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Supplementary Fig. 1 BTLA expression was significantly increased on 
circulation CD4+ T cells in HBV-ACLF patients and was positively correlated 
with prognosis and infectious complications. (a, b) Patients with HBV-ACLF who 
met the diagnostic criteria of NACSELD (a, NC: n = 90 donors, CHB: n = 104 
donors, HBV-ACLF: n = 18 donors) or EASL-CLIF (b, NC: n = 90 donors, CHB: n 
= 104 donors, HBV-ACLF: n = 78 donors) had significantly increased expression of 



BTLA on peripheral blood CD4+ T cells compared to NC and CHB patients, while 
there was no significant difference in the BTLA expression of CD8+ T cells. (c) The 
MFI of CD4+BTLA+ T cells was positively correlated with the severity of the disease 
(Child-pugh, MELD scores, CLIF-SOFA, CLIF-C ACLFs, and COSSH-ACLFs) in 
patients with HBV-ACLF who met the diagnostic criteria of EASL-CLIF (n = 78 
donors). (d) Relationship between the MFI of CD4+BTLA+ T cells and complications 
(non-infected vs. infected: n = 28 vs. n = 50 donors; non-hypersplenism vs. 
hypersplenism: n = 25 vs. n = 53 donors; non-ascites vs. ascites: n = 32 vs. n = 46 
donors), prognosis (good prognosis vs. poor prognosis: n = 34 vs. n = 44 donors), and 
HBeAg status (positive vs. negative: n = 48 vs. n = 30 donors) in patients with 
HBV-ACLF who met the diagnostic criteria of EASL-CLIF. (e) Changes in the MFI 
of CD4+BTLA+ T cells in the progression of HBV-ACLF who met the diagnostic 
criteria of EASL-CLIF (n = 78 donors). (f) The patients with a good prognosis of 
HBV-ACLF (n = 14 donors) had a significantly decreased MFI of CD4+BTLA+ T 
cells after 4 weeks compared with that before treatment. Data were calculated as mean 
± SEM (a, b, d, e, f), Kruskal-Wallis H test followed by Dunn’s multiple comparison 
test (a, b, e), Mann–Whitney U test (d, f), and Spearman tests (c). A two-sided P value 
< .05 was considered significant. 



 
Supplementary Fig. 2 Expression of BTLA in ACLF patients of various etiologies, 
as well as BTLA and HVEM expression on T cells, NK cells, and dendritic cells 
(DC). (a, b) Expression of BTLA on CD4/CD8+ T cells in NC (n = 38 donors), CHB 
(n = 93 donors), HBV-ACLF (n = 35 donors), alcohol-induced ACLF and cirrhosis (n 
= 14 donors), and primary biliary cholangitis (PBC) patients (n = 4 donors). (c) Flow 
cytometry diagram of BTLA expression on intrahepatic CD4+ T cells in NC, CHB, 
and HBV-ACLF patients. (d) MFI of BTLA expression on NK cells but not on 
CD80/86+ DC increased in HBV-ACLF patients (n = 35 donors) compared with that 
in CHB patients (n = 27 donors) and NC (n = 20 donors). (e) MFI of HVEM 
expression on CD4/CD8+ T cells but not on NK cells decreased in patients with 
HBV-ACLF (n = 35 donors) compared with that in NC (n = 20 donors); HVEM levels 
on CD80/D86+ DC and monocytes were increased in patients with HBV-ACLF 
compared with those in NC and CHB patients (n = 27 donors). (f) T-distributed 



stochastic neighbor embedding (t-SNE) was used to determine the expression of 
BTLA and HVEM on NK cells or CD4/CD8+ T cells in NC, CHB, and HBV-ACLF 
patients. Data were calculated as mean ± SEM (a, b, d, e), Kruskal-Wallis H test 
followed by Dunn’s multiple comparison test (a, b, d, e). A two-sided P value < .05 
was considered significant. 

