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Abstract
The use of immunohistochemistry in the reporting of prostate biopsies is an important adjunct when the diagnosis is not
definite on haematoxylin and eosin (H&E) morphology alone. The process is however inherently inefficient with delays
while waiting for pathologist review to make the request and duplicated effort reviewing a case more than once. In this study,
we aimed to capture the workflow implications of immunohistochemistry requests and demonstrate a novel artificial
intelligence tool to identify cases in which immunohistochemistry (IHC) is required and generate an automated request. We
conducted audits of the workflow for prostate biopsies in order to understand the potential implications of automated
immunohistochemistry requesting and collected prospective cases to train a deep neural network algorithm to detect tissue
regions that presented ambiguous morphology on whole slide images. These ambiguous foci were selected on the basis of
the pathologist requesting immunohistochemistry to aid diagnosis. A gradient boosted trees classifier was then used to make
a slide-level prediction based on the outputs of the neural network prediction. The algorithm was trained on annotations of
219 immunohistochemistry-requested and 80 control images, and tested by threefold cross-validation. Validation was
conducted on a separate validation dataset of 222 images. Non IHC-requested cases were diagnosed in 17.9 min on average,
while IHC-requested cases took 33.4 min over multiple reporting sessions. We estimated 11 min could be saved on average
per case by automated IHC requesting, by removing duplication of effort. The tool attained 99% accuracy and 0.99 Area
Under the Curve (AUC) on the test data. In the validation, the average agreement with pathologists was 0.81, with a mean
AUC of 0.80. We demonstrate the proof-of-principle that an AI tool making automated immunohistochemistry requests
could create a significantly leaner workflow and result in pathologist time savings.

Introduction

Prostate cancer (PCa) is the most common malignancy in
men worldwide [1, 2] and biopsies with suspected prostate
adenocarcinoma contribute a significant proportion of the
workload for surgical pathology centres. In many parts of
the world, demands on pathology services are increasing
and staff numbers are falling. In the UK, for example, a
2018 survey by the Royal College of Pathologists found
that only 3% of surgical pathology departments have suf-
ficient senior medical staffing and around a quarter of the
workforce are moving towards retirement. The United
Kingdom (UK) National Health Service (NHS) spends an
estimated £27 million ($34 million) on locum and private
services to cover this lack in service provision [3]. Over
60,000 prostate biopsies are carried out in the UK per year
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[4] and over one million in the United States of America [5].
With some prostate biopsy cases being allocated over an
hour for reporting under proposed workload guidelines, this
represents a significant workload burden [6].

The potential benefits of digital pathology (DP) and
artificial intelligence (AI) have been well described [7] and
it is clear that there could be much to gain from the intro-
duction of workflow-based AI tools that do not affect
established decision-making in supporting prostate biopsy
reporting. While a number of tools exist for automated
prostate biopsy screening, detecting, and grading of
tumours, some with regulatory clearance for diagnostic use
[8–13], uptake of such tools remains relatively limited thus
far. A DP workflow is needed to enable AI and with
increasing numbers of deployments in cellular pathology
laboratories worldwide, the pace of uptake of AI should
increase accordingly, although challenges still remain in
their development and deployment [14].

In a digital workflow, AI can be used to assist patholo-
gists as they screen prostate biopsy slides ultimately looking
to confirm or exclude malignancy. An important adjunct to
diagnosing PCa is the request of immunohistochemistry
(IHC) for evaluating suspicious foci. An unmet need is the
ability to triage slides, without waiting for a pathologist to
review the case, identifying which cases cannot be signed
out by review of Hematoxylin & Eosin (H&E) alone and
need IHC. If such automated requesting could be achieved,
the workflow could be significantly streamlined.

To diagnose PCa, pathologists search for a number of
characteristic visual cues until enough features are found for
confidently diagnosing malignancy. These features can be
architectural and cytological. For instance, in acinar ade-
nocarcinoma glands are infiltrative, often small in size
compared to benign ones and crowded together. Cytologi-
cally, there are usually larger nuclei with one or more
prominent nucleoli, often presenting perinucleolar clearing
[15]. In a proportion of cases, the prostate epithelium pre-
sents some of the features described above, but not to an
extent that can lead to a convincing cancer diagnosis by
morphology alone, or the features are morphologically
convincing, but due to small size of the lesion, IHC would
be required for confirmation. As a number of benign mimics
of PCa and conversely deceptively bland variants of PCa
exist, IHC is often required [16, 17]. Some examples of
such unclear morphology include Prostatic Intraepitheial
Neoplasia (PIN) with smaller glands that could represent
early invasion (sometimes known as ‘PIN Atyp’), areas of
atrophy that are probably benign or areas that are suspicious
of cancer, but too small for definitive diagnosis, i.e. atypical
small acinar proliferation (ASAP).

