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Abstract

The model-free algorithms of “reinforcement learning” (RL) have gained clout across dis-

ciplines, but so too have model-based alternatives. The present study emphasizes other

dimensions of this model space in consideration of associative or discriminative generali-

zation across states and actions. This “generalized reinforcement learning” (GRL) model,

a frugal extension of RL, parsimoniously retains the single reward-prediction error (RPE),

but the scope of learning goes beyond the experienced state and action. Instead, the

generalized RPE is efficiently relayed for bidirectional counterfactual updating of value

estimates for other representations. Aided by structural information but as an implicit

rather than explicit cognitive map, GRL provided the most precise account of human

behavior and individual differences in a reversal-learning task with hierarchical structure

that encouraged inverse generalization across both states and actions. Reflecting infer-

ence that could be true, false (i.e., overgeneralization), or absent

(i.e., undergeneralization), state generalization distinguished those who learned well more

so than action generalization. With high-resolution high-field fMRI targeting the dopami-

nergic midbrain, the GRL model's RPE signals (alongside value and decision signals) were

localized within not only the striatum but also the substantia nigra and the ventral teg-

mental area, including specific effects of generalization that also extend to the hippocam-

pus. Factoring in generalization as a multidimensional process in value-based learning,

these findings shed light on complexities that, while challenging classic RL, can still be

resolved within the bounds of its core computations.
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1 | INTRODUCTION

“Reinforcement learning” (RL) is a successful computational frame-

work for describing the means by which an agent can learn from feed-

back in their environment to select actions that maximize future

reward. This framework has been canonized not only in machine

learning and artificial intelligence (Bertsekas & Tsitsiklis, 1996;

Sutton & Barto, 1998) but also in psychology (Bush &

Mosteller, 1951a; Rescorla & Wagner, 1972) and neuroscience

(Montague et al., 1996; Schultz, 2015; Schultz et al., 1997). In compu-

tational modeling of the nervous system, the discovery that the phasic

activity of dopamine neurons represents the signature reward-

prediction error (RPE) has firmly placed RL at the core of our under-

standing of the neurobiological basis of reward-related learning. Yet,

as canonical RL models of the model-free variety have proliferated to

rise to the challenges of learning, so too have model-based

alternatives to the RL framework as well as dual-systems models that

are both model-free and model-based (Daw et al., 2005; Doll

et al., 2012; O'Doherty et al., 2017, 2021). It is compellingly intuitive

to consider these counterparts in terms of a straightforward dichot-

omy: model-free versus model-based. Toward the simpler end of the

spectrum, model-free processes entail implicit caching of learned

associations; toward the more complex end of the spectrum, model-

based processes instead construct explicit cognitive models of the

environment (which are incidentally agnostic with respect to con-

scious awareness). On the other hand, the present study expands this

model space by introducing two additional dichotomies in their own

right: associative versus discriminative generalization and state versus

action generalization.

In applying RL to neurobiology, previous approaches have typi-

cally treated states and actions in the world as independent events,

such that knowledge acquired about one state or action does not
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inform the agent about other states or actions. However, virtually all

dynamic environments in the real world can be characterized by con-

nections and patterns in relational structure across events that are

disconnected not only temporally but also episodically, where “epi-
sodes” here correspond to perceived groupings within a sequence

(and presently discrete trials within the experiment). As an agent grap-

ples with uncertainty, such structured interdependence means that

information obtained about one state or action can provide more gen-

eral knowledge about other states and actions as well. A prototypical

solution for leveraging the additional information is counterfactual

inference. The credit assignment of standard RL models does not

account for this interdependence or for mechanisms mediating the

generalization it may support.

The present study operationalizes the concepts of associative

versus discriminative generalization in relation to implicitly inferential

counterfactual learning (cf. Aquino et al., 2020; Balcarras &

Womelsdorf, 2016; Ballard et al., 2019; Baram et al., 2021;

Charpentier et al., 2020; Collette et al., 2017; Daw & Shohamy, 2008;

Gläscher et al., 2009; Hampton et al., 2007; Hauser et al., 2014, 2015;

Lesage & Verguts, 2021; Liu et al., 2021; Matsumoto et al., 2007;

Mattar & Daw, 2018; Reiter et al., 2017; Vinckier et al., 2016;

Wimmer et al., 2012; Zaki et al., 2016) that also differs with respect

to states versus actions. The simpler associative generalization treats

different representations as if they were equivalent or at least similar,

which can but does not necessarily imply inference. In contrast, the

more complex discriminative generalization treats different represen-

tations as if they were linked but specifically not equivalent—

effectively implying a sort of emergent model (or cognitive map) with

more abstract credit assignment. Being semi-inferential, this counter-

factual learning entails value updating that occurs without direct

F IGURE 1 Task. (a) This schematic of the hierarchical reversal-learning task performed during fMRI scanning includes the probabilities of a
rewarded outcome in one of 12 blocks. Following an intertrial interval (ITI) with a fixation cross, one of four paired states (i.e., cues) was
presented with equal probability, prompting the participant to choose either the left-hand action (“L”) or the right-hand action (“R”). Confirmation
of the action at the reaction time (RT) was followed by an interstimulus interval (ISI) and finally an outcome of either a monetary reward or no
reward as feedback. The paired state categories were faces and houses for the 3-T version or colors and directions of motion for the 7-T version.
Dotted arrows symbolize the two possible actions. Solid arrows represent equally or more likely state transitions, whereas dashed arrows
represent less likely transitions. Arrow thickness corresponds to the weight of an outcome's probability. (b) Only one action was rewarded per
state, thereby facilitating discriminative action generalization. States were paired within a category as “state A" and “state B" such that opposite
actions were rewarded between the two states, thereby facilitating discriminative state generalization. One of two possible arrangements for
hierarchical reward structure (independent of probabilities) is shown here, corresponding to the face category for this example block: The upper
face is “state A”, and the lower face is “state B”. There was no pairing between the independent categories. (c) The second possible arrangement
is also shown for comparison. The two possibilities alternated within categories as this anticorrelational rule remained constant through reversals
that remapped categories between blocks. For an optimal learner, this binary metastate determines the cognitive map or model of generalizable

task structure, which for a proper model-based algorithm is an explicit model but for generalized reinforcement learning is an implicit model.
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observation and so requires an internal representation of generaliz-

able structure in the environment. Yet the influence of such an

internal representation does not necessarily require a (cognitive)

model-based process in the stricter senses of the term; inference of

that level of comprehensiveness can be achieved with alternative

algorithms that are also investigated here. Rather, fundamentally

model-free signals could more simply be modulated as needed and

relayed via generalization.

The centerpiece of this work is a “generalized reinforcement

learning” (GRL) model that addresses specific aspects of generalization

by efficiently exploiting correlational structure between both states

and actions. Augmenting the model-free scheme in this parsimonious

way is another approach amid a zeitgeist inclined to more

sophisticated alternatives to the basic RL framework such as proper

model-based control. Whereas this model still employs the temporal-

difference (TD) prediction method (Dayan, 1992; Dayan &

Sejnowski, 1994; Sutton, 1988; Sutton & Barto, 1998), the algorithm

is modified—not only updating the estimated value of an experienced

state or action but also generalizing so as to flexibly transfer value

information to other states and actions related to what was experi-

enced. As opposed to separate counterfactual RPE signals, this singu-

lar generalized RPE signal functions as a heuristic for relaying the

counterfactual information that can be derived directly from immedi-

ate experience. To implement the present optimization for both

behavioral and neural modeling, we introduced the different types of

generalization in parallel as enhancements of the “critic/Q-learner”

model (Colas et al., 2017) that we previously developed and validated

as a bridge between the “actor/critic” model (Barto et al., 1983, 2021;

Sutton, 1984; Witten, 1977) and the “Q-learning” model (Watkins,

1989; Watkins & Dayan, 1992).

Suitably for testing this GRL model, a hierarchical reversal-learning

paradigm (Figure 1) allowed for associative generalization but favored

discriminative generalization across both states and actions. The tightly

controlled task accomplished this with high-order structure imposed to

link available actions as well as subsumed states to discriminate between

within stimulus categories. This embedded task structure provided par-

ticipants with opportunities to recognize and exploit patterns across

related events in separate trials so as to maximize reward. To facilitate

action generalization, only one of two actions would be rewarded per

state as a rule. Moreover, to facilitate state generalization, states

(i.e., visually discriminable cues) were also paired within a category such

that opposite actions were rewarded between the two states. The rule

within each state category thus defined a hierarchical metastate with

mapping that could reverse independently of that for the other cate-

gory's binary metastate. The optimal strategy in this setting is inverse

generalization that effectively infers and leverages anticorrelational inter-

dependencies both between complementary actions within each state

and between complementary states within each category.

Yet the task is difficult in a probabilistic and changing environment

producing noisy input, and fully recognizing interdependencies across tri-

als becomes nontrivial as working memory is taxed. These cognitive

demands may instead predispose an uncertain learner to implicit

F IGURE 2 The “generalized reinforcement learning” (GRL) model. Compare to Figure 1. Here depicted in its 7-parameter form, the GRL
model introduces the concepts of state generalization (gS) and action generalization (gA) as enhancements of the “critic/Q-learner” model, which
is represented by the case where gA = gS = 0. The agent begins the trial in the preparatory state s0 having a state value V(s0) cached by the
“critic” module. At trial onset, the agent is presented with a random active state s having a complementary state s0 within the same category
(e.g., faces). The agent's probabilistic action-selection policy π(s,a*) over available actions a* is determined by not only their respective action
values Q(s,a*), which are cached by the “Q-learner” module, but also action-specific bias and hysteresis β(a*). For this example, the agent's chosen
action a corresponds to the greater action value Q(s,a) that updates V(s0) via a state-value-prediction error δV weighted by the learning rate α,
which follows from this temporal-difference (TD) algorithm that also tracks passive states. The outcome of the action is a reward r that updates Q
(s,a) by way of an action-value-prediction error δQ. With the “TD(λ)” eligibility trace, V(s0) is also updated a second time by this same reward-
prediction error (RPE) but reweighted with a decay multiplier as the eligibility parameter λ. With analogy to the temporal generalization of TD(λ),
this new GRL model postulates that the generalized RPE signal is duplicated again, reweighted by gA, and relayed to the action value Q(s,a0)
representing the complementary nonchosen action a0 within state s. Likewise, the generalized RPE is reweighted by gS and relayed to the action
value Q(s0 ,a) representing the chosen action a for complementary state s0. Finally, these parameters interact as a combined weight gSgA
modulating the RPE relayed to action value Q(s0,a0) for the complementary action a0 within the complementary state s0. Positive value updates are
indicated with green arrows for this rewarded example trial, whereas negative updates for the complementary state and the complementary
action (but not their combination) are indicated with red arrows. The signs of these updates reflect discriminative generalization (�1 ≤ gA < 0 and
�1 ≤ gS < 0), which is optimal here because of the anticorrelational structure across states and actions.
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generalization. Although the quasi-model-based GRL model does not

include an explicit representation of the linkage between states or

actions, the optimality of discriminative generalization follows from the

potential for the generalizing agent to incorporate more of the available

information and update value representations four times as frequently in

this case (Figure 2). As an anticipatory strategy, this reduces uncertainty

in preparation for the next encounter within either a given state or its

category.