 
Supplementary Fig. 3 BTLA expression significantly increased on the Tem 
subtype, on all subgroups of circulation CD4+ T cells, and on intrahepatic CD4+ 
T cells in HBV-ACLF patients. (a) Flow cytometry diagram of BTLA expression on 
T-effector memory re-expressing CD45RA (TEM-RA), naïve T cells (T naïve), 



central memory T cells (Tcm), and effector memory T cells (Tem, classified according 
to CD27 and CD45RA). (b) Frequencies of subtypes of CD4+ T cells (TEM-RA, T 
naïve, Tcm, and Tem) and the expression of BTLA on these cell subtypes from NC (n 
= 27 donors), CHB (n = 22 donors), and HBV-ACLF patients (n = 13 donors). (c) 
Sequential gating strategy for the subgroups of CD4+ T cells (Th1, Th2, Th9, Th17, 
Th17-Th1, Th22, Tfh, and Treg cells) 1. (d) BTLA expression on the Th1, Th2, Th9, 
Th17, Th22, and Th17-Th1 cell subgroups increased in HBV-ACLF patients (n = 29 
donors) compared with those in NC (n = 20 donors) and CHB patients (n = 22 donors). 
The same trend was observed in Tfh (e, NC: n = 27 donors, CHB: n = 17 donors, 
HBV-ACLF: n = 18 donors), and Treg subgroups (f, NC: n = 21 donors, CHB: n = 
72 donors, HBV-ACLF: n = 30 donors). Data were calculated as mean ± SEM (b, d, e, 
f), Kruskal-Wallis H test followed by Dunn’s multiple comparison test (b, d, e, f). A 
two-sided P value < .05 was considered significant. 



 
Supplementary Fig. 4 BTLA+CD4+ T cells were positively correlated with 
severity of disease, prognosis, and infectious complications. (a) Number of 
CD4+BTLA+ cells in liver tissue were significantly higher in HBV-ACLF patients 
than in NC or CHB patients. (b) There were no significant differences between 
HBV-ACLF patients with or without ascites complications (n = 27 vs. n = 44 donors) 
or between HBeAg-positive and HBeAg-negative patients (n = 43 vs. n = 28 donors). 
(c) After comprehensive treatment, the MFI of BTLA expression on CD4+ T cells in 
patients with HBV-ACLF gradually decreased (n = 20 donors). (d-g) The frequency 
of CD4+BTLA+ T cells was positively correlated with physiological and biochemical 
indices of liver injury (total bilirubin (TBil), international normalized ratio (INR)) and 
systemic inflammation (neutrophil count, C-reactive protein (CRP), and procalcitonin 
(PCT)), but negatively correlated with compensatory indices of liver function 



(Albumin (ALB) and cholinesterase (CHE)). Data were calculated as mean ± SEM (b, 
c), Mann–Whitney U test (b, c) and Spearman tests (d-g). A two-sided P value < .05 
was considered significant. 
 

 

Supplementary Fig. 5 BTLA expression on CD4+ T cells was induced by 
interleukin (IL)-6 and tumor necrosis factor (TNF)-α. (a) Levels of IL-6 (left) and 
TNF-α (right) were significantly and positively correlated with BTLA expression on 
CD4+ T cells. (b) Expression of BTLA on CD4+ T cells was higher at day 3 than at 
days 5 or 7 upon exposure of peripheral blood mononuclear cells (PBMC) to 
recombinant human (rh) IL-1β (n = 4 donors), rhIL-6 (n = 5 donors), rhIL-22 (n = 4 
donors), rhIL-37 (n = 4 donors), and rhTNF-α (n = 4 donors). (c) rhIL-6 and rhTNF-α 
induced the up-regulation of BTLA mRNA levels in a dose-dependent manner (all n = 
6 donors). (d) Levels of Stat3 mRNA (right) in HBV-ACLF patients (n = 20 donors) 
were significantly higher than those in NC (n = 21 donors) and CHB patients (n = 39 
donors), and rhIL-6 (left) significantly increased the levels of Stat3 mRNA in a 
dose-dependent manner (n = 3 donors). (e) Exposure to rhIL-6 plus anti-stat3 or 
rhTNF-α plus anti-NF-κb resulted in a significant decrease in BTLA expression on 
CD4+ T cells compared with exposure to only rhIL-6 or rhTNF-α (n = 10 donors). 
Data were calculated as mean ± SEM (b, c, d, e), Spearman tests (a), One-way 
ANOVA followed by Tukey’s multiple comparison test (b, c, e), and Wilcoxon test 
(d). A two-sided P value < .05 was considered significant. 