The proportion of cases requiring IHC varies across
institutions, ranging from 25 to 50% of total cases in some
reports [18]. Clinical guidelines recommend the use of basal

cell marker IHC to detect loss of basal cells in the epithelial
tissue. The absence of basal cells is the hallmark of malignant
prostatic glands [19] and IHC is highly effective at reducing
diagnostic uncertainty [20]. The main IHC markers recom-
mended by the International Society of Urologic Pathology
for routine diagnostic practice include CK5/6, 34BE12, P63
or a combination of basal markers and AMACR in a “cock-
tail” stain [21, 22]. Examples of prostate biopsies stained with
H&E and CK5 are shown in Fig. 1. Not every gland that lacks
basal cells is malignant. For example in adenosis as few as
10% of the glands can show basal cells [22]. Thus the deci-
sion to request IHC is made on a focus or area-based level
[23], and may be based on one or a number of foci of interest
where the morphology is ill-defined.

The request of IHC results in necessary delays to a case.
Figure 2a illustrates the routine workflow for prostate
biopsies common to most centres. The pathologist must first
find time to review the morphology to make the decision
and then put the case on hold while the IHC is performed.
The time for IHC to be performed would vary across
laboratories but is usually one to 3 days. When the
pathologist reviews the case for further reporting sessions,
there is inherent inefficiency and time wasted in refami-
liarising oneself with the case.

Our own experience confirms that IHC requesting increa-
ses turnaround time and reporting time for PCa and half of the
delay due to IHC requests is incurred between the time the
case is accepted by the pathologist and IHC is requested.

Here we design and validate an AI tool for automating
the decision of requesting IHC for prostate biopsy cases.
The study setting is one of the sites in the PathLAKE
consortium, one of the UK Government’s AI Centres of
Excellence. Several studies have demonstrated that novel
computer vision algorithms based on high dimensional
function optimisation called Deep Learning (DL) can
extract visual features that encode clinically relevant mor-
phological patterns from images, such as the Gleason
score [8–13]. We build on these developments and
demonstrate the training and validation of a DL system to
individuate regions of prostate biopsy whole slide images
(WSIs) associated with diagnostic uncertainty. We then use
the visual features extracted by the algorithm to train a
Gradient Boosted Trees classifier for predicting whether
IHC is required to diagnose a PCa case.

In this study, we demonstrate an AI tool which can trigger
IHC requests from the H&E slides without the need for a
pathologist to review the case first to make that decision. The
pathologist then only needs to view the case once with all of
the available stains and necessary delays to IHC requests are
reduced. We describe the potential to expedite the prostate
biopsy workflow, reducing inefficiency and ultimately redu-
cing time to sign out, enabling results to patients and treating
clinicians in a quicker time frame, as we propose in Fig. 2b.

Artificial intelligence for advance requesting of immunohistochemistry in diagnostically uncertain. . . 1781



Materials and methods

Setting

The study was undertaken in a large academic teaching
hospital in the UK (tertiary referral centre) with specialist

urological pathology reporting and which processes
750–1100 prostate biopsies per year. The cellular pathology
laboratory achieved the milestone of scanning 100% of the
surgical histology workload in September 2020 with
pathologists validated for full DP reporting. Three specialist
uropathologists (authors CV, LB, RTC) were involved in

Fig. 1 Examples of the classification of ambiguous prostate glands
that prompt IHC ordering devised in this study (cf. Table 1).
Reason 1: An H&E section showing a short length of glands (e.g.,
<1 mm) that the pathologist is confident of calling cancer morpholo-
gically but wishes to confirm with IHC (A). This case was confirmed
as cancer on CK5 staining (B). Reason 2: A small focus of glands that
are only suspicious of are cancer (C). In this case, IHC confirmed
cancer (D). Reason 3: Foci of glands with an unusual morphology and
that the diagnosis would be uncertain (E). The CK5 in this case (F)

demonstrated basal cell (brown) and the focus was deemed benign.
Reason 4: A longer length of cancer (G) that is very well differentiated
and needs to be confirmed cancer with IHC (H). Reason 5: Foci of
glands that look atrophic but show atypia (I). In this example a few
glands lack basal cells (J) but were considered benign as being
admixed with this otherwise partially atrophic group. Reason 6: Small
suspicious glands around PIN (K), in this example all were deemed
benign (L). Reasons 7 and 8: not demonstrated here. These are cases
used in this study and in some instances are annotated.

1782 A. Chatrian et al.



the development of the tool, two with greater than 10 years
post-specialist registration experience, and one with 2 years
post-specialist registration experience.

Retrospective audits

In order to understand baseline rates of IHC request and
potential workflow implications of the tool, all prostate
biopsy cases were audited over a 12-month period, from
August 2018 (before the introduction of DP) to August
2019. The audit collected data on the case types (transrectal
ultrasound guided biopsies or systematic transperineal
biopsies), number of biopsies, turnaround times, extra work
ordering, IHC requests and final diagnosis.

To capture actual pathologist reporting times with and
without IHC and necessary delays due to IHC request, a
prospective audit of consecutive prostate biopsy cases

reported by three specialist urological pathologists (CV, LB,
RTC) during the period September 2019 to March 2020 was
undertaken. For all cases, the date the case was received, the
date the case was reviewed as H&E alone (reporting session
1), the date IHC was requested, the date of further reporting
sessions where the case was reviewed with IHC (reporting
session 2) and the date the case was signed out were
recorded. Using stop-watches the following times were
recorded: (1) length of time for initial slide review (H&E
only) and make notes, (2) time to organise and make IHC
request (3) if IHC-requested, time to review case again with
IHC, and (4) typing report.