There is considerable precedent for inquiry surrounding generali-

zation and structure in learning (Bush & Mosteller, 1951b;

Ghirlanda & Enquist, 2003; Harlow, 1949; Shepard, 1957, 1987;

Tenenbaum & Griffiths, 2001; Tversky, 1977), and this is even the

case for the specific domain of value-based learning (Ballard

et al., 2019; Baram et al., 2021; Behrens et al., 2018; Bernardi

et al., 2020; Bromberg-Martin et al., 2010; Daw & Shohamy, 2008;

Doll et al., 2012; Doll, Duncan, et al., 2015; Doll, Shohamy, &

Daw, 2015; Gerraty et al., 2014; Gershman & Niv, 2015; Hampton

et al., 2006, 2007; Karagoz et al., 2022; Kool et al., 2016, 2017, 2018;

Lehnert et al., 2020; Liu et al., 2021; Mattar & Daw, 2018;

O'Doherty, 2012; Park et al., 2020; Prévost et al., 2013; Sadacca

et al., 2016; Schulz et al., 2020; Watanabe & Hikosaka, 2005; Wimmer

et al., 2012; Wimmer & Shohamy, 2012; Wunderlich et al., 2011). Yet

typical approaches have emphasized strictly associative forms of gen-

eralization based on equivalence or similarity; in the present context,

these are actually counterproductive as conflation—that is, overgener-

alization. Uniquely for the present study, its explication extends to

individual learners and how discriminative generalization can manifest

(or not manifest) across representations of both states and actions.

The GRL model is sensitive to not only discriminative generalization,

which is presently optimal, but also associative overgeneralization or

simple undergeneralization, thereby capturing possible variability in

how humans might generalize with true or false beliefs or just fail to

generalize altogether. With an aim for pragmatism, efficiency, and

flexibility rather than pure optimality, these parameterized forms of

associative or discriminative generalization and state or action gener-

alization were framed to dovetail with classic RL and its operating

constraints in the midst of stochasticity and parallel effects of action-

specific bias and hysteresis.

While serving to demonstrate the robustness of the techniques,

this multisite study also allowed for a more diverse sample as part of

the emphasis on individual differences (cf. Colas et al., 2017;

Schönberg et al., 2007). Human participants performed one of two

versions of the structured learning task while their brains were

scanned with functional magnetic-resonance imaging (fMRI). The first

experiment was conducted at a now-standard field strength (3 T)

across five separate laboratories, whereas the second was conducted

at a high (or “ultra-high”) field strength (7 T) in parallel so as to eluci-

date subtle neural signatures of the GRL model with high fidelity,

introducing commensurable state-of-the-art imaging for a paradigm

that lacks precedent for a high-field or multifield fMRI study

(cf. Beisteiner et al., 2011; Colizoli et al., 2021; Da Costa et al., 2015;

de Hollander et al., 2017; Morris et al., 2019; Sengupta et al., 2018;

Theysohn et al., 2013; Torrisi et al., 2018; Zaretskaya et al., 2020; but

see Fontanesi, Gluth, Rieskamp, et al., 2019). While we did examine

cortical signals, we primarily focused on subcortical regions of the

basal ganglia that have been implicated in RL with evidence from ear-

lier studies. Here the GRL model again benefits from the anchor of RL

insofar as prior literature from the classic RL perspective still provides

a firm foundation for further constraining hypotheses about signals in

the brain. Bolstered by the advantages of high-field fMRI (De Martino

et al., 2018; Dumoulin et al., 2018; Torrisi et al., 2018; U�gurbil, 2018),

our neuroimaging protocols were optimized for higher spatial resolu-

tion to pinpoint RL and GRL mechanisms in not only the striatum but

also the dopaminergic midbrain. The technical challenges posed by

measurements within elusive dopaminergic nuclei (Barry et al., 2013;

de Hollander et al., 2015, 2017; Düzel et al., 2009, 2015) were

addressed by adopting tailored measures for image preprocessing and

denoising.

The first hypothesis was that the GRL model offers a superior

account of motivated behavior and especially the distribution of per-

formance at the level of individual participants. This quasi-model-

based extension of model-free RL could even stand to outcompete

more unambiguously model-based solutions, including delta learning

with a state-prediction error (SPE) (cf. Gläscher et al., 2010; Lee

et al., 2014)—or here a “metastate-prediction error” (MPE)—as well

as more sophisticated Bayesian inference with a hidden Markov

model (HMM) (Ghahramani, 2001; cf. Hampton et al., 2006; Prévost

et al., 2013). Second, this model was hypothesized to successfully

capture dynamics of neural activity (O'Doherty et al., 2007) associ-

ated with the computations characterizing RL as implemented within

mesostriatal circuits (Chase et al., 2015; Colas et al., 2017; Garrison

et al., 2013; O'Doherty et al., 2003; O'Doherty et al., 2004; Pauli

et al., 2015; Schönberg et al., 2007). Third, predictions for value sig-

nals in both the ventral striatum and ventromedial prefrontal cortex

(vmPFC) (Bartra et al., 2013; Behrens et al., 2008; Chase et al., 2015;

Clithero & Rangel, 2014; Colas et al., 2017; Gläscher et al., 2009;

Hare et al., 2008; Jocham et al., 2011; Kim et al., 2006) were also

tested alongside RPE signals, which poses a challenge because these

two types of signals as well as decision signals are all interconnected.

Fourth, targeting predictions entirely specific to the GRL model,

interaction effects in the basal ganglia as well as the hippocampus

were expected to reflect the relaying of learning signals to represen-

tations of other states and actions; these interactions could be

between RPE signaling and state generalization or between RPE sig-

naling and action generalization. The hippocampal formation of the

medial temporal lobe is a viable candidate for representing not only

spatial topological maps (Moser et al., 2008; O'Keefe & Nadel, 1978)

but also cognitive maps (Lewin, 1935, 1936; Tolman, 1948) such as

in this more abstract space of states and actions (Ballard et al., 2019;

Baram et al., 2021; Behrens et al., 2018; Bernardi et al., 2020; Cazé

et al., 2018; Daw & Shohamy, 2008; Gerraty et al., 2014; Liu

et al., 2019, 2021; Mattar & Daw, 2018; Momennejad et al., 2018;

Park et al., 2020; Schuck & Niv, 2019; Wimmer et al., 2012;

Wimmer & Shohamy, 2012).

The aims of the present study thus include first replicating and

then building upon the established narrative of RL in the human brain,
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encompassing a trichotomy of value, decision, and learning signals.

With a parsimoniously optimized implementation of the algorithmic

template of RL, this flexible scheme for associative or discriminative

generalization across states and actions broadens this narrative for

predictably structured environments. Furthermore, with that narrative

there arises an opportunity to reflect on how this generalization

paradigm—as distinguished from one defined by a multistep task

(Bellman, 1957; Daw et al., 2005, 2011; Gläscher et al., 2010; Lee

et al., 2014; Sutton & Barto, 1998), for example—can relate to model-

free, model-based, or quasi-model-based aspects of structural

learning.

2 | RESULTS

The first version of the structured learning task included fMRI at 3 T

and faces or houses as stimuli (16 in total), whereas the second ver-

sion included high-resolution fMRI at 7 T and colors or directions of

motion as stimuli (4 in total). These different versions were acquired

in parallel, and the advantages of the differences in stimuli between

them were twofold. The prosaic advantage applies to the 7-T fMRI

data, which are more susceptible to signal dropout: Owing to discrep-

ancies between the magnetic properties of the cerebrum and the cer-

ebellum and the properties of the interstitial space between them,

there is a risk of dropout in the vicinity of the fusiform gyrus and (to a

lesser extent) the parahippocampal gyrus—that is, the fusiform face

area (FFA) (Kanwisher et al., 1997) and the parahippocampal place

area (PPA) (Epstein & Kanwisher, 1998), which would relate to proces-

sing of face and house stimuli (i.e., states), respectively. The more sub-

stantial advantage is that replicating both behavioral and neural

results between somewhat different experiments rather than strictly

identical experiments can speak to the robustness or generality of a

given effect.

2.1 | Participant groups

Within each data set (i.e., the 3-T Face/House (“3FH”) version or the

7-T Color/Motion (“7CM”) version), the first step of the analysis

entailed dividing participants into three subgroups according to

model-independent performance on the task (Schönberg et al., 2007)

as well as the results of model fitting (Colas et al., 2017) (Table 1).

Learning performance could thus be related to both behavioral and

neural aspects of the modeling for this difficult task. A subset of par-

ticipants was initially set aside as the “Good learner” (“G”) group

(3FH: n = 31/47; 7CM: n = 16/22) if choice accuracy was signifi-

cantly greater than the chance level of 50% for a given individual

(p < .05). The remaining participants for whom the null hypothesis of

chance accuracy could not be rejected at the individual level (p > .05)

were further subdivided between the “Poor learner” (“P”) group (3FH:

n = 9/47; 7CM: n = 5/22) and the “Nonlearner” (“N”) group (3FH:

n = 7/47; 7CM: n = 1/22) according to whether or not an RL model

could yield a significant improvement in goodness of fit relative to a

nested hysteresis model without sensitivity to reward or its omission.

Despite additional free parameters, the hysteresis model was justified

statistically as a baseline model superior to the chance or intercept

models (Tables S1-S15).

As part of the overarching computational framework—that is, not

only RL per se but also the associated policy for action selection—

reaction time (RT) was measured to implicitly relate dynamical models

of decision making (Busemeyer & Townsend, 1993; Colas, 2017;

Laming, 1968; Luce, 1986; Ratcliff, 1978; Usher & McClelland, 2001)

to this context of active value-based learning (Ballard &

McClure, 2019; Fontanesi, Gluth, Spektor, et al., 2019; Fontanesi, Pal-

minteri, & Lebreton, 2019; Frank et al., 2015; Luzardo et al., 2017;

McDougle & Collins, 2021; Mileti�c et al., 2020, 2021; Millner

et al., 2018; Pedersen et al., 2017; Pedersen & Frank, 2020; Ratcliff &

Frank , 2012; Sewell et al., 2019; Sewell & Stallman, 2020; Shahar

TABLE 1 Participant groups

3-T Face/House 7-T Color/Motion

Good learner Poor learner Nonlearner Good learner Poor learner Nonlearner

n 31 9 7 16 5 1

Accuracy (%) 62.8

(5.4)

50.1

(3.1)

50.1

(3.0)

62.3

(5.6)

49.8

(4.9)

50.0

Reaction time (ms) 974

(129)

757

(107)

671

(104)

989

(87)

784

(163)

1043

Missed trials (%) 4.2

(6.8)

8.1

(10.5)

9.5

(9.8)

10.1

(9.1)

12.5

(12.4)

30.7

Age (y) 26.0

(4.9)

25.1

(5.0)

23.9

(5.2)

26.9

(4.2)

31.8

(9.8)

27

Male:Female (%) 54.8 55.6 71.4 43.8 100 0

Note: A subset of participants was initially set aside as the “Good learner” group if choice accuracy was significantly greater than chance at the individual

level (p < .05). The remaining participants with chance accuracy (p > .05) were assigned to either the “Poor learner” group or the “Nonlearner” group
according to whether or not a learning model could yield an improvement in fit relative to a hysteresis model without sensitivity to learnable outcomes. A

speed-accuracy tradeoff was exhibited between groups with concomitant effects in reaction time such that the Good-learner group was the slowest to

respond (p < .05). Standard deviations are listed in parentheses below corresponding means.
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et al., 2019; Viejo et al., 2015). As more difficult decisions were

hypothesized to be slower (see below), so too were decisions made

more conscientiously by more attentive learners. Regarding the latter

hypothesis, both data sets exhibited a speed-accuracy tradeoff

(Garrett, 1922; Johnson, 1939) between groups with effects in RT

such that the Good-learner group with high accuracy was also the

slowest to respond (3FH-GP: M = 217 ms, t38 = 4.60, p < 10�4; 3FH-

GN: M = 304 ms, t36 = 5.81, p < 10�6; 7CM-GP: M = 205 ms,

t19 = 3.72, p < 10�3). Likewise, the Poor-learner group was marginally

slower than the Nonlearner group (3FH-PN: M = 87 ms, t14 = 1.63,

p = .063).