 

 
Supplementary Fig. 6 CD4+ T cells tend to be exhausted in HBV-ACLF, and this 
exhaustion is associated with poor prognosis. (a, b, c, d) HBV-ACLF patients 
displayed a decreased ability for activation (NC: n = 8 donors, CHB: n = 6 donors, 
HBV-ACLF: n = 14 donors), proliferation (NC: n = 8 donors, CHB: n = 6 donors, 
HBV-ACLF: n = 8 donors), and secretory cytokines (NC: n = 6 donors, CHB: n = 5 
donors, HBV-ACLF: n = 12 donors), but had an increased apoptosis rate (NC: n = 10 
donors, CHB: n = 10 donors, HBV-ACLF: n = 8 donors) in CD4+ T cells. (e) 
HBV-ACLF patients with poorer prognoses (n = 14 donors) displayed lower plasma 
levels of Th1-like (IFN-γ and TNF-α) and Th2-like (IL-12 and IL-4) cytokines, as 
well as other chemokines (GM-CSF, MDC, and MIP-1α), but higher levels of IL-10 
than HBV-ACLF patients with better prognoses (n = 16 donors). Data were 



calculated as mean ± SEM (a, b, c, d, e), Kruskal-Wallis H test followed by Dunn’s 
multiple comparison test (a, b, c, d) and Mann–Whitney U test (e). A two-sided P 
value < .05 was considered significant. 
 

 
Supplementary Fig. 7 Time- and dose-dependent inhibition of CD4+ T-cell 
activation by anti-BTLA. (a) Crosslinking of BTLA showed the strongest ability to 
suppress CD4+ T-cell activation upon 1 day of anti-BTLA stimulation (a, n = 2 
donors). (b) Crosslinking of BTLA did not result in changes in the expression of 
programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte antigen 4 (CTLA-4), 
T-cell immunoglobulin and mucin-domain-containing-3 (TIM-3), or T-cell 
immunoglobulin and ITIM domain (TIGIT) (n = 5 donors). (c) Three specific BTLA 
shRNAs could inhibit the expression of BTLA on CD4+ T cells (n = 3 donors). (d) 
After crosslinking of BTLA using an agonistic anti-BTLA monoclonal antibody, the 
proliferation of CD4+ T cells was significantly increased in the three specific BTLA 
shRNA groups compared with that in the control shRNA group. Data were calculated 
as mean ± SEM (b, c), Mann–Whitney U test (b, c). A two-sided P value < .05 was 
considered significant. 
 



 
Supplementary Fig. 8 BTLA inhibited activation, proliferation, and secretory 
cytokines but promoted the apoptosis of CD4+ T cells from the peripheral blood 
of NC, CHB, and HBV-ACLF patients. (a, b) Contour plots (top) and bar graphs 
(bottom) showing that crosslinked BTLA markedly inhibited the expression of 
activation markers (CD25, CD38, and CD69, NC: n = 8 donors, CHB: n = 6 donors, 
HBV-ACLF: n = 14 donors). (c, d) Contour plots (top) and bar graphs (bottom) 
showing that crosslinked BTLA markedly promoted the apoptosis of CD4+ T cells 
(NC: n = 10 donors, CHB: n = 10 donors, HBV-ACLF: n = 8 donors). (e, f) Contour 
plots (top) and bar graphs (bottom) showing that crosslinked BTLA markedly 
inhibited the production of IFN-γ, IL-2, and TNF-α induced by PMA/ionomycin (NC: 
n =6 donors, CHB: n =5 donors, HBV-ACLF: n =12 donors). (g, h) Contour plots 
(top) and bar graphs (bottom) showing that crosslinked BTLA markedly inhibited the 
proliferation of CD4+ T cells (NC: n = 8 donors, CHB: n = 6 donors, HBV-ACLF: n 
= 8 donors). Wilcoxon test (b, d, f, h). A two-sided P value < .05 was considered 
significant. 
 



 
Supplementary Fig. 9 Anti-BTLA crosslinking increased gene expression 
changes in NC (n = 3 donors), CHB (n = 3 donors), and HBV-ACLF patients (n = 
3 donors). Correlation, volcano plot, and heatmap of gene expression of PBMC with 
or without anti-BTLA crosslinking from NC (a, d, g), CHB (b, e, h), and HBV-ACLF 
patients (c, f, i) are shown. 
 