Modelling of potential time savings

In order to model potential time savings with upfront IHC
ordering, we compared the mean turnaround times (date

Fig. 2 Prostate Cancer Diagnosis and Data Collection Workflows.
a Schema of typical workflow for diagnosis of prostate cancer from
H&E-stained needle biopsies adopted by pathologists in the hospital.
b Workflow after introduction of our tool for advance IHC requesting.
The tool scans the H&E slide and requests IHC automatically, which is
processed immediately after the H&E slide is scanned. The introduc-
tion of the IHC tool speeds up sign out of the case report. c Datasets

used for training, testing and validating the network. The dataset used
for training and testing the network is a snapshot of standard clinical
decisions made independently by pathologists. The validation dataset
was annotated retrospectively and blindly to the archived data original
labels. The procedure replicates the decision-making that occurs in the
hospital.

Artificial intelligence for advance requesting of immunohistochemistry in diagnostically uncertain. . . 1783



received to sign out) and pathologist reporting times (time
for pathologists to examine and write report) for both IHC-
requested and non IHC-requested cases. We assumed IHC
would be performed shortly after H&Es were ready (e.g.
process started within 3 h) and not lead to any significant
delays. Reporting time for IHC-requested cases was divided
into two distinct sessions: during the first session, the
pathologist examines the H&E slides and decides whether
the case requires IHC. In the second session, the pathologist
examines H&E and IHC slides together to make a diag-
nosis. The time savings that could be achieved by having
IHC at the same time as H&E for reporting and thus
removing duplication of effort is a complex one, including
several factors in the decision-making process. We calcu-
lated this for our laboratory in two ways: firstly, we
assumed that the reporting time for cases with advance IHC
requesting would be shortened to the reporting time for non
IHC-requested cases. The second estimation method con-
sisted in modelling the different tasks and factors impinging
on reporting time individually. We compared the two esti-
mates to approximate the benefits in reporting time.

Prospective cohort curation

The study was conducted under the Pathology image data
Lake for Analytics, Knowledge and Education (PathLAKE)
research ethics committee approval (reference 19/SC/0363)
and Oxford Radcliffe Biobank research ethics committee
approval (reference 19/SC/0173). We created a WSI pros-
tate biopsy training and testing set for the proposed IHC
requesting tool from routine diagnostic cases. Prostate
biopsies in which IHC for basal cell markers was requested
during the period September 2019 to March 2020 were
identified prospectively for study inclusion. Biopsies where
IHC was not ordered before sign-out were excluded.
Biopsies that could not be or had not been digitised were
excluded. All biopsies were reported by one of three spe-
cialist uropathologists at our tertiary centre, using a mix of
primary DP reporting (Philips IntelliSite Pathologist Suite,
Koninklijke Philips N.V, Amsterdam, Netherlands) and
traditional light microscopy/glass slide reporting. All cases
were digitally scanned on a Philips IntelliSite Ultra Fast
Scanner (version 1.8.6614,20180906_R51, Koninklijke
Philips N.V, Amsterdam, Netherlands).

Classifying ambiguous foci

In order to understand the reasoning behind pathologist
based IHC requests and identify categories to be modelled
by machine learning, we devised a classification system of
eight types of ambiguous prostate gland foci that would
prompt IHC requests. These ‘reasons’ were based on the
pathologists’ experience and were devised to include a Ta
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representative range of the most common reasons for IHC
ordering to confirm or exclude PCa. These are summarised
in Table 1 with examples in Fig. 1.

Training data

All cases which had IHC requested by three reporting
pathologists (CV, LB, RTC) as part of the diagnostic pro-
cess during the period of the prospective study were
included in training. WSIs were de-identified using the

Philips De-ID tool [version 1.1.5, Philips Digital Pathology
Solutions Document DP-174226] and imported for anno-
tation onto our in-house annotation platform, Annotation of
Image Data by Assignments (AIDA) [24]. Each case was
annotated by one of the pathologists only. All foci that
prompted IHC ordering were included in the training
dataset. In total, 299 WSIs for 241 patients were used to
train the algorithm. Of these cases, 219 WSIs (187 patients)
were non-selected consecutive cases that had prompted IHC
ordering. The remaining 80 WSIs (54 patients) were