2.2 | Model comparison

The present GRL model has seven free parameters: two for basic RL

(α, τ), three for action-specific bias and hysteresis (β0, λβ, βR), and two

for generalization (gA, gS) (see Section 4). This and 16 other models

were formally compared with inclusion of a full factorial design per-

muting the novel factors of action generalization and state generaliza-

tion while controlling for outcome-independent effects of action-

specific bias and hysteresis (Colas et al., 2017). The candidates

included basic model-free RL (1 model), quasi-model-based GRL

(10 models), the model-based SPE (with delta learning) (1 model), the

model-based HMM (with Bayesian learning) (2 models), and dual-

systems models that are both model-free and model-based (3 models)

(Table 2). (Note that the “state” determining the SPE or the HMM's

hidden state is not the cue itself but rather the cue category's metas-

tate for generalizable structure represented with two possibilities

shown in Figure 1c.)

In this context, a negative sign for the action-generalization

weight (�1 ≤ gA < 0) represents correct recognition of the fixed com-

plementarity between available actions, thereby speeding up learning.

Likewise, a negative sign for the state-generalization weight

TABLE 2 Model parameters
RL GRL SPE HMM Dual

Model MF vs. MB df α gA gS gSA αSPE θ0 θ1 wMB

A0jS0 MF 5 α — — — — — — —

A�jS0 MF (�MB) 5 α �1 — — — — — —

AXjS0 MF (�MB) 6 α gA — — — — — —

A0jS+ MF 5 α — +1 — — — — —

A0jS� MF (�MB) 5 α — �1 — — — — —

A0jSY MF (�MB) 6 α — gS — — — — —

A�jS+ MF (�MB) 5 α �1 +1 �1 — — — —

A�jS� MF (�MB) 5 α �1 �1 �1 — — — —

AWjSW MF (�MB) 6 α g g g — — — —

AXjSY MF (�MB) 7 α gA gS gA — — — —

AXjSYjZ MF (�MB) 8 α gA gS gSA — — — —

SPE MB 5 — — — — αSPE — — —

SPE+RL MF + MB 7 α — — — αSPE — — wMB

HMM0 MB 5 — — — — — θ0 — —

HMM MB 6 — — — — — θ0 θ1 —

HMM0+RL MF + MB 7 α — — — — θ0 — wMB

HMM+RL MF + MB 8 α — — — — θ0 θ1 wMB

Note: All of the learning models are listed in ascending order of complexity both within and across

classes: RL is the most simple and followed by GRL, the state-prediction error (SPE) (i.e., metastate-

prediction error or MPE), the hidden Markov model (HMM), and lastly the most complex dual-systems

models. The algorithms are described in terms of being model-free (“MF”), model-based (“MB”), or quasi-
model-based (“�MB”). Model-free and (cognitive) model-based learning rates are listed as α and αSPE for

the RPE and the SPE, respectively. For RL and GRL, the labels “A0”, “A�”, and “AX” denote the absence

of action generalization (gA = 0), maximally optimal discriminative action generalization (gA = �1), and

free action generalization (�1 ≤ gA ≤ 0), respectively. The labels “S0”, “S+”, “S�”, and “SY” denote the

absence of state generalization (gS = 0), maximally suboptimal associative state generalization (gS = 1),

maximally optimal discriminative state generalization (gS = �1), and free state generalization (�1 ≤ gS ≤

1), respectively. GRL model “AWjSW” is limited to a single free parameter g shared between these two

types of generalization (gS = g, gA = min{0, gS}). GRL model “AXjSYjZ" adds a free parameter gSA for an

interaction term gSgSA (i.e., gSA ≠ gA). The HMM0 variant shares a consistency parameter θ0 with the full

HMM but omits the reversal rate (θ1 = 0). Dual-systems models ("MF + MB") include a weighting

parameter wMB for the model-based system. “df” stands for degrees of freedom.

4756 COLAS ET AL.



(�1 ≤ gS < 0) represents correct recognition of the fixed complemen-

tarity between paired states rewarding opposite actions within a cate-

gory, whereas a positive sign (0 < gS ≤ 1) instead represents incorrect

overgeneralization across states within a category as if they were

identical. The extremes for these parameters (gA = �1, gS = 1, or

gS = �1), their absence (gA = 0 or gS = 0), and their equivalence

(gA = min{0, gS}) were combined as alternatives to determine whether

the two additional degrees of freedom were justified. Moreover,

whereas the 7-parameter GRL model was expected to suffice with

the assumption of an unparameterized interaction term gSgA, a version

with an additional free parameter gSA for an interaction term gSgSA

was also tested as part of due diligence.

Across the Good learners of both data sets, the 7-parameter GRL

model including free parameters for both action and state generaliza-

tion outperformed all nine models nested within it, the model that it

was nested within, and six model-based alternatives—even after cor-

recting for model complexity according to the Akaike information cri-

terion with correction for finite sample size (AICc) (Akaike, 1974;

Hurvich & Tsai, 1989) (Figures 3a and 4a, Tables S1–S5). Crucially,

when fitted at the level of individual subjects, this fully parameterized

model could accommodate the heterogeneity in strategies for general-

ization observed within both Good-learner and Poor-learner groups—

ranging from optimal (discriminative generalization) to semioptimal

(undergeneralization) to suboptimal (associative overgeneralization)

and with the majority strongly generalizing (3FH: n = 24/40; 7CM:

n = 17/21) (Figures 3b/c and 4b/c). In other words, although a simpler

alternative nested within the 7-parameter model may provide a

decent account for some individuals, this more complex model in itself

provided the most parsimonious account for the greatest proportion

of participants.

F IGURE 3 Model comparison: 3-T Face/House version. (a) For each learning model, average goodness of fit relative to the outcome-
insensitive hysteresis model is shown with (light bars) and without (light and dark bars combined) a penalty for model complexity according to the
corrected Akaike information criterion (AICc). The Good-learner (green bars) and Poor-learner (blue bars) groups are plotted separately.
Emphasizing the result for the Good-learner group, the 7-parameter GRL model (“AXjSY”) outperformed all models even after correcting for
model complexity and so justified inclusion of free parameters for both action and state generalization. The Nonlearner group is omitted here
because these participants were best fitted by the hysteresis model following penalization. A more positive residual corresponds to a superior fit.
Degrees of freedom are listed in parentheses. (b) Counts of the participants best fitted by the 7-parameter GRL model and each of its nested
models according to the AICc are plotted with separation between learner groups, demonstrating that the majority strongly generalize and exhibit
heterogeneity in generalization strategies within both groups. These trends could only be captured by a fully parameterized two-dimensional GRL
model. (c) Broadening the scope to all models affirmed the preference for 7-parameter GRL and suggested negligible utilization of proper model-
based strategies. This figure is related to Tables S1–S3.
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The lesser performance of the 8-parameter GRL model argues

against an explanation reduced to mere overfitting because this fur-

ther increase in complexity did not significantly improve performance.

In an attempt to reduce complexity, a shared parameter for state and

action generalization (i.e., gA = min{0, gS}) proved insufficient as these

orthogonal factors actually required separate free parameters. Nota-

bly for the approximation of a proper model-based strategy, the

nested algorithm fixed with maximally optimal state and action gener-

alization (i.e., gA = gS = �1) was not supported for most participants

even when granted the benefits of fewer degrees of freedom. Like-

wise, the evidence did not favor the 5- or 6-parameter model-based

algorithms (i.e., the SPE or the HMM) (cf. Aquino et al., 2020;

Hampton et al., 2006; Prévost et al., 2013) or their respective dual-

systems counterparts.

To again affirm the discriminability of the 7-parameter GRL model

among both simpler and more complex alternatives, this entire pattern of

results could be replicated after substituting simulated data generated by

the fitted model itself (Figures S1 and S2, Tables S6–S10). Conversely,

simulations generated with basic RL produced fitting results that instead

aligned with basic RL (Figures S3 and S4, Tables S11–S15). That is, the

complex model could be recovered from the complex model, and the

simple model could be recovered from the simple model. This robust

model discriminability rules out overfitting.

To complement the quantitative model comparison for overall

goodness of fit, a posterior predictive check focused on a subset of

diagnostic trials characterized by the purest effects of generalization.

The hypothesis of generalized RL rather than basic RL could thus be

tested at another level with qualitative falsification of the null hypoth-

esis (Palminteri, Wyart, et al., 2017; Wilson & Collins, 2019). Based on

parameter fits from the GRL model accommodating idiosyncratic gen-

eralization, Good and Poor learners were reclassified in “Discrimina-

tive generalizer” (gS < 0) (3FH: n = 19/40; 7CM: n = 12/21),

“Nongeneralizer” (gS = 0) (3FH: n = 11/40; 7CM: n = 2/21), and

“Associative generalizer” (gS > 0) (3FH: n = 10/40; 7CM: n = 7/21)

groups. The trials of interest corresponded to the first opportunities

for generalization of reward within each block—that is, points in time

before subsequent direct experience could update a value representa-

tion in the same direction as generalizable information would. After a

given state-action pair was rewarded for the first time, the crucial test

was whether the complementary action would correctly be chosen

upon the next encounter with the complementary state within the

same category. Despite an absence of direct reinforcement for the

second state's new reward contingencies—and even prior reinforce-

ment to the contrary—the implicit inference of discriminative generali-

zation nevertheless helps to boost this first-generalization accuracy

above chance following indirect generalizable reinforcement.

F IGURE 4 Model comparison: 7-T Color/Motion version. Compare to Figure 3. Results were replicated in the 7-T Color/Motion version of
the experiment. This figure is related to Tables S4 and S5.
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Associative generalization counterproductively does the opposite in

keeping with the false belief that the same action would be rewarded

across the category.