 
Supplementary Fig. 10 Characterization of a mouse model of ACLF induced by 
Concanavalin A (ConA). (a, b) Reticular fiber (left) and Masson staining (right) of 
liver pathology at baseline, 8 days, and 14 days in WT and BTLA-/- C57BL/6 mice. (c, 
d) Serum Alanine transaminase (ALT), Aspartate transaminase (AST), and TBil levels 
(WT: n = 9 mice, BTLA-/-: n = 9 mice), inflammation, and fibrosis scores (WT: n = 3 
mice, BTLA-/-: n = 3 mice) were measured at baseline, 8 and 14 days post-ConA 
injection. (e) Cytokine (TNF-α, IL-6, and IFN-γ) levels were slightly increased, while 
IL-10 levels were slightly decreased in the plasma of BTLA-/- mice (n = 10 mice) 
compared to those in WT mice (n = 10 mice) at day 14. Data were calculated as mean 
± SEM (c, d, e), Two-way ANOVA followed by Sidak’s multiple-comparison test (c, 
d), Mann–Whitney U test (e). A two-sided P value < .05 was considered significant. 
 



 
Supplementary Fig. 11 BTLA expression significantly increased on circulating 
CD4+/CD8+ T cells in ACLF model induced by ConA. (a) Flow cytometry diagram 
of BTLA-expressing CD4+/CD8+ T cells from peripheral blood of WT mice. (b) 
Expression of BTLA on CD8+ T cells was significantly increased on days 14 
compared to the baseline in WT mice (n = 9 mice) following ConA injection. (c, d) 
Contour plots showing that the percentages of activation indices (CD25, CD38, and 
CD69) and cytokines (IFN-γ and TNF-α) were higher in BTLA-/- mice than in WT 
mice following ConA injection on day 14. Data were calculated as mean ± SEM (b), 
Kruskal-Wallis H test followed by Dunn’s multiple comparison test (b). A two-sided 
P value < .05 was considered significant. 
 



 

Supplementary Fig. 12 Characterization of a mouse model of ACLF induced by 
carbon tetrachloride (CCl4). (a, b) Reticular fiber (left) and Masson staining (right) 
of liver pathology at baseline, 8 weeks, and 8 weeks + 3 days in WT and BTLA-/- 
C57BL/6 mice. (c, d) Serum ALT, AST, and TBil levels, inflammation, and fibrosis 
scores were measured at baseline, 8 weeks, and 8 weeks + 3 days (WT: n = 5 mice, 
BTLA-/-: n = 5 mice). (e) Level of IL-10 was measured at baseline, 8 weeks, and 8 
weeks + 3 days (WT: n = 10 mice, BTLA-/-: n = 10 mice). Kruskal-Wallis H test 
followed by Dunn’s multiple comparison test (c, d), and Mann–Whitney U test (e). A 
two-sided P value < .05 was considered significant.  



Supplementary Table 1. Subject demographics and clinical characteristics  

Results are expressed as medians and interquartile ranges. a Significant differences 
when HBV-ACLF patients were compared to CHB patients; b Significant differences 
when HBV-ACLF patients were compared to NC. 
  

Group NC (n = 90) CHB (n = 104) HBV-ACLF (n = 71) 

Sex (Male, %) 29 (32.22%) 82 (78.85%) c 58 (81.69%) b 

Age (years) 30.00 (26.0–43.5) 31.00 (26.00–40.75) 45.00 (35.00–52.25) a, b 

Hepatitis B virus s antigen (IU/mL） - 7250.00 (2240.38–20801.67) 1141.76 (250.00–6055.56) 

Hepatitis B virus e antigen (positive, %) - 81 (77.88%) 28 (39.44%) a 

HBV DNA (Lg IU/mL) - 7.34 (4.59–8.21) 3.69 (2.70–6.13) a 

Albumin (g/L) - 41.50 (39.30–44.50) 33.00 (30.55–38.73) a 

Total bilirubin (μmol/L) - 18.80 (12.70–40.95) 365.70 (279.70–462.40) a 

Alanine aminotransferase (IU/L) - 229.00 (126.50–473.50) 103.00 (54.50–414.50) a 

Aspartate aminotransferase (IU/L) - 110.00 (51.00–217.50) 107.50 (65.75–231.00) 

Alkaline phosphatase (U/L) - 90.00 (71.00–122.00) 131.00 (104.50–156.00) a 

γ-Glutamyl transferase (U/L) - 72.00 (23.00–160.00) 69.00 (44.50–97.00) 

Creatinine (μmol/L) - 81.70 (70.00–91.10) 73.20 (59.55–93.80)  