1b - Mark Foci of Interest
on slides

5b - Extract deep
features from
the tiles

4b - Classify tiles

2b - Divide up into
labelled tiles

3b - Train DDN ensemble to
predict diagnostic
uncertainty of tiles

5c - IHC order
decision

1c - Apply network to
the whole slide image

2c - Extract features (step 5c)
from every tile in the slide

3c - Estimate feature
distribution for the image

4c - Train trees classifier
to predict IHC order

Tile uncertainty predictor

a

b

c Whole-slide IHC-request predictor

Ambiguous
Certain

Certain

Ambiguous

Benign

Malignant

Diagnostic
Uncertainty

Clearly benign
No IHC required

IHC Request
Threshold

Ambiguous
IHC required

Clearly malignant
No IHC required

Fig. 3 Illustration of the IHC requesting algorithm. a Conceptual of
IHC requesting. The Venn diagram illustrates the relationship between
the benign vs malignant nature of tissue and the diagnostic need for
IHC. Most tissue presents clearly benign (e.g. regularly shaped glands)
or clearly malignant morphology (e.g. amorphous tumour sheets).
These cases cause relatively low diagnostic uncertainty, and IHC is not
required to make a diagnosis (“certain” cases). A portion of benign and
malignant cases presents morphology that cannot easily be placed in
either class. Such “ambiguous” cases cause higher diagnostic

uncertainty and require IHC for a diagnosis to be made. b, c Decision-
making algorithm for ordering IHC for uncertain PCa cases. In part
(b), a deep neural network ensemble is trained to recognise ambiguous
epithelial morphology in tiles. The DNN also learns to compute
representative features. In row (c) the morphology of whole slide
images is characterised through the distribution extracted deep fea-
tures, a gradient boosting classifier is trained to predict which cases
require IHC for diagnosis.
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selected from the previous (2019) clinical workload of 54
patients and designated as control cases. Pathologists
annotated WSIs on the AIDA system. Pathologists drew
around the focus (or foci) of interest (using a free hand
digital drawing tool) that had prompted IHC ordering, and
selected the reason for ordering IHC (up to 8 foci per case).
Figure 2c summarises the collection and usage of WSI
datasets. The control cases were reported as benign or
malignant (50:50 split) and had had no IHC ordered at the
time. We included these cases in the training/testing dataset
in order to provide negative examples of benign and
malignant cases for the algorithm.

Algorithm development

We sought to develop an algorithm that could recognise
tissue that is deemed ambiguous by pathologists and thus
the case cannot be signed out by H&E morphology alone.
We divided the histology data into a concise categorisa-
tion reflecting the decision process carried out in the
clinic. In day-to-day practice, an IHC order is triggered
by the presence of tissue with ambiguous morphology.
Malignant tissue with very poor differentiation will take
the organisation of higher Gleason patterns (e.g. amor-
phous sheets, cribriform glands), while benign tissue may
mimic low Gleason patterns [3, 4]. As clearly benign,
clearly malignant tissues are easy to distinguish by the
pathologist, we group these tissues together as “certain”
tissue. Intermediate differentiation levels are instead
labelled as “ambiguous”. We trained a binary deep neural
network (DNN) classifier to distinguish ambiguous from
certain tissue. This corresponds to recognising all cases
that cause sufficient uncertainty in the diagnostic proce-
dure to require further information on the tissue, in
the form of an IHC stain. The idea is illustrated in Fig. 3a.
We performed threefold cross validation in order to
test the algorithm. We created three training splits of
200 slides by randomly sampling with replacement the
299 slides of our training dataset. The remaining 99 slides
outside of each split were assigned as the test set. The
ratio of control over ordered slides was fixed at 0.4 in
each split.

Digital histology images can be corrupted by different
types of artefacts. These include blur, debris and tissue
folds, but also intensity irregularities in the backgrounds
due to imprecision in the scanning process [25]. We trained
a separate DNN in order to segment tissue areas robustly.
1024 × 1024 tissue tiles at a resolution of 1.0 µm/px (10×)
were extracted from annotated foci of interest within the
tissue boundaries in the IHC-requested slides, and from
benign and malignant regions in the control slides. An
ensemble of three Residual Attention DNNs [26] was
trained on each data split. The network ensemble was used

to estimate the uncertainty of prediction on each tile, fol-
lowing the method described in [27]. The networks were
trained for 200 epochs to convergence. Early stopping was
not used. Instead, we relied on online space-domain and
frequency-domain alterations of the training tiles, such as
affine transforms and Gaussian noise, to augment the
dataset and avoid overfitting. In order to evaluate the model,
inference was performed on individual tiles on the foci, then
the softmax class probabilities were averaged over all the
tiles comprising the focus. The final label was assigned
according to the class with the highest probability. The
training procedure for the tile classifier is shown in Fig. 3b.

Because there is no clear-cut criterion to determine
whether the tissue morphology is atypical enough for the
H&E stain to be diagnostically insufficient alone, the
assessment contains a degree of uncertainty. This subjective
component in the IHC order decision can lead to differences
in annotations between pathologists. The conflicting tile
labels can result in overfitting of the model over tissue
features upon which pathologists disagree. Besides the
uncertainty in tile labels, a pathologist can decide to order
IHC for a patient because of multiple interesting tissue
features present in different locations of the slide. Hence, an
approach that considers each tile in the WSI separately is
not sufficient to perform an accurate IHC order decision for
the patient. Thus, a second step of the algorithm was
designed to decide whether to order IHC that takes into
account the tile-level features and prediction uncertainties
aggregated over the whole slide. First, the contents of all
tiles in the slide were compressed into a feature vector. The
DNN was applied to all tissue tiles in every H&E image.
Figure 4 shows examples of tile classification. Tile feature
vectors were calculated from individual tiles through a
similar approach to [28]. Distribution statistics (median,
mean, variance, and kurtosis) were computed for features
with an “ambiguous” label, and for tiles with a “certain”
label. Furthermore, the prediction probability variance and
loss variance for the slide were computed. The decision
model consisted of a random-boosted-trees classifier, which
was then trained on the slide feature vectors to predict
whether IHC should be ordered for the patient case for IHC
staining. Feature vectors were computed for each slide
following the process detailed above, and the decision
model was applied to all slides. The procedure is shown in
Fig. 3c.