As expected across both data sets, Discriminative generalizers did

in fact perform above chance with the first generalization (3FH:

M = 11.3%, t18 = 3.51, p = 10�3; 7CM: M = 8.5%, t11 = 1.84, p =

.047), whereas Associative generalizers performed not only below

Discriminative generalizers (3FH: M = 21.1%, t27 = 4.09, p < 10�3;

7CM: M = 20.1%, t17 = 2.68, p = .008) but also below chance (3FH:

M = 9.8%, t9 = 2.73, p = .012; 7CM: M = 11.7%, t6 = 2.00, p = .046)

(Figure 5). Moreover, the Nongeneralizer group's first-generalization

accuracy was not significantly below chance (p > .05) but was below

that of Discriminative generalizers (M = 13.8%, t28 = 2.61, p = .007).

(Note that the subject counts of the generalization groups were not

distributed as uniformly for the second sample, which left an insuffi-

cient Nongeneralizer group with a spuriously trending but nonsignifi-

cant result (p > .05) because of noise in the limited subset of trials that

were separated from the majority in this analysis.) Across all learners,

first-generalization accuracy increased parametrically as the state-

generalization weight was more negative (3FH: r = 0.594, t38 = 4.55,

p < 10�4; 7CM: r = 0.459, t19 = 2.25, p = .018). Altogether, hypothe-

ses were confirmed across the board for these participant classifica-

tions derived from the GRL model.

Simulated data sets were generated with individually fitted

instantiations of the computational models but yoked to their respec-

tive empirical data sets. That is, the simulated agents received input in

silico according to what their respective participants actually encoun-

tered in the session. Regarding model comparison and falsification,

this posterior predictive check confirmed that basic RL (sans generali-

zation) was unable to account for the aforementioned effects, instead

producing below-chance first-generalization accuracy across all

groups of simulated agents (p < .05). Whereas the GRL agent has the

capacity to infer this new category-level information prior to direct

experience, the basic RL agent is limited to only information

F IGURE 5 Posterior predictive check. (a) Focusing on only trials with the first opportunities for generalization of reward within each block,
the purest effects of generalization were isolated in order to falsify basic RL. Using the GRL model, learners were reclassified in “Discriminative
generalizer” (gS < 0) (green bars), “Nongeneralizer” (gS = 0) (blue bars), and “Associative generalizer” (gS > 0) (red bars) groups. Only

Discriminative generalizers could benefit from indirect reinforcement at these points in time, whereas Associative generalizers
counterproductively overgeneralize the new information. In the absence of direct reinforcement for a complementary state's newly correct
action, Discriminative generalizers, Nongeneralizers, and Associative generalizers performed above (p < .05), at (p > .05), and below (p < .05)
chance at first generalization, respectively. Simulated data sets from each competing model were yoked to their respective empirical data sets.
Whereas the simpler nested models fail to account for this interaction effect between groups (p > .05), two-dimensional GRL models with state
and action generalization capture the pattern successfully (p < .05). The (cognitive) model-based alternatives (SPE and HMM) and their respective
dual-systems models (“+RL”) offered no substantial benefits here. (b) Results were replicated in the 7-T Color/Motion version of the experiment.
Error bars indicate standard errors of the means.
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experienced within the current state that is at best neutral but may

even be the opposite of what should be inferred.

Although simpler nested models with fixed generalization

roughly approximate the empirical pattern in first-generalization

accuracy, only the two-dimensional GRL models with parameteriza-

tion of both state and action generalization could achieve the quali-

tative interaction effects within and between generalization-based

groups (p < .05). (That the GRL model's fits to these trials are not

quite perfect in terms of quantitative correspondence is merely a

reflection of the fact that models were simultaneously fitted to the

remaining 96% of trials along with the 4% emphasized at the

moment; all of the trials were included in subsequent analyses that

demonstrated the model's noteworthy quantitative precision.)

Remarkably, despite classification here being based on state general-

ization, the coexistence of action generalization was also essential

for calibrating the model's recapitulated effects: Another example of

subpar performance for the “A0jSY” model with gA = 0 was evident

in first-generalization accuracy remaining closer to chance among

Discriminative generalizers (p > .05).

The more complex model-based algorithms (SPE and HMM) at

best qualitatively matched GRL here but did not always perform as

well—even as half of a dyad including basic RL. (The reduced HMM0

variant in particular was limited by the rigidity of not explicitly repre-

senting reversals, such that new information that contradicts prior

beliefs could not be integrated rapidly enough.) In this case, these

alternatives did not offer any improvement that would justify

TABLE 3 Parameters of the GRL model

3-T Face/House 7-T Color/Motion

Good learner Poor learner Nonlearner Good learner Poor learner Nonlearner

n 31 9 7 16 5 1

Accuracy (%) 62.8

(5.4)

50.1

(3.1)

50.1

(3.0)

62.3

(5.6)

49.8

(4.9)

50.0

Reward sensitivity

log(α(1�gA�gS+gSgA)/τ)

0.058

(0.280)

�1.815

(2.309)

�1.823

(2.009)

0.069

(0.337)

�1.442

(2.266)

�5.764

Learning rate α 0.517

(0.242)

0.269

(0.339)

0.483

(0.345)

0.555

(0.345)

0.540

(0.353)

0.372

Action generalization gA �0.355

(0.367)

�0.321

(0.376)

�0.787

(0.357)

�0.535

(0.393)

�0.551

(0.482)

�1.000

Discriminative : None 21 : 10 6 : 3 7 : 0 13 : 3 4 : 1 1 : 0

State generalization gS �0.184

(0.344)

0.367

(0.535)

0.359

(0.887)

�0.239

(0.390)

0.257

(0.819)

1.000

Disc. : None : Associative 18 : 9 : 4 1 : 2 : 6 2 : 0 : 5 11 : 1 : 4 1 : 1 : 3 0 : 0 : 1

Softmax temperature τ 0.698

(0.464)

0.737

(0.565)

3.066

(0.724)

0.700

(0.343)

1.298

(0.782)

2.157

Perseveration bias:

Initial magnitude β0

�0.066

(0.235)

�0.133

(0.438)

�0.169

(1.034)

�0.130

(0.153)

�0.393

(0.949)

�1.278

Alternation : Perseveration 21 : 10 4 : 5 4 : 3 13 : 3 3 : 2 1 : 0

Perseveration bias:

Inverse decay rate λβ

0.543

(0.371)

0.578

(0.404)

0.456

(0.421)

0.659

(0.318)

0.485

(0.403)

0.000

Rightward bias βR 0.113

(0.354)

0.160

(0.185)

0.391

(0.855)

0.167

(0.240)

0.245

(0.360)

�0.435

Leftward : Rightward 12 : 19 2 : 7 2 : 5 2 : 14 1 : 4 1 : 0

Intercept model:

Residual deviance D6 78.56 48.67 16.75 73.97 42.15 22.28

Hysteresis model:

Residual deviance D3 70.55 28.94 1.46 64.82 10.31 1.51

Note: Average fitted parameters for the preferred GRL model are listed for each participant group within each data set. Overall reward sensitivity was

encapsulated by the ratio between generalized learning rates and temperature, which was greater for the Good-learner group than for the Poor-learner

group in both data sets as expected (p < .05). Whereas action generalization did not differ between groups in either data set (p > .05), state generalization

was more negative—that is, more optimal—for Good learners than for Poor learners (p < .05). The signs of individual fits are summarized as “discriminative”
(�1 ≤ gA < 0) or “none” (gA = 0) for action generalization; “discriminative” (�1 ≤ gS < 0), “none” (gS = 0), or “associative” (0 < gS ≤ 1) for state

generalization; “alternation” (β0 < 0) or “perseveration” (β0 > 0) for hysteretic biases; and “leftward” or (βR < 0) “rightward” (βR > 0) for lateral biases. The

residual deviance Ddf (with degrees of freedom in the subscript) corresponds to the GRL model's improvement in fit relative to either null model. Standard

deviations are listed in parentheses below corresponding means.
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sacrificing the parsimony of GRL. All things being equal, Occam's razor

would bias model selection away from the computational complexity

demanded by a more model-based architecture as compared to a

quasi-model-based but primarily model-free architecture that boasts

simplicity. Unlike the addition of free parameters, this lack of

parsimony—including a less straightforward neural implementation—is

not readily quantifiable for formal penalization in proportion to the

concomitant increase in model complexity.

2.3 | Behavioral modeling

With the model comparison pointing to the 7-parameter GRL model,

the next steps were to further verify and interpret the individually

fitted parameters of this model with reference to learning perfor-

mance (Table 3). The model could first quantify overall reward sensi-

tivity with a logarithmic transformation of the ratio between the sum

of all four generalized learning rates and the softmax temperature

(cf. Colas et al., 2017; Schönberg et al., 2007). This sensitivity metric

log(α(1�gA�gS+gSgA)/τ) was greater for Good-learner groups than for

Poor-learner groups across data sets (3FH: M = 1.873, t38 = 4.54,

p < 10�4; 7CM: M = 1.510, t19 = 2.72, p = .007). Likewise, choice

accuracy increased parametrically with sensitivity across both learner

groups (3FH: r = 0.547, t38 = 4.03, p = 10�4; 7CM: r = 0.645,

t19 = 3.68, p < 10�3). In keeping with the speed-accuracy tradeoff, RT

was analogously slower as sensitivity increased (with marginal signifi-

cance for the latter data set) (3FH: r = 0.506, t38 = 3.62, p < 10�3;

7CM: r = 0.346, t19 = 1.61, p = .062).

State generalization gS was more negative—that is, more

optimal—for Good learners than for Poor learners across data sets

(3FH: M = 0.551, t38 = 3.71, p < 10�3; 7CM: M = 0.496, t19 = 1.89,

p = .037). Likewise, across all learners, choice accuracy increased as

state generalization was more negative (3FH: r = 0.509, t38 = 3.65,

p < 10�3; 7CM: r = 0.571, t19 = 3.04, p = .003). Action generalization

gA did not differ between groups in either data set (p > .05). In other

words, the Poor learners were primarily limited by difficulties with

F IGURE 6 Behavioral modeling with the GRL model. (a) State generalization in particular relates to a qualitative pattern in choice behavior for
this paradigm. Across all trials, conditions were defined by the most recent trials in which either the same (i.e., current) state was encountered or
the other state within the current category was encountered; these trials were further binned according to whether the trial rewarded a given
action (green bars) or provided no reward (red bars). While a rewarded action was more likely to be repeated for the same state among Good
learners (p < .05), instead a nonrewarded action was more likely to be repeated from the other state (p < .05). This interaction effect (p < .05)
follows from the complementarity of states within a category. Poor learners and Nonlearners did not exhibit such a pattern in behavior (p > .05).
(b) To verify that the GRL model could reproduce these results with quantitative precision, simulated data sets were analyzed in the same fashion.
(c) For all participant groups—including even “Nonlearners”—the probability of repeating the most recent action (independent of state) increased
as a function of the difference between action values Qt(st,a) derived from the GRL model (p < .05). (d–f) Results were replicated in the 7-T Color/
Motion version of the experiment. Error bars indicate standard errors of the means.
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properly discriminating and generalizing between states within a cate-

gory rather than actions within a state—the former being the more

complex process here. The dissociation between state generalization

and action generalization was confirmed by the complete absence of

any correlation between these parameters across all learners (3FH:

r = 0.006, p > .05; 7CM: r = �0.033, p > .05).