Cholinesterase (U/L) - 6454.50 (5547.50–7372.00) 2895.00 (2155.00–3745.00) a 

White blood cell count (109/L) - 5.60 (4.50–6.70) 6.09 (4.95–7.98) a 

Neutrophil count (109/L) - 2.82 (2.18–4.24) 4.03 (2.81–5.45) a 

Hemoglobin (g/L) - 147.00 (133.25–156.75) 122.50 (101.00–137.50) a 

Platelet count (109/L) - 179.50 (144.25–216.75) 84.00 (47.50–137.00) a 

Prothrombin time (s) - 11.40 (10.90–12.20) 22.50 (19.40–27.90) a 

International normalized ratio - 1.03 (0.98–1.10) 2.09 (1.67–2.47) a 

C-reactive protein (mg/L) - 3.58 (2.27–5.53) 11.05 (6.50–16.93) a 

Procalcitonin (ng/mL) - - 0.63 (0.45–0.97) 

Good prognosis n (%) - - 32 (45.07%) 

Bacterial infection n (%) - - 44 (61.97%) 

Ascites n (%) - - 44 (61.97%) 

Portal hypertension n (%) - - 47 (66.20%) 

Hepatic encephalopathy n (%) - - 12 (16.90%) 

ACLF grade 1/2/3 (n) - - 48/15/8 

Child-pugh score - - 11.0 (10.0–12.0) 

MELD score - - 23.94 (20.61–28.50) 

CLIF-SOFA - - 10.00 (7.00–11.00) 

CLIF-C ACLFs - - 36.53 (32.64–44.95) 

COSSH-ACLFs - - 8.69 (7.12–9.88) 



Supplementary Table 2. Detailed information about all antibodies 

Antibodies 
Catalogue 

numbers 
Clone numbers Suppliers Dilutions 

APC anti-human CD3  317318 OKT3 Biolegend 1:100 

BV510™ anti-human CD4  562970 SK3 BD Biosciences 1:100 

PE/Cy7 anti-human CD8 566858 HIT8a BD Biosciences 1:100 

Percp/Cy5.5 anti-human BTLA 344514 MIH26 Biolegend 1:100 

FITC anti-human CD27 302806 O323 Biolegend 1:100 

APC/Cy7 anti-human CD45RA 304128 HI100 Biolegend 1:100 

APC/FireTM 750 anti-human CD45 982314 HI30 Biolegend 1:100 

BV510™ anti-human CCR4 359416 L291H4 Biolegend 1:100 

APC/Cy7 anti-human CCR6 353432 G034E3 Biolegend 1:100 

PE anti-human CCR10 341504 6588-5 Biolegend 1:100 

BV421™ anti-human CXCR3  353716 G025H7 Biolegend 1:100 

PE/Cy7 anti-human CXCR5  356924 J252D4 Biolegend 1:100 

APC AF750 anti-human CD3 A66329 UCHT1 Beckman 1:100 

ECD anti-human CD4 6604727 SFCI12T4D11 Beckman 1:100 

FITC anti-human CCR5 359120 J418F1 Biolegend 1:100 

PE anti-human BTLA 344506 MIH26 Biolegend 1:100 

PC5 anti-human CD127 A64617 R34.34 Beckman 1:100 

PC7 anti-human CD64 B06025 22 Beckman 1:100 

APC anti-human CD25 B09684 B09684 Beckman 1:100 

APC A700 anti-human CD7 A70201 8H8.1 Beckman 1:100 

PB anti-human CD57 A74779 NC1 Beckman 1:100 

FITC anti-human CD3 300406 UCHT1 Biolegend 1:100 

PerCP anti-human CD4 300527 RPA-T4 Biolegend 1:100 

APC/Cyanine7 anti-human CD8a 300925 HIT8a Biolegend 1:100 

APC anti-human CD270 (HVEM) 318807 122 Biolegend 1:100 

PE/Cyanine7 anti-human CD86 305421 IT2.2 Biolegend 1:100 

Brilliant Violet 421™ anti-human 

CD80 305221 2D10 Biolegend 
1:100 

PE anti-human CD56 985902 QA17A16 Biolegend 1:100 

CFSE C34554   Thermo 1:100 

BV421 anti-human IFN-γ 562988 B27 BD Biosciences 1:100 

APC/Cy7 anti-human TNF-α 502944 MAb11 BD Biosciences 1:100 

PE anti-human IL-2 560902 MQ1-17H12 BD Biosciences 1:100 

PE anti-human CD25 557138 M-A251 BD Biosciences 1:100 

BV421 anti-human CD38 562444 HIT2 BD Biosciences 1:100 

APC/Cy7 anti-human CD69 557756 FN50 BD Biosciences 1:100 

FITC anti-human Annexin V  556547 RUO BD Biosciences 1:100 

PE anti-human PI 556547 RUO BD Biosciences 1:100 

FITC anti-human CD272 (BTLA) 