Clinical validation

A retrospective clinical validation of the algorithm on a
fresh set of images was performed. For the validation, 100
new prostate biopsy cases were selected consecutively from
the 2019 scanned slide archive. Cases that were not scanned
were later excluded bringing the dataset to 91 cases. The
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total number of slides was 222. Cases were selected from
early 2019 prior to the collection of annotated cases for
training, in order to avoid dilution of the case mix with the
removal of cases for training. In order to maximise the
range of potential morphological appearances, while limit-
ing the number of images requiring review, from each case
one specimen/site was selected (specimen 1 of the case) and
the H&E slides were used from one level of the tissue.
Thus, one image was taken from each case and presented
blindly to pathologists on AIDA. All three pathologists
reviewed all images, thus generating three separate sets of
validation annotations. Pathologists annotated the image to
note if IHC ordering would be prompted or not for that
image in their opinion, in the same manner as was per-
formed for the training annotation set. The algorithm was
then applied to all slides. The ResNet ensemble was used to
classify all tissue tiles of the WSI. Features were computed

as explained in the previous section and used to predict
which cases need IHC requesting in the validation set. The
algorithm decisions were then compared to pathologists’
decisions.

Results

Turnaround and reporting times audits

The results of the retrospective audit enabled a comparison
of necessary time costs incurred when IHC is requested for
PCa cases. The mean turnaround times for IHC-requested
cases was 7 days and 10 h (95% CI: (7 days 2 h, 7 days
16 h), n= 380), while the mean turnaround time for non
IHC-requested cases was 4 days and 5 h (95% CI: (4 days,
4 days 9 h), n= 576). This included all types of prostate

d

Ambiguous

Certain

a b c

Fig. 4 Example application of the tile classifier on the tissue areas
of an unseen whole H&E slide (from the validation dataset). In a–
d, the results are compared to foci annotated by pathologists. Red
denotes tiles classified as certain, while blue denotes tiles classified as

ambiguous. a–c Show the overlap between pathologist annotation and
the classifier output. The classifier marks as ambiguous regions that
were identified by pathologists. d is an example of the tile classifier
output for a WSI.
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biopsy and the case mix was similar across both cohorts, as
both IHC-requested and non IHC-requested cases had a
median of three blocks. This indicates that the potential time
saving by the introduction of this tool in our laboratory was
3 days and 5 h on average (95% CI: (2 days 20 h, 3 days
12 h), n1= 380, n2= 576, Welch-Satterthwaite (WS)
approximation [29]).

Non IHC-requested cases took an average of 17.9 min to
be diagnosed (95% CI: (16.7, 19 min), n= 128), while the
reporting time for cases where IHC was requested averaged
at 33.4 min (95% CI: (30.7, 36.2 min), n= 133) over the
course of two or more reporting sessions. The average time
difference was therefore 15.5 min.

The time savings that could be achieved by having IHC
at the same time as H&E for reporting and thus removing
duplication of effort are influenced by several factors
inherent to the slide review and diagnostic decision pro-
cesses. We calculated this for our laboratory in two ways:
Firstly assuming automatic IHC ordering would reduce the
reporting time for IHC-requiring cases to the same time
taken to diagnose cases with no IHC request, we estimate a
time saving of at least 12.6 min per case, by taking the
lower end of confidence interval for the difference between
mean IHC and non IHC requested reporting times, and
15.6 min on average (95% CI: (12.6, 18.5 min), n1= 133,
n2= 128, WS approximation). Secondly, we assume a

workflow where H&E review occurs during reporting ses-
sion 1, and reporting session 2 consists of review of the IHC
together with re-review of highlights of the H&E. In a slide
viewing session, the pathologist screens the slides/images,
spends time viewing difficult areas in more detail and
makes a decision either to order IHC or make a firm diag-
nosis. In session 1 more time is spent on difficult areas and a
decision is made to order IHC. In reporting session 2, the
pathologist re-reviews the H&E, focusing on the areas of
difficulty, reviews the new slides (IHC) and makes a deci-
sion. Thus in an IHC-requested case, the duplication points
are re-reviewing the H&E to refamiliarise with the case in
session 2 and making a further set of decisions than if the
case were reported once with all of the necessary slides (as a
decision is made in both sessions 1 and 2) and making this
decision takes time.