These forms of discriminative generalization speed up learning

across trials, and as alluded to previously, state generalization here

relates to a qualitative pattern in choice behavior based on an interac-

tion effect of reinforcement between hierarchically paired states

(Figure 6a/d). Whereas the previous analysis was concerned with iso-

lating generalization effects in a subset of trials, this analysis across all

trials addressed a mixture of effects such as pure RL, generalized RL,

action-specific biases, and stochasticity from noise and exploration.

Conditions for preceding outcomes were defined by the most recent

trials in which either the same (i.e., current) state was encountered or

the other, complementary state within the current category was

encountered; these trials were further binned according to whether

the trial rewarded a given action or provided no such reward. Among

Good learners of either data set, a rewarded action was more likely to

be repeated within the same state (3FH: M = 31.3%, t30 = 13.52,

p = 10�14; 7CM: M = 34.4%, t15 = 8.34, p < 10�6); in contrast, a non-

rewarded action was more likely to be repeated after being performed

in the other state (3FH: M = 19.2%, t30 = 15.95, p < 10�15; 7CM:

M = 16.9%, t15 = 9.08, p < 10�7), producing an interaction effect

(3FH: M = 50.5%, t30 = 16.47, p < 10�16; 7CM: M = 51.3%,

F IGURE 7 Predictions of the GRL model. Representative dynamics of value signals and learning signals generated by the GRL model are
shown for the final participant in the Good-learner group of the 3-T Face/House data set. This modeling provided explicit quantitative predictions
for internal decision variables within the (computational) model-based fMRI analysis. Parameters were assigned as follows for this participant:
α = 0.318, gA = �0.710, gS = �0.808, λ = 0.500, τ = 0.408, β0 = �0.067, λβ = 0.753, and βR = 0.178. (a) Tracking the probability of reward for
the left and right actions (blue and red lines, respectively) in each of four active states, the model's estimates of action values Qt(s,a) (solid lines)
are plotted along with actual values (dashed lines) over the course of 12 blocks. Plotted below these value signals are time courses of the

corresponding action-value-prediction error (AVPE) δQt signals. Discriminative state and action generalization are evident with counterfactual
updates of values for the three nonexperienced state-action pairs within a category (Figure S5). These additional updates occur despite only one
state-action pair being experienced with feedback. Each colored tick mark denotes an occurrence of the respective action. (b) Whereas active
states were tracked by the Q-learning component of this “critic/Q-learner” (CQ) model, the preparatory state preceding each active state was
tracked by the CQ model's critic module for passive states. Essentially tracking the probability of reward for the entire task, the model's estimates
of state values Vt(s0) are plotted alongside state-value-prediction error (SVPE) δVt signals. From the temporal generalization of TD(λ), the value of
the preparatory state was updated not only at the beginning of the trial but also at the end by way of the AVPE signal's eligibility trace.
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t15 = 9.46, p < 10�7). The Poor-learner and Nonlearner groups did not

exhibit this pattern in their choices (p > .05). Identical analyses of sim-

ulations in a second posterior predictive check—the first being

qualitative—confirmed that the GRL model could reproduce these

results with quantitative precision (3FH-G: p < .05; 3FH-P: p > .05;

3FH-N: p > .05; 7CM-G: p < .05; 7CM-P: p > .05) (Figure 6b/e). By

incorporating action-specific bias and hysteresis (Colas et al., 2017;

Lau & Glimcher, 2005; Schönberg et al., 2007), this extended model

simultaneously matched reward-independent effects on the dynamic

base rates of action repetition or alternation as well.

Additional validation of model fitting could be found in (computa-

tional) model-based psychometric functions of choices and RTs; the

former maps onto the standard softmax function embedded within

the present model (Luce, 1959; Shepard, 1957; Sutton & Barto, 1998),

and the latter has been shown to be generally applicable to RL

(Ballard & McClure, 2019; Fontanesi, Gluth, Spektor, et al., 2019; Fon-

tanesi, Palminteri, & Lebreton, 2019; Frank et al., 2015; Luzardo

et al., 2017; McDougle & Collins, 2021; Mileti�c et al., 2020, 2021;

Millner et al., 2018; Pedersen et al., 2017; Pedersen & Frank, 2020;

Ratcliff & Frank, 2012; Sewell et al., 2019; Sewell & Stallman, 2020;

Shahar et al., 2019; Viejo et al., 2015). (Given the two-alternative

forced choice, this logistic softmax model is nested within not only

signal-detection theory (Green & Swets, 1966) but also the drift-

diffusion model encompassing RT (Laming, 1968; Ratcliff, 1978;

Ratcliff et al., 2016; Stone, 1960).) For all five participant groups

across data sets—including even “Nonlearners” who actually do

exhibit subtle signatures of learning—the probability of repeating

the most recent action (independent of state) increased as a

function of the difference between action values Qt(st,a) derived

from the GRL model (3FH-G: β = 1.902, t30 = 9.66, p < 10�10;

3FH-P: β = 1.986, t8 = 2.70, p = .014; 3FH-N: β = 0.332,

t6 = 4.53, p = .002; 7CM-G: β = 1.668, t15 = 7.44, p = 10�6;

7CM-P: β = 1.034, t4 = 2.50, p = .033) (Figure 6c/f). Along with

effects on choices, RT became faster as the absolute difference

between action values increased for 4 out of 5 participant groups

(3FH-G: β = 62 ms, t30 = 2.78, p = .005; 3FH-P: β = 120 ms,

t8 = 3.01, p = .008; 3FH-N: β = 107 ms, t6 = 3.07, p = .011;

7CM-G: p > .05; 7CM-P: β = 58 ms, t4 = 2.28, p = .042). (The RT

results for the 7-T Color/Motion version—one of which is the null

result—are given less weight in consideration of the dynamic stimuli

that require more time to recognize via perceptual decision

making.)

2.4 | Neural substrates of the RL framework

Having demonstrated the efficacy of the GRL model and its fitted param-

eters with respect to behavior, a (computational) model-based analysis

followed suit for the neuroimaging data (O'Doherty et al., 2007). For

each participant and their experienced sequence of events, this modeling

generated explicit quantitative predictions for internal decision variables

(Figures 7 and S5). The tripartite neural model was characterized by

(1) learning signals as the generalized RPEs from the GRL model, (2) value

signals from the GRL model, and (3) decision-making signals as approxi-

mated by RT. Along with the hippocampus, the hypothesis space was

constrained by focal regions of interest (ROIs) based on established

F IGURE 8 Neural substrates of the RL framework: 3-T Face/House version. (a) At 3 T, reward-prediction error (RPE) signals from the GRL
model were significant at the set level (SVC pFWE < 0.05) and identified throughout the striatum (p < .005), including the nucleus accumbens, the
dorsal caudate nucleus, and the dorsal putamen (SVC pFWE < 0.05). (b) Value signals from the GRL model were also significant at the set level (SVC
pFWE < 0.05) and identified in ventromedial prefrontal cortex (vmPFC) and the nucleus accumbens (p < .005, SVC pFWE < 0.05). (c) As a proxy for
decision-making signals, reaction time (RT) was associated with greater activity in medial frontal cortex (MFC) (p < .005, SVC pFWE < 0.05). “L”,
“R”, “P”, and “A” orient the left, right, posterior, and anterior directions, respectively. This figure is related to Tables S16 and S18.
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precedents for the precise neural correlates of the RPE (Colas

et al., 2017), subjective value (Bartra et al., 2013; Clithero &

Rangel, 2014), and RT (Yarkoni et al., 2009). To further assess these neu-

rophysiological signals in relation to learning performance evident in

behavior, the participant groups were analyzed both collectively and sep-

arately for juxtaposition.

Reaction time served as a model-independent proxy for neural

decision-making signals (Cisek, 2012; Cisek & Kalaska, 2010; Gold &

Shadlen, 2007) that, with integration of sequential sampling, are char-

acteristically ramping, bounded, and nonlinear (Colas, 2017; Usher &

McClelland, 2001; Wang, 2002; Wong & Wang, 2006). Admittedly,

limited temporal resolution translates to a risk of false positives at the

level of interpretation when attempting to isolate decision signals

among myriad other signals in the brain. Yet, although a measure of

“time on task” is potentially relatable to constructs such as attention,

arousal, difficulty, effort, engagement, or control, a longer RT essen-

tially corresponds to greater cumulative neural activity for a dynamical

decision-making process that is integrated across time (Carp

et al., 2010; Colas, 2017; Grinband et al., 2011; Hare et al., 2011;

Shenhav et al., 2014; Weissman & Carp, 2013; Yarkoni et al., 2009).

Trial-by-trial RT is a more direct proxy for decision signals than

a model-derived metric for normative difficulty such as the

value difference—whether represented as the absolute difference

jQ(s,a1)�Q(s,a2)j (unsigned) or as chosen value minus nonchosen value

Q(s,a)�Q(s,a0) (signed) (Colas, 2017).

For the 3-T Face/House images to first validate and expand the

framework that the GRL model builds upon, analyses of the three

key signals focused on the Good-learner group in consideration of

their more robust task-relevant neural activity (Colas et al., 2017;

Schönberg et al., 2007) (Figure 8, Tables S16 and S18; see S18 for

summary). That is, learning signals in the brain are clearest among

those who consistently learn well as reflected in their behavior. Sets

of ROIs were specified a priori for mesostriatal RPE signals (7 ROIs)

and corticostriatal value signals (4 ROIs). The networks identified as

encoding RPE or value signals were both significant at the set level

for these ROIs (SVC pFWE < .05). RPE signals from the GRL model

were identified throughout the striatum (p < .005), including the

nucleus accumbens, the dorsal caudate nucleus, and the dorsal puta-

men (SVC pFWE < .05) (Figure 8a). Regarding the dopaminergic mid-

brain, RPE signals were also observed in the substantia nigra

(SN) (p < .005). Value signals from the GRL model were identified in

vmPFC, the nucleus accumbens, and posterior cingulate cortex

(PCC) (p < .005, SVC pFWE < 0.05) (Figure 8b). In keeping with the

decoupling of RPE and value signals in this paradigm, there were no

common clusters in the striatum when testing for intersection of

RPE and value networks (p > .005). Moreover, reaction time was

associated with greater activity in medial frontal cortex (MFC) (p <

.005, SVC pFWE < 0.05) (Figure 8c).