Antibody 
344523 MIH26 Biolegend 1:100 

APC anti-Human CD279 (PD-1)  70-F11279A03-25 J110 MultiSciences 1:100 

https://www.biolegend.com/en-us/search-results?Clone=UCHT1
https://www.biolegend.com/en-us/search-results?Clone=RPA-T4
https://www.biolegend.com/en-us/search-results?Clone=HIT8a
https://www.biolegend.com/en-us/search-results?Clone=IT2.2
https://www.biolegend.com/en-us/products/pe-anti-human-cd56-21454
https://www.biolegend.com/en-us/search-results?Clone=QA17A16
http://www.bdbiosciences.com/us/applications/research/b-cell-research/surface-markers/non-human-primates/pe-mouse-anti-human-cd25-m-a251/p/557138
http://www.bdbiosciences.com/us/applications/research/t-cell-immunology/regulatory-t-cells/surface-markers/human/bv421-mouse-anti-human-cd38-hit2/p/562444


PE anti-Human CD152 (CTLA-4)  70-F1115202-25 BNI3 MultiSciences 1:100 

Brilliant Violet 421 anti-human 

TIGIT (VSTM3) 
372709 A15153G Biolegend 1:100 

PE-Cyanine7 anti-human CD366 

(TIM3) 
25-3109-41 F38-2E2 eBioscience 1:100 

PerCP-cy5.5 anti-Human CD4  
70-F11004A04/2-

25 
SK3 MultiSciences 1:100 

PerCP/Cyanine5.5 anti-mouse CD3ε 20201221 145-2C11 Biolegend 1:100 

FITC anti-mouse CD4 20201221 RM4-5 Biolegend 1:100 

APC/Cyanine7 anti-mouse CD8a 20201221 53-6.7 Biolegend 1:100 

PE anti-mouse IFN-γ 20201221 XMG1.2 Biolegend 1:100 

Brilliant Violet 421™ anti-mouse 

TNF-α 
20201221 MP6-XT22 Biolegend 1:100 

PE/Cyanine7 anti-mouse IL-2 20201221 JES6-5H4 Biolegend 1:100 

PE/Cyanine7 anti-mouse CD25 20201221 PC61 Biolegend 1:100 

Brilliant Violet 421™ anti-mouse 

CD38 
20201221 90 Biolegend 1:100 

PE anti-mouse CD69 20201221 H1.2F3 Biolegend 1:100 

anti-BTLA antibodies ab212089 EPR20539 Abcam 1:1000 

PI3K 4257S - 
Cell Signaling 

Technology 
1:1000 

phospho-PI3K 13857S - 
Cell Signaling 

Technology 
1:1000 

Akt 4691s - 
Cell Signaling 

Technology 
1:1000 

phospho-Akt 4060S  - 
Cell Signaling 

Technology 
1:2000 

phospho-GSK-3β 9336S - 
Cell Signaling 

Technology 
1:1000 

CREB 9197S - 
Cell Signaling 

Technology 
1:1000 

phospho-CREB 9198S - 
Cell Signaling 

Technology 
1:1000 

phospho-SHP1 8849S - 
Cell Signaling 

Technology 
1:1000 

phospho-SHP2 5431T - 
Cell Signaling 

Technology 
1:1000 

GAPDH 9001-50-7 - 
Biodesign 

International 
1:1000 

 
  



Supplementary Table 3. Specific primers for BTLA, stat3, 16S, and β-actin 
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Gene Forward (5′-3′) Reverse (5′-3′) 
BTLA TCTTTATGTGACAGGAAAGCAAA CAGACCCTTCCTGCATCCTG 
Stat3 CTTTGAGACCGAGGTGTATCACC GGTCAGCATGTTGTACCACAGG 
16S AACTGGAGGAAGGTGGGGAT AGGAGGTGATCCAACCGCA 
β-actin AGAGCTACGAGCT GCCTGAC AGCACTGTGTTGGCGTACAG 