We make an assumption that an additional step of
decision-making in an IHC case takes 1.5 min. During re-
reviewing of H&E, the previously marked foci of ambig-
uous tissue are examined. Similarly, during first reviewing
of IHC, corresponding foci are looked at to confirm staining
status. We therefore assumed that the time taken to re-
review H&E and for reviewing IHC are approximately
equal. Thus, 7.5 min are spent re-reviewing the H&E and
7.5 min are spent reviewing the IHC. From our audit, IHC
requesting took an average of 1 min. We estimate therefore

Table 2 (a) Tile-classifier metrics for the task of classifying foci of interest on H&E slides, and slide-level classifier metrics for the IHC request
prediction task, for the three cross-validation splits of the dataset. (b) Slide-level classifier results for the task of IHC requesting evaluated on the
validation set, for the three annotating pathologists. (c) Estimation of time savings and extra costs from introduction of the model (n= 380 IHC-
requested cases).

(a)

Split number Tile classification accuracy Tile classification AUC IHC order accuracy IHC order AUC

0 0.86 0.91 0.99 0.99

1 0.85 0.94 0.99 0.99

2 0.91 0.93 0.99 0.99

(b)

Pathologist Validation accuracy Validation AUC

1 0.979 0.977

2 0.764 0.737

3 0.674 0.681

(c)

Operating point
(n= 380)

Specificity Average false
positive rate

Turnaround time
savings (days)

Reporting time
savings (hours)

Extra cost of unnecessary
IHC orders (£)

Reflex testing NA NA 1170 70 4180

1 0.6 0.15 703 42 627

2 0.75 0.33 879 52 1379

3 0.9 0.48 1054 63 2006

The false positive rate is averaged over the three pathologists. The minimum expected savings of 3 days 2 h for turnaround time and 11 min for
reporting times were used in the calculations. We assume an IHC order cost of £11 per slide.
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that 11 min can be saved by having IHC at the same time as
H&E and the case only viewed once. This is likely to be a
conservative estimate and does not take into account addi-
tional time picking up additional sets of slides from the lab,
marking up additional slides etc.

Annotation data

169 prospective cases were included in the study, from
which 641 foci were identified across the three levels for
each core that prompted IHC ordering. These foci were
annotated for training the algorithm. Of these, Pathologist A
annotated 32 foci, Pathologist B 284, and Pathologist C
325, which was in proportion to their clinical workloads.

The breakdown of the reasons for ordering IHC and the
final diagnoses are given Table 1, with examples in Fig. 1.
The commonest reasons for IHC request were small foci of
cancer needing confirmation (187 foci) and atypical foci
that were probably benign (144 foci).

Algorithm performance

The reliability of tile-level foci classification is reported in
Table 2a. The ensemble attains excellent classification
performance on the unseen test sets. Figure 4 compares
example output of the tile classifier on unseen validation
data with pathologists’ annotations. The model outputs a
“certain” label for 90% of the test tiles. Hence, the models
learned that only small regions of the needle biopsy
contain ambiguous tissue morphology. This reflects
standard diagnostic practice carried out by pathologists,
where the need to order IHC is decided from small por-
tions of the needle biopsy. While pathologists only indi-
viduate foci of ambiguity on slides where an IHC stain
will be requested, the algorithm finds at least some
ambiguous tiles in each slide of the dataset, with only 4
out of the 99 slides of the test set containing no ambig-
uous tiles. Thus the large number of ambiguous foci is
likely to be due to morphological characteristics of tissue
that were not present in the training data due to the
potential range, and thus have never been seen by the
model, which will produce spurious classifications for at
least some tiles in most images. Most images are large,
with a mean number of tiles in each image for the test
dataset of 209, which increases the chance of encounter-
ing such different tissue appearance.

These results highlight the need for a decision-making
step that is robust to the presence of tissue regions with an
“ambiguous” labelling in the image. The second step of the
algorithm was designed to make a slide-level decision based
on morphology and solve this issue. The IHC-ordering
decision step performs well on the test set, as detailed in
Table 2a (mean accuracy: 99%, mean AUC: 0.99).

The decision algorithm also predicts pathologists’ IHC
order requirements on the validation dataset. The algo-
rithm predicts very well the need for IHC staining
according to all pathologists. Table 2b reports the
agreement metrics for the IHC order decision between the
model and each one of the three pathologists. In Fig. 5,
the receiver operating characteristic (ROC) curves for the
model predictions vs pathologists’ annotations are
reported. As a result of the disagreements in IHC ordering
between pathologists, the model matches more closely the
IHC ordering of pathologist 1, and performs the poorest
when compared against pathologist 3’s opinion. The
average agreement with pathologists is 0.81, with an
average AUC of 0.80.

Algorithm analysis

In order to understand what morphological details the
model was sensitive to, we derived salience maps for foci
from ordered slides and control slides with guided back-
propagation [30] (see Fig. 6a). The network examined the
lumen structures inside prostate glands, the nuclei the gland
is composed of, and the size of the epithelial cell bodies.
Overall, these results highlight that the DNN is capable of
recognising the salient features of epithelial structures. This
is reflected in the feature vectors constructed from the DNN
features and outputs from each slide, and used to train the
slide-level IHC request classifier, whose projection onto the
principal components is shown in Fig. 6b. The vectors from

Fig. 5 ROC curve for the tool vs the three pathologists (validation
set). Turnaround and reporting time savings, and extra incurred costs,
for the three chosen operating points (at the 0.6, 0.7, and 0.9 values of
specificity), for the 380 IHC-requested cases in the retrospective audit.
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the three datasets belong to the same point cloud in prin-
cipal component space (Fig. 6c). Furthermore, the separa-
tion in feature space between IHC-requested and non IHC-
requested slides, albeit imperfect, suggests the vectors are
representative of ambiguous/certain morphological features.