The next portion of the fMRI analysis boasted greater spatial pre-

cision with high-resolution imaging for the 7-T Color/Motion data

(Figures 9 and S6, Tables S17 and S18). The networks identified as

encoding RPE or value signals were again both significant at the set

level (SVC pFWE < 0.05). RPE signals from the GRL model were local-

ized within the SN and throughout the striatum (p < .005), including

the nucleus accumbens (SVC pFWE < 0.05) (Figures 9a and S6). Value

signals from the GRL model were likewise identified in vmPFC and

the nucleus accumbens (p < .005, SVC pFWE < 0.05) (Figure 9b). Stria-

tal RPE and value signals did not overlap here either (p > .005). For

F IGURE 9 Neural substrates of the RL framework: 7-T Color/Motion version. (a) At 7 T, RPE signals from the GRL model were again
significant at the set level (SVC pFWE < 0.05) and identified throughout the striatum (p < .005), including the nucleus accumbens (SVC pFWE <
0.05). (b) Value signals from the GRL model were again significant at the set level (SVC pFWE < 0.05) and identified in vmPFC and the nucleus
accumbens (p < .005, SVC pFWE < 0.05). (c) RT was again associated with greater activity in MFC (p < .005, SVC pFWE < 0.05). “L”, “R”, “P”, and
“A” orient the left, right, posterior, and anterior directions, respectively. This figure is related to Figure S6 and Tables S17 and S18.
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yet another replication, RT was again associated with greater activity

in MFC (p < .005, SVC pFWE < 0.05) (Figure 9c).

2.5 | Neural substrates of the GRL model

Having elaborated on the RL framework within this paradigm, the sec-

ond half of the neuroimaging analyses aimed to test additional predic-

tions specific to the GRL model and as such entirely beyond the scope

of basic RL. More precisely, interactions were tested for between RPE

signals and either state generalization (i.e., �gS/τ) or action generaliza-

tion (i.e., �gA/τ); such effects would be concordant with the hypothe-

sis that there are relayed RPE signals mediating generalized updates

of value representations that ultimately must interface with represen-

tations of states and actions such as in visual cortex and motor cortex,

respectively (Lim et al., 2013; Magrabi et al., 2021; Philiastides

et al., 2010). The topology of these representations and the relations

between them is hypothesized to be encoded by a cognitive map

maintained in the hippocampus, which would reflect downstream

effects of generalized RPE signals from mesostriatal circuits without

necessarily computing the RPE per se (cf. Ballard et al., 2019; Baram

et al., 2021; Wimmer et al., 2012). These interaction effects were

modeled with GRL parameters fitted at the level of individual subjects,

including the temperature τ to factor in overall noise that diminishes

the precision of the point estimates generated with the model's

dynamics. Notably, the parameter for state generalization suggested

greater emphasis given its greater intersubject variability and a more

direct link to successful learning, but the less variable factor of action

generalization was also investigated.

The fundamental conceptual dissociation between states and

actions (Averbeck & O'Doherty, 2022; Colas et al., 2017; O'Doherty

et al., 2004) suggested an a-priori hypothesis that some mesostriatal

and hippocampal circuitry would be uniquely implicated in either form

of generalization. Accordingly, different categories of stimuli and dif-

ferent actions with different effectors evoked distinct neural repre-

sentations that were amenable to fMRI by design—for example,

engaging the FFA or the PPA with faces or houses, respectively. With

implications for separable circuits for generalization, state and action

representations were thus robust, specific, and discretized.

First with the 3-T Face/House images, this investigation of the

GRL model warranted a wider sample of all learners for the sake of

incorporating variability in generalization strategies or lack thereof

(Figure 10a, Tables S19, S21, and S22; see S21 and S22 for summary).

Crucially, those participants who did learn well were not necessarily

taking advantage of the opportunities to generalize. With regard to the

primary factor of state generalization, the network implicated in the

interaction effect between RPE signals and the strength of generaliza-

tion was significant at the set level for the same mesostriatal ROIs from

the earlier RPE analysis (SVC pFWE < 0.05). These state-generalization

interactions were aligned with the focal coordinate-based ROI in the

SN and also found in the striatum (p < .005), including the posterior

putamen in the vicinity of the dorsal caudate nucleus (SVC pFWE < 0.05)

(cf. Doll, Duncan, et al., 2015; Horga et al., 2015; Lee et al., 2014;

O'Doherty et al., 2003; Tricomi et al., 2009; Wunderlich et al., 2012)

F IGURE 10 Neural substrates of the GRL model. (a) At 3 T, interaction effects between RPE signals and state generalization were significant
at the set level (SVC pFWE < 0.05) and identified in both the substantia nigra and the striatum (p < .005), including the posterior putamen in the
vicinity of the dorsal caudate nucleus (SVC pFWE < 0.05). In addition to mesostriatal circuits, generalization effects also modulated activity in the
hippocampus (p < .005, SVC pFWE < 0.05). (b) At 7 T, effects of state generalization were marginally significant at the set level (SVC pFWE < 0.10)
and identified throughout the striatum (p < .005), including the nucleus accumbens (SVC pFWE < 0.05) and (with marginal significance) the anterior
caudate nucleus (SVC pFWE < 0.10). “L”, “R”, “P”, and “A” orient the left, right, posterior, and anterior directions, respectively. This figure is related
to Figure S7 and Tables S19–S22.
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(Figure 10a). These generalization effects applied to the hippocampus

as well (p < .005, SVC pFWE < 0.05), confirming our hypothesis that this

region is involved in relaying generalized learning signals to linked value

representations.

For the 7-T Color/Motion version (Figures 10b and S7, Tables

S20–S22), effects of state generalization were most robustly identified in

the nucleus accumbens (p < .005, SVC pFWE < 0.05) (Figure 10b).

Although the hippocampal result for state generalization did not extend

across all learners in this case (p > .005), signals in the hippocampus

among Good learners did yield generalization effects (p < .005, SVC pFWE

< 0.05). The results for generalization additionally comprised uncorrected

effects elsewhere within the anatomical ROIs (SVC pFWE < 0.10), and

these high-resolution findings are explored thoroughly in consideration

of their novelty. Regarding state generalization, the loci of interaction

effects included the anterior caudate nucleus (SVC pFWE < 0.10) as well

as both the SN and the ventral tegmental area (VTA) (p < .005)

(Figure S7a). Effects of action generalization were found elsewhere in

both the SN and the VTA (p < .005) (Figure S7b).

A control analysis determined that these findings were specific to

generalization as opposed to nonspecific successful learning. Interac-

tion effects between RPE signals and the learning rate (i.e., α/τ)

(Tables S23–S25; see S25 for summary) were examined to check for

overlap with generalization effects, which would suggest a confound

if present. There was in fact no such overlap for either the 3-T Face/

House or 7-T Color/Motion results (p > .005). Instead, both data sets

confirmed the dorsal caudate nucleus as a site where RPE signals are

more directly related to learning performance (p < .005), replicating

previous findings (Colas et al., 2017; Schönberg et al., 2007).

3 | DISCUSSION

Supported by multisite, multifield fMRI in conjunction with computa-

tional modeling of both behavioral and neural dynamics, the findings

herein have confirmed the merits of the GRL model as representative

of a class of RL models obscuring the boundary between model-free

caching and model-based inference. This conceptual ambiguity sug-

gests a false dichotomy in the notion of a unidimensional spectrum

between these antipodes with ostensible mutual exclusivity; putative

roles for dopamine are also complicated by such ambiguity

(Botvinick, 2012; Bromberg-Martin et al., 2010; Collins &

Cockburn, 2020; da Silva & Hare, 2020; Delgado & Dickerson, 2012;

Doll et al., 2012; Eckstein & Collins, 2020; Gardner et al., 2018;

Langdon et al., 2018; Nakahara, 2014; Nakahara & Hikosaka, 2012;

O'Doherty, 2012; Sadacca et al., 2016; Schultz, 2013). For a struc-

tured but challenging learning task that lends itself to implicit generali-

zation with a cognitive map, augmenting the classical RL framework

(Sutton & Barto, 1998) with associative and discriminative forms of

state and action generalization improved the exposition of human per-

formance at the rigorous individual level—here including idiosyncra-

sies in generalization. Rather than the unambiguously model-based

approaches of the SPE or the HMM that proved less effective here,

the intuition of the GRL model parsimoniously remains within the

established bounds of RL and its fundamental RPE signal that is inte-

gral to computational analysis of neurophysiology in mesostriatal and

corticostriatal circuits. Moreover, this work marks a juxtapositional

demonstration of the potential of high-field fMRI for these particular

signals and neural systems—especially with respect to the dopaminer-

gic midbrain (cf. Colizoli et al., 2021; de Hollander et al., 2017; Fonta-

nesi, Gluth, Rieskamp, et al., 2019).

Our tripartite neural model—representing interrelated value, deci-

sion, and learning signals in parallel—stands among the novel technical

and computational contributions made here. Guided by precedents

for classic RL (Colas et al., 2017), dynamic RPE signals derived from

the GRL model were localized within the dopaminergic midbrain and

both ventral and dorsal areas of the striatum. Dissociable value signals

from the GRL model could be identified simultaneously in other sub-

regions of the ventral striatum as well as in vmPFC and PCC, amount-

ing to all of the areas hypothesized with meta-analytic priors (Bartra

et al., 2013; Clithero & Rangel, 2014). Neural correlates of RT were

also controlled for and validated in MFC (Yarkoni et al., 2009) as a

proxy for decision-making signals. Furthermore, effects of state and

action generalization per se were evident in modulation of RPE signal-

ing in the basal ganglia that could only be accounted for with the GRL

model as opposed to basic RL. These interaction effects reflect relay-

ing of RPE signals to representations of other states and actions

rather than merely that of the state-action pair experienced at a given

moment. The hippocampus was also identified as a hub for mediating

this generalization across representations that here would correspond

to motor and premotor cortex or visual cortex, including the FFA, the

PPA, V4, and MT.

Generalization of knowledge is a ubiquitous cognitive phenome-

non that is essential for processing the plethora of different stimuli

that organisms encounter (Bush & Mosteller, 1951b; Ghirlanda &

Enquist, 2003; Harlow, 1949; Shepard, 1957, 1987; Tenenbaum &

Griffiths, 2001; Tversky, 1977), but the broad concept of generaliza-

tion can manifest itself in myriad different ways depending on the sit-

uation. For example, whereas the present paradigm contrasts

associative generalization against discriminative generalization among

temporally interleaved states and actions that are explored in parallel,

alternative paradigms have instead focused on more straightforward

associative generalization from familiar or proximal stimuli to novel or

distal stimuli of varying apparent similarity (Collins & Frank, 2013;

Doll, Duncan, et al., 2015; Doll, Shohamy, & Daw, 2015;

Gershman, 2017; Gershman & Niv, 2015; Kahnt et al., 2012; Kahnt &

Tobler, 2016; Karagoz et al., 2022; Kool et al., 2016, 2017, 2018;

Lesaint et al., 2014; Norbury et al., 2018; Stoji�c et al., 2020; Tomov

et al., 2018; van Dam & Ernst, 2015). The discriminative generalization

of GRL is distinguished from such feature-based generalization in the

arbitrary mapping of abstract states, thus going beyond simply gener-

alizing across common perceptual features of cues or linked outcomes

without state discrimination. Here, the state category is not processed

as a unitary representation but rather as a set of representations with

a cognitive map (whether implicit or explicit) that discriminates and

determines relations within the set as defined by a hierarchical metas-

tate. Another distinction can be drawn between generalized
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information and counterfactual information that is made explicit with

directly observed feedback rather than inferred from assumptions of

interdependence, producing contextual effects such as fictive regret

or framing (Camille et al., 2004; Coricelli et al., 2005; D'Ardenne

et al., 2013; Li & Daw, 2011; Lohrenz et al., 2007; Montague

et al., 2006; Palminteri et al., 2015; Palminteri, Lefebvre, et al., 2017;

Pischedda et al., 2020). For this and other reasons (see below), the

present label of “generalized RL” is more precise than “counterfactual
RL”, for example. The GRL model aims toward broader theoretical

advancement for a still-nascent perspective on quasi-model-based

extensions of model-free RL, and two dichotomies are formalized in

doing so: state versus action generalization and associative versus dis-

criminative generalization, where in this case the latter translates to

suboptimal overgeneralization (or conflation) versus optimal inference

or pseudoinference.

