by
tabs, spaces or commas. The Matrix Market format is also sup-
ported (https://math.nist.gov/MatrixMarket/formats.html); in which
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case the input file should be a tar.gz archive containing three files:
matrix.mtx.gz, barcodes.tsv.gz and genes.tsv.gz.

An overview of the analysis steps is shown in Figure 1 and the
main steps are described here:

1. Quality filtering. Low quality cells are initially removed using sim-

ple thresholds (minimum number of total reads). Subsequently, the

quality filtering approach from Lun et al. (2016) is applied. Cells

are removed based on two quality metrics: (i) the log of the library

size and (ii) the log of the number of detected genes. The median

and median absolute deviation (MAD) is computed for (i) and (ii).

For any cell, if (i) or (ii) are below a defined number of MAD (de-

fault is 3) from the median, the cell is removed. Uninformative

genes are removed by requiring each gene to be expressed in a cer-

tain percent of cells (default is 1%). Doublet detection is performed

in this step using the Scrublet package (Wolock et al., 2019).

2. Normalization. Four normalization procedures are supported:

(i) standard normalization (simple scaling of counts by library

size); (ii) full-quantile normalization; (iii) centered log-ratio nor-

malization; and (iv) variance-stabilizing normalization

(Hafemeister and Satija, 2019). The standalone Python package

also supports adjustment by gene length (RPKM).

3. Batch correction (optional). The user can supply a list of batches

(one per cell) to correct for known batch effects using the

ComBat algorithm (Johnson et al., 2007). An alternative to

ComBat is to directly regress out batch effects using the function

adobo.dr.regress.

4. Feature selection. Highly variable genes (HVG) are discovered

using either: (i) a Seurat-like strategy, utilizing binning of genes

according to average expression (Butler et al., 2018) or (ii) the

method described by Brennecke et al. (2013). Three additional

methods are supported in the standalone package (Andrews and

Hemberg, 2019; Chen et al., 2016; Lun et al., 2016). The default

is to find 1000 HVG.

5. Dimensionality reduction. Principal component (PC) analysis is

performed on the HVG with the method described by Baglama

and Reichel (2005). The default setting is to identify 40 PCs.

The Python package also supports the jackstraw method for

identifying the optimal number of PCs to use. The 2D embed-

ding is performed on PCs with t-Distributed Stochastic

Neighbor Embedding (t-SNE) (van der Maaten and Hinton,

2008) (perplexity is set to 30 as default) or Uniform Manifold

Approximation and Projection (UMAP) (Becht et al., 2019).

6. Clustering. The PCs are searched for k-nearest neighbors using

the BallTree algorithm. A shared nearest neighbor graph, with

weights as the number of shared neighbors, is generated and

pruned. Cell clusters are identified from the graph with the

Leiden (Traag et al., 2019), Louvain or Walktrap (Pons and

Latapy, 2005) algorithms. For Leiden and Louvain, cluster reso-

lution is set to 0.6 as default (decreasing this value gives larger

clusters and vice versa).

7. Cell type annotation. The method for cell type annotation was

described in Franzén et al. (2019). Annotation of cell types is

performed at the cluster level. Cluster-level analysis is faster

than cell-level analysis since not every cell needs to be consid-

ered; it also reduces the impact of molecular dropout events and

cell doublet artifacts, which frequently contaminate scRNA-seq

data. Gene expression in clusters is represented by taking the me-

dian across all cells. The procedure estimates gene expression ac-

tivity of a set of marker genes and then ranks the resulting cell

types. Significance is determined by computing a one-sided

Fisher’s exact test for each cell type and adjusting P-values with

the Benjamini–Hochberg procedure. An acceptable false-

discovery rate was chosen to be 10%. Thus, if the adjusted P-

value is higher than 0.1, the cell type receives an ‘Unknown’ an-

notation. Custom marker genes can be entered or the user can

choose to simply use markers from PanglaoDB. The latter option

only supports mouse and human data. The present function is

implemented in adobo.bio.cell_type_predict.

8. Differential gene expression. The first step involves all-versus-all

cluster comparisons; i.e. every gene is compared between every

pair of clusters. Two methods are available for generating the

initial set of comparisons: (i) linear models followed by t-tests,

similar to the limma R package (Ritchie et al., 2015) or (ii)

Wilcox tests, as a non-parametric option. The latter is computa-

tionally much slower since t-tests were implemented using vec-

torized operations. To generate a single P-value for every gene,

pairwise P-values are combined for every gene using Fisher’s

method. Multiple testing correction is then applied with the

Benjamini–Hochberg procedure. Tests are subsequently filtered

based on two criteria: (i) adjusted P-value ¡ 0.01 and (ii) the

number of cells expressing the gene in the cluster must be above

a specified threshold (default is 80%).

Results can be downloaded as a tar.gz archive as well as visual-
ized in the web browser. Supplementary Figure S1 shows an over-
view of the interface and contains descriptions of analysis output
files.

3 Results and discussion

3.1 Test case: PBMC
To demonstrate the utility of alona, we applied it on a dataset con-
sisting of 8381 peripheral blood mononuclear cells (PBMC). The

Fig. 1. Flowchart showing the main analysis steps in alona. (A) Global overview. (B) A detailed overview of the cell clustering process
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dataset came from a healthy human donor and it was originally gen-
erated by 10X Genomics. Cells were clustered with default settings
into 20 groups. Supplementary Figure S2 shows a UMAP plot of the

data (colors correspond to clusters). Six cell types were identified
(number of cells in parenthesis): T memory cells (3404), monocytes

(2224), NK cells (1331), B cells (1222), platelets (91) and plasmacy-
toid dendritic cells (66). The identified cell types are commonly
found in blood, and their proportions were consistent with the typ-

ical proportions reported in PBMC samples (Bolen et al., 2011).

3.2 Comparison with existing web servers
A number of important web servers for scRNA-seq analysis have
been developed, such as ASAP (Gardeux et al., 2017), SCRAT (Ji

et al., 2017), iS-CellR (Patel, 2018), Granatum (Zhu et al., 2017)
and Single Cell Explorer (Feng et al., 2019). The functionality of

alona is comparable to the aforementioned services, with some
notable differences: alona offers more choices in terms of algo-
rithms; the clustering strategy is graph-based; cell type prediction is

always performed—a key goal in most single-cell experiments.
Finally, the backends of previously published web servers can, in

most cases, not be executed standalone. The latter makes it impos-
sible or difficult to reproduce results. Every analysis run by alona
can be reproduced offline since the Python code for the analysis is al-

ways provided. Finally, alona automatically recognizes the Matrix
Market format, which is common in NCBI’s Gene Expression

Omnibus. Supplementary Figure S3 shows a comparison matrix
where key features are compared with five other web servers.

4 Conclusions

We have here presented a user-friendly software for scRNA-seq ana-
lysis, alona. Development of alona will continue and we plan to ex-
pand the number of supported algorithms and analysis strategies.
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