Workload and time savings impact

We examine three potential operating points on the ROC
curve, and the trade off between time savings and addi-
tional IHC requests that would be incurred if the tool was
operated at those points. The points are marked on Fig. 4
and correspond to a specificity of 0.6 (point 1), 0.75
(point 2), and 0.9 (point 3). Table 2c reports the time
savings and additional incurred costs. Out of 974 retro-
spectively audited cases, IHC was requested for 380
cases, or 40% of total cases. We used the minimum pre-
dicted time turnaround time saving of 3 days and 2 h and
the minimum predicted reporting time saving of 11 min
for the calculations, as discussed earlier. A higher spe-
cificity of the chosen operating point corresponded to
larger savings in turnaround time and reporting time on
one hand, and to larger extra costs due to overcalling on
the other hand. Operating at a lower specificity yielded
smaller predicted costs, but the predicted time savings
were also reduced. The operating point with the highest
specificity (0.9) provided a similar time saving to order-
ing IHC on all cases, but at half the cost of such reflex

testing. Across 1000 sets of prostate biopsies needing
IHC, we conservatively estimate the tool would save 165
pathologist hours.

Discussion

In this study, we evaluate the potential implications of
automating the pre-requesting by AI of IHC in prostate
biopsy cases that contain ill-defined epithelial morphology.
Benign tissue and malignancies of the prostate present a
large variety of morphological patterns, which pathologists
must recognise by fitting the features to categories of
recognised visual features and identifying distinctive char-
acteristics of malignancy. Regions of tissue containing
ambiguous morphology constitute a challenge to uro-
pathologists, as a diagnosis cannot be made without IHC
and even with IHC, the tissue may remain in an ambiguous
category such as ASAP.

We developed a novel composition of a DL system to
detect ambiguous versus certain morphology in needle core
biopsies and a boosted random forest to predict which cases
require IHC using the tissue content representations enco-
ded by the DL system. The DL system was trained on
pathologists’ annotations of ambiguous tissue regions, and
it successfully recognised image foci contributing to diag-
nostic uncertainty on H&E WSIs. The gradient boosted
trees classifier was used to mimic the decision-making

Fig. 6 Results of two-step
classification. The first step is
the tile-level classifier. a shows
salience maps (blue for
ambiguous and red for certain
cases), which highlight some
morphological characteristics
used by the tile-level classifier to
distinguish between the two
classes (obtained through guided-
backpropagation [30]). The
second step is the slide-level IHC
request decision. b, c The
manifold of slide feature vectors
projected onto its principal
components. Each data point is
the feature vector summarising
tissue content for one slide.
Feature vectors are labelled
according to the dataset of origin
(b) and the IHC request status (c).
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process of pathologists and predict which slides require
IHC. This second step was needed because most cases have
at least some ambiguous areas flagged reflecting the variety
of morphological appearances that can be seen in the
prostate. The slide-based classifier is needed to translate
information about ambiguous tissue content in the whole
slide into a decision about which cases are sufficiently
ambiguous to require IHC.

The IHC-request decision step correctly predicted the
IHC request decisions on the test set obtained through
threefold cross validation. The algorithm was also validated
on the independent validation dataset, where it satisfactorily
matched the IHC request decisions of three different
pathologists. The good classification results obtained on the
validation dataset point to good generalisation properties of
the network. The agreement rate between pathologists in the
validation set was between 61 and 64%. This is consistent
with reports of interobserver variability in other diagnostic
tasks with a subjective component, such as Gleason
reporting (consistently reported to be around 60% [31, 32]).
In order to simulate over and under-ordering scenarios in a
potential real-life deployment of the tool, we set three
arbitrary points on the ROC at specificity levels of 60%,
75%, and 90%, resulting in false positive rates (over-
ordering of IHC) in 15%, 33%, and 48% of slides respec-
tively. Taking the most conservative level of specificity,
40% of cases that needed IHC might be missed by the tool
and it might over order on 15% of slides.

We took the approach to deliberately target diag-
nostically ambiguous cases rather than basing the tool on a
tumour detection tool to better reflect the inherent com-
plexity of the decision to request IHC. Although a tool
based on tumour detection could be set to identify small foci
of morphologically convincing tumour or longer lengths of
unusual but certain cancers (reasons 1 and 4) and request
IHC for confirmation, these scenarios accounted for 36% of
cases which was far fewer than the ambiguous areas where
the diagnosis was not certain which accounted for 59%
cases (reasons 2, 3, 5, 6, 8). Some of these cases may fall
through the net in a tumour-finding approach being classi-
fied as benign with no IHC required. Although most areas
had a gland-based morphology, reminiscent of Gleason
patterns 3 and 4, rather than diffuse sheets of cells which
may represent pattern 5, 5% of the annotated foci fell into
this latter category. Regardless, the tool performed well
when applied onto either pattern. The training also lacked
other non-adenocarcinoma diagnoses of the prostate, such
as urothelial carcinoma, potential neuroendocrine carci-
noma or soft tissue lesions due to absent or infrequent
training examples, which may be addressed in future
iterations of the tool.