Not only these dichotomies but also the particular delta-learning

rules of the two-dimensional GRL model distinguish it from previous

modifications of model-free RL. Often arrived at without the due dili-

gence of model comparison, some modifications have simply yoked

value representations—for example, Qt(st,a1) ≡ �Qt(st,a2)—or other-

wise incorporated only one type of generalization (Aquino

et al., 2020; Balcarras & Womelsdorf, 2016; Ballard et al., 2019;

Baram et al., 2021; Charpentier et al., 2020; Collette et al., 2017;

Daw & Shohamy, 2008; Gläscher et al., 2009; Hampton et al., 2007;

Hauser et al., 2014, 2015; Lesage & Verguts, 2021; Liu et al., 2021;

Matsumoto et al., 2007; Mattar & Daw, 2018; Reiter et al., 2017;

Vinckier et al., 2016; Wimmer et al., 2012; Zaki et al., 2016). More-

over, such models are often formulated without parameterization

(e.g., gA = �1) or with a second, counterfactual RPE inverting the only

outcome (i.e., r0 = �r or r0 = 0 for r > 0) in parallel—and, by extension,

multiple RPEs as required—as opposed to the current algorithmic

scheme of GRL with weighted duplications of the original RPE signal

to be relayed to parallel representations of estimated values. The

assumption of an inverted counterfactual outcome is not universally

applicable and can also create scaling problems for value signals,

including disproportionate RPEs as well as even illogical probability

estimates (P < 0 or P > 1) or negative value estimates despite strictly

positive outcomes (or vice versa). This issue is especially problematic for

modeling that is less abstract in its application to an actual neural system.

Another issue is counterfactual learning via separate hypothetical RPE

signals each subtracting their respective reward predictions, which is less

tractable for modeling than the present implementation based on a

parameterized heuristic with relayed duplication of a single RPE signal:

Relaying—or perhaps even multiplexing (cf. Nakahara, 2014; Nakahara &

Hikosaka, 2012)—is less computationally demanding and more parsimo-

nious. (A multiplexed signal in this context would additionally specify

how the RPE is to be generalized.) It is less plausible that any number of

hypothetical RPE signals could be distinguished in the brain in parallel

with assumptions of unique RPE signals for each of the states or actions

updated per single action performed—and particularly implausible for an

action space that is more continuous rather than discrete. The GRL

model therefore eschews a true “counterfactual RPE” in favor of a “gen-
eralized RPE” (but still can be regarded as a version of counterfactual

learning). This formulation is readily scaled up for environments with

arbitrary complexity in the numbers of state-action pairs or category-

state-action triplets.

This efficient approach is analogous to the “TD(λ)” eligibility trace

(Dayan, 1992; Dayan & Sejnowski, 1994; Klopf, 1972; Sutton, 1988;

Sutton & Barto, 1981, 1998) that forgoes separate RPEs for anteced-

ent events in favor of more conservatively duplicating, reweighting,

and relaying the current RPE back in time with decay along the mem-

ory trace (Figure 2). This perspective of TD(λ) as temporal generaliza-

tion could consider it as a particular form of associative generalization

across linear time, which evokes the temporal spread of the law of

effect (Thorndike, 1911, 1933). In addition to the dimension of time,

the RPE in this “GRL(λ)” model is generalized across dimensions in the

abstract space of state and action representations with nonlinear tem-

poral mapping (cf. Jocham et al., 2016). This topological space could

be encoded in nonspatial cognitive maps analogous to the location-

based spatial maps (Moser et al., 2008; O'Keefe & Nadel, 1978) repre-

sented in the medial temporal lobe, including the hippocampus and

entorhinal cortex (Ballard et al., 2019; Baram et al., 2021; Behrens

et al., 2018; Bernardi et al., 2020; Cazé et al., 2018; Daw &

Shohamy, 2008; Gerraty et al., 2014; Liu et al., 2019, 2021; Mattar &

Daw, 2018; Momennejad et al., 2018; Park et al., 2020; Wimmer

et al., 2012; Wimmer & Shohamy, 2012). Such abstract cognitive map-

ping (Tolman, 1948) follows from the intrinsic topology of mental repre-

sentations as postulated in field theory (Lewin, 1935, 1936). Simulated

replay of experienced (or even hypothetical) events by the hippocampus

is a potential mechanism for recapitulating task-relevant information

(Cazé et al., 2018; Eldar et al., 2020; Gershman et al., 2014; Kurth-Nelson

et al., 2016; Liu et al., 2019, 2021; Mattar & Daw, 2018; Momennejad

et al., 2018; Schuck & Niv, 2019; Wimmer et al., 2020), which for the

present purposes could contribute to the associations underpinning gen-

eralization. This hippocampal replay is reminiscent of the model-free but

quasi-model-based “Dyna” architecture from machine learning that

approximates model-based dynamic programming as indirect RL with

quasi-inferential iterations of simulated experiences (Sutton,

1990, 1991).

The algorithm described here follows a rising trend toward

model-based alternatives to the model-free RL framework, including

hybrid models that integrate multiple learning systems (Daw

et al., 2005; Doll et al., 2012; O'Doherty et al., 2017, 2021). With the

simplest case of two systems receiving the most examination, the the-

oretical dichotomy of model-free and model-based processes is analo-

gous to an extent with that between habitual (Pavlov, 1927;

Thorndike, 1898, 1911) and goal-directed (Tolman, 1948) learning.

The most commonly studied domain of model-based inference has

typically been characterized with a modular system engaged in explicit

forward planning of future behaviors in parallel with the caching of

model-free associations (Charpentier et al., 2020; Daw et al., 2005,

2011; Gläscher et al., 2010; Lee et al., 2014). For example, dynamic

programming can achieve optimal goal-directed behavior in a multi-

step Markov decision process (MDP) with the learning of transition

functions for states and state-action pairs (Bellman, 1957; Sutton &

Barto, 1998), which can be arrived at with computation of another

COLAS ET AL. 4767



type of SPE analogous to the RPE (Gläscher et al., 2010; Lee

et al., 2014). However, the broader model-based umbrella can also

encompass cognitive maps and certain mechanisms for generalization

in learning, including the HMM (Ghahramani, 2001; Hampton

et al., 2006; Prévost et al., 2013) and other Bayesian processes

(Tenenbaum & Griffiths, 2001) as well as the novel formulation of the

SPE developed here (with an “MPE” for metastates). Such generaliza-

tion represents a potential domain of overlap between model-based

and model-free processes (Bromberg-Martin et al., 2010; Doll

et al., 2012; Doll, Duncan, et al., 2015; Doll, Shohamy, & Daw, 2015;

Hampton et al., 2006, 2007; Karagoz et al., 2022; Kool et al., 2016,

2017, 2018; Liu et al., 2021; Mattar & Daw, 2018; O'Doherty, 2012;

Sadacca et al., 2016; Wimmer et al., 2012; Wunderlich et al., 2011).

As GRL features an implicit model for generalization while priori-

tizing parsimony and computational efficiency, this scheme—by way

of analogy to Dyna—is not neatly encapsulated by either extreme of

the model-free/model-based dichotomy. GRL thus also joins the ranks

of the successor-representation algorithms that operate with analo-

gous ambiguity in shortcut solutions based on a compressed transition

function, which would be more applicable to a learning task with mul-

tiple steps per episode (or trial) (Akam et al., 2015; Dayan, 1993;

Momennejad et al., 2017; Russek et al., 2017, 2021). Likewise,

whereas GRL frugally accounts for generalization across states and

actions within a task, by extension, heuristic algorithms based on

reward-predictive state abstractions have been proposed for generali-

zation across tasks, which can be represented by unique transition

functions (Franklin & Frank, 2018; Lehnert et al., 2020; Li et al., 2006).

As the GRL model forgoes supplanting model-free RL altogether, so

too does it forgo complementing a model-free system with a model-

based system operating in parallel (cf. Doll, Duncan, et al., 2015; Doll,

Shohamy, & Daw, 2015; Karagoz et al., 2022; Kool et al., 2016, 2017,

2018)—instead opting for quasi-model-based augmentation of model-

free RL that is still effectively characterized by a single system. From the

perspective of control theory, an HMM (Ghahramani, 2001) can provide

an optimal Bayesian solution to this generalization problem with a fully

model-based approach to structural inference (Hampton et al., 2006;

Prévost et al., 2013), but this avenue entails assumptions of more com-

plex computations as well as ambiguity concerning the physical imple-

mentation of the implied neural mechanisms (cf. Gläscher et al., 2009;

Hampton et al., 2007); the latter can be an obstacle to achieving compre-

hensive triangulation across levels of analysis (Marr, 1982). Although

engagement of multiple systems for a model-free and model-based

hybrid remains within the realm of possibility, going down this route of

additional moving parts with two systems—let alone in excess of two—is

even more problematic in this regard (cf. Daw et al., 2011). Presently,

GRL outperformed dual-systems alternatives despite whatever viability

they could have. In addition to the virtue of Occam's razor on the theo-

retical side of parsimonious modeling (Myung, 2000), there are practical

advantages for fitting and interpretability with the simpler RL-based

approach in settings where fully model-based learning is less essential or

even counterproductive for a dynamic environment. That is, a primarily

model-free strategy is often sufficient for at least near-optimal perfor-

mance, and humans (like other animals) often fail to achieve optimal per-

formance anyway, as was evident here and in another study (Aquino

et al., 2020). These benefits extend to modeling of not only behavior but

also neurophysiology, where a parsimonious model grounded in well-

defined concepts can provide a stable foundation with utility such as for

interpreting performance of varied tasks or for identifying nodes in rele-

vant networks (Bassett et al., 2018; Gerraty et al., 2018; Mattar

et al., 2018). In this case, subjective value and the RPE naturally fill roles

as part of a trichotomy of value, decision, and learning signals in the brain

that collectively function as the interface between sensory input and

motor output.