Requesting IHC involves additional tissue staining and
allocating extra pathologist time for case re-examination,

which increases organisational complexity. In this study
we showed that prostate biopsies requiring IHC take
double the time to be reported by pathologists, and twice
as many days to be reported. Some of this is process
related, but also it is recognised that cases requiring IHC
are inherently more complex. A few characteristics of the
IHC workflow contributed significantly to higher time
costs. Firstly, we found that the time between case
reception and the IHC request date is an average of
2 days, which is redundant time whereby cases are
awaiting review. Our tool moves the decision to the point
at which the H&E is created in the lab. The time to per-
form the IHC and the inherent complex nature of these
cases does not change with this tool. Rather, we have
shown that 11 min per case can potentially be saved by
advance IHC ordering, which we believe to be a con-
servative estimate. This is achieved by reducing the
inefficiencies of two reporting sessions in re-reviewing
slides and duplicating decision-making, i.e. the time-
consuming decision of ordering IHC before the final
diagnostic decision can be made. Processing the IHC
slides in a contiguous time slot to the H&E slides provides
a leaner workflow for the lab as the case is only booked
out to the pathologist once. Our approach involves tar-
geted advance IHC requesting: request on every case
should not be adopted in practice because the costs
involved in staining extra tissue for every case outweighs
the benefits [33].

Like all similar tests there is inevitably a trade off in this
model, with some degree of over or under calling. We
envisage that the tool would be used adaptively and that
centres would be able to select an acceptable threshold for
ordering IHC based on institutional preference. We would
need to explore with regulatory bodies how to achieve the
setting of different performance points within the appro-
priate regulatory framework. This would likely involve
submitting the validation data for a number of set thresholds
to support the intended purpose. Laboratories would then be
required to verify performance to the satisfaction of their
governance team and external laboratory accreditation
bodies.

The roadmap to introduction of AI into cellular pathol-
ogy is complex, which has thus far limited uptake [14]. In
this study, we describe a proof-of-concept algorithm for
IHC request by AI that effectively takes a workflow step
away from the pathologist but does not directly affect the
diagnosis. In particular in the case of under-calling by
the tool, i.e. a missed IHC request, IHC can nevertheless be
requested by the pathologist after visual assessment of the
H&E slide. Hence this is a relatively low risk task, which
might serve as a good entry point for the use of AI.

There is an inherent component of subjectivity in the
IHC requesting task, and thus a ground truth is difficult to
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define. A tool trained by a group of pathologists from one
centre might not entirely represent practice in another centre
and the decision to request may be affected by a number of
other non-morphological factors—level of fatigue, pathol-
ogist and institutional experience, degree of specialisation,
psychological and personality factors. The next iteration of
the tool will need careful design to capture multi-centre
training and validation and establishment of the ground
truth by a panel of pathologists. For this we will leverage
our fortunate position within the PathLAKE DP consortium
(one of the UK Government’s AI Centres of Excellence)
[34]. In outlining likely workflow benefits and economic
impacts, we acknowledge the limitations of our dataset and
that the workflow we describe here may be slightly different
in other institutions. A fully developed tool will ultimately
require prospective validation in a real-time health care
setting, with a wider evaluation of what time savings are
deliverable in practice.

One aspect of practice that could be considered as a
weakness of this AI tool, is that in some difficult cases the
thinking/reflecting time afforded by waiting for IHC is
helpful. Of course, the tool does not stop the pathologist
from walking away from a case for a while to get per-
spective, if clinically appropriate. In the many cases where
the IHC is for confirmation of what is already a confident
diagnosis on H&E this should not be an issue.

In the future, this work could be expanded for application
to other prostate settings (such as transurethral resections).
There is also potential to apply the tool to other tissue types
(e.g. breast or lung biopsies), or to develop a generic tool
for automated IHC or molecular requests.

In summary, we designed and evaluated a tool for
advance IHC requesting with the potential to reduce diag-
nostic times for PCa in the clinic. Our algorithm emulates
the decision-making of pathologists and robustly estimates
when IHC staining is required to diagnose a prostate biopsy.
Unlike previous work that focuses on predicting the pre-
sence of cancer, we focus on automating a routine clinical
task at the core of accurate PCa diagnosis. We believe tools
that help pathologists carry out their daily tasks and
improve clinical workflow will provide significant benefits
to healthcare institutions and expedite the adoption of DP in
cancer clinics worldwide.

Data availability

The datasets generated during and/or analysed during the
current study are not publicly available due to the terms of
the PathLAKE Consortium Agreement but are available via
the corresponding author on reasonable request.
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