This modeling sets the stage for further inquiry concerning how arbi-

tration among strategies for generalization might be implemented; here

lies an analogy with reliability-based arbitration among modular model-

free and model-based systems to integrate information across a “mixture

of experts” (Charpentier et al., 2020; Daw et al., 2005; Lee et al., 2014;

O'Doherty et al., 2017; O'Doherty et al., 2021) as in machine learning

(Hamrick et al., 2017; Jacobs et al., 1991; Masoudnia &

Ebrahimpour, 2014; Yuksel et al., 2012). Instead of tracking absolute pre-

diction errors or entropy in updates of cached value functions or mod-

eled transition functions, the “experts” for generalization would be

concerned with tracking regularities or irregularities across inputs for the

structural models embedded in such functions (as well as tracking task

demands warranting effort) (cf. Hampton et al., 2006; Karagoz

et al., 2022; Kool et al., 2017, 2018; Lehnert et al., 2020; Liu et al., 2021;

Mattar & Daw, 2018; Prévost et al., 2013; Schulz et al., 2018, 2020; Wu

et al., 2019; Wu, Schulz, Garvert, et al., 2018; Wu, Schulz, Speekenbrink,

et al., 2018; Wunderlich et al., 2011). However, modeling such arbitrated

metalearning for the present experiment is precluded by certain practical

limitations—in particular, the issue of both forms of discriminative gener-

alization always being optimal strategies and hence not being modulated

with sufficient variability. The GRL model in its current form does not

distinguish between prior assumptions about generalizable structure and

learned information about structure acquired through serial observations.

Feasibly translating the static generalization effects of the current GRL

model to dynamical generalization processes will require an experimental

paradigm with dynamic structure more directly catered to manipulating

cognitive models for generalization—for example, including alternation

across correlation, anticorrelation, and independence. Nevertheless, the

presently static generalization parameters suffice as an initial proof of

concept for such extensions of RL and in particular both associative and

discriminative generalization across both states and actions.

This endeavor has justified the GRL model as a viable and practical

tool in a growing model space that need not be limited to purely model-

free learning and purely model-based learning. These results localize a

modular network of brain regions that orchestrate evaluation and value-

based learning and decision making in a setting characterized by general-

izable patterns across both states and actions. By identifying the nodes

of a network mediating reinforcement learning and concomitant generali-

zation to link representations of stimuli or motor responses within a cog-

nitive map, this (computational) model-based mapping lays the

groundwork for further investigation of network dynamics (Bassett

et al., 2018; Gerraty et al., 2018; Mattar et al., 2018) with the potential

to yield yet more comprehensive understanding of the causal chain of

information flow between sensation and action in a reward-based envi-

ronment that is noisy and dynamic but also predictably structured.
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4 | METHODS

4.1 | Participants

Forty-seven (male:female = 27:20; age: M = 25.5 y, SD = 4.9 y) and

twenty-two (male:female = 12:10; age: M = 28.0 y, SD = 6.0 y)

human participants volunteered for the 3-T and 7-T versions of the

study, respectively. This collaborative multisite study was conducted

at six separate facilities for magnetic-resonance imaging (MRI), such

that participants were recruited from the respective universities and

local communities of each laboratory. All participants were screened

for MRI contraindications; all were right-handed and generally healthy

adults between 18 and 43 years old. Participants in the 7-T Color/

Motion version were also screened for color blindness. Participants

provided informed written consent according to protocols approved

by the respective Institutional Review Boards of each scanning site—

namely, the California Institute of Technology; Columbia University;

New York University; the University of Pennsylvania; the University

of California, Santa Barbara; and the University of Southern California.

Upon completing the study, participants were paid $10 for minimizing

head movement plus the amount of money earned within the task.

4.2 | Experimental procedures: 3-T Face/House
version

Shown in Figure 1 is a schematic of the hierarchical reversal-learning

task that includes outcome probabilities for every combination of

state and action within one of 12 blocks defined by said probabilities.

(A complete session of 12 blocks is detailed in Figure 7.) At the onset

of each episodic (i.e., separate) trial, one of four predictive cues was

presented with equal probability, but trials were also ordered in a

series of randomized and counterbalanced quartets that each included

four cues representing separate states. These quartets were con-

strained such that a cue never appeared in consecutive trials. The

onset of a trial was marked by an image of a face or a house appearing

against a white background subtending 8.1� � 8.1� of visual angle at

the center of the display—first flanked by two white arrows to the left

and right each subtending 1.0� � 8.1� and centered at an eccentricity

of 4.9�. The participant was allotted 2 s to respond to this two-armed

bandit by pressing one of two buttons with the corresponding index

finger of either the left or right hand. To confirm the response while

minimizing eye movement, the arrow corresponding to the nonchosen

action was removed from the display between the time of response

and stimulus offset. A fixed interstimulus interval (ISI) of 3 s separated

the cue and the outcome. In consideration of the sensitivity of a TD

learning algorithm to the timing of outcomes (McClure et al., 2003;

O'Doherty et al., 2003; O'Doherty et al., 2004; Sutton, 1988;

Sutton & Barto, 1998), jitter—otherwise typical of rapid event-related

designs in functional MRI (fMRI)—was forgone with the ISI in favor of

a design that induced stable prediction-error signals.

The transition probabilities for the action given the state deter-

mined whether the outcome following the ISI was a rewarded state or

a nonrewarded state. Delivery of an actual reward of $0.30 was

symbolized by a black dollar sign against a white background again

subtending 8.1� � 8.1� for 1 s, whereas a scrambled dollar sign signi-

fied an absence of monetary reward for that trial. This scrambled

image was generated by randomly rearranging segments of the dollar

sign as a regular 8 � 15 grid. Only a white fixation cross subtending

0.7� � 0.7� of visual angle was presented at the center of a black

background throughout the ISI and the intertrial interval (ITI). This fix-

ation cross also remained in the foreground of the display with a black

outline during stimulus presentation. The duration of the jittered ITI

was drawn without replacement within a run from a discrete uniform

distribution ranging from 3 to 7 s in increments of 41.7 ms. If the par-

ticipant failed to respond in time, the nonrewarded outcome appeared

immediately as the fixation cross turned red for 1 s; the ISI would then

be merged with the subsequent ITI.

Representing each active state, four new cues were assigned ran-

domly every run with two pairs of images each respectively drawn

from two state categories. In the 3-T version of the experiment, these

categories were faces and houses, which share common low-level

visual features as a control. Face stimuli were extracted from the Chi-

cago Face Database (Ma et al., 2015), which also includes subjective

ratings of the stimuli along various dimensions. A set of eight face

images were selected for depicting an adult male who was consis-

tently classified in the “White” ethnic group (M = 97.5%, SD = 2.0%)

and rated as neither especially attractive nor especially unattractive

(Likert scale [1, 7]: M = 3.55, SD = 0.23). All portraits were intended

to display a neutral facial expression. These selection criteria mini-

mized the potential for hedonic evaluation of the arbitrary stimuli

themselves to interfere with experimental manipulations of value-

based associations based on rewards in the task (Chien et al., 2016).

In keeping with these controls, all images were converted to grayscale.

House stimuli were extracted from the DalHouses database (Filliter

et al., 2016), which included subjective ratings of facial pareidolia and

other attributes. A set of eight house images were selected for being

rated as minimally facelike (Likert scale [1, 7]: M = 2.22, SD = 0.10)

and being distinctive relative to the rest of the set. As the human brain

is endowed with innate expertise for recognizing faces but not houses

(Kanwisher, 2000), the face stimuli were selected to be homogenous

while the house stimuli were instead selected to maximize the hetero-

geneity of the set.

Rather than sheer randomness, which especially limits interpreta-

tion of individual differences, meticulously controlled counterbalan-

cing was crucial for eliminating confounds within and across individual

sessions. For each participant, different conditions were randomized

and counterbalanced to evenly distribute rewards for categories,

states, and actions in a factorial design defining 12 blocks that

included hierarchical reversals of instrumental learning. Four scanning

runs including three blocks each and 32 trials per block made for

384 trials in total. (Prior to the actual experiment, the participant com-

pleted 10-trial practice sessions with separate stimuli both outside

and inside the scanner.)

Nearly attaining a 3 � 2 � 4 design for the 12 blocks, the 3 � 2

and 3 � 4 crosses were fully counterbalanced while the 2 � 4 cross

could only be partially balanced given the number of blocks. By virtue

of this counterbalancing, choosing the same action for every single
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trial of the session was guaranteed to yield exactly half of the avail-

able rewards. Likewise, each state category preceded exactly half of

the available rewards within each run. Moreover, with reward proba-

bilities in units of sixteenths, each run included exactly or nearly one

quarter of the rewards for the entire session. Yet the reward probabil-

ities for state-action pairs fluctuated from block to block so as to facil-

itate variability in the dynamics of neural signals of interest. Across

the session, what remained constant amid these fluctuations was the

anticorrelational pattern between actions within a state and between

states within a category. The categories were independent of each

other without any such structured pattern between them.

The first condition (“3” in the 3 � 2 � 4 design), having three

possibilities also counterbalanced within a run, determined whether

the face category had greater, lesser, or equivalent value relative to

the house category. For the unequal conditions, the category with

greater value included reward probabilities of 62.5% and 100%,

whereas the category with lesser value included reward probabilities

of only 43.75%. For the equal condition, both categories included

reward probabilities of 43.75% and 81.25%. These exact probabilities

were all divisible by sixteenths and so were evenly split between two

32-trial blocks with 8 trials per state. (For the odd probabilities of

43.75% and 81.25%, the more-rewarded halves of the distributions

were evenly distributed within a condition sampled across runs: The

net probability of 43.75% (7/16) was the average of 37.5% (6/16) and

50% (8/16), and net 81.25% (13/16) was the average of 75% (12/16)

and 87.5% (14/16).) A nonzero reward probability was only assigned

to one action per state, always leaving an alternative action with zero

probability of reward. This complementarity between actions within a

state was designed to reveal action generalization.

The second condition (“2”), having two possibilities partially coun-

terbalanced with a 2:1 ratio within a run, concerned which state (arbi-

trarily “A” or “B”) had the greater value within a category if the

category included two different reward probabilities for a given block.

The third condition (“4”), having four possibilities, concerned the

mapping of a category's reward probabilities to actions, such that the

two states (“A” and “B”) within a category always symmetrically pro-

vided rewards for opposite actions. This complementarity between

states within a category was designed to reveal state generalization.

The possibilities for this condition could be summarized across all four

active states like so: “LR&LR”, “LR&RL”, “RL&LR”, or “RL&RL”, where

the example of “LR&RL” can be expanded as “AL/BR & AR/BL” for

the binary hierarchical metastates of the face and house categories,

respectively. That is, “LR&RL” (or “AL/BR & AR/BL”) would mean that

the left action is rewarded for face A and house B while the right

action is rewarded for face B and house A.

Between blocks, the design was constrained for a single

remapping—that is, reversals of rewarded actions within only one

category—to mark the onset of a new block within a run. The two cat-

egories were remapped in turn in a random order counterbalanced

across runs, such that each category had one between-block remap-

ping per run. Although the participant was informed that the reward

probabilities could change throughout the session, no explicit indica-

tions were provided as to how or when such changes might occur.

Stimuli were projected onto a screen that was viewed with an

angled mirror in the MRI scanner. The viewing distance was 100 cm in

the case of the Caltech sample, which served as the basis for the

approximate stimulus sizes reported here, but there was slight vari-

ability in stimulus sizes across laboratories. The display was presented

with a resolution of 1024 � 768 pixels and a refresh rate of 60 Hz.

The primary stimuli had a resolution of 375 � 375 pixels. The inter-

face was programmed with MATLAB (MathWorks) and the Psycho-

physics Toolbox (Brainard, 1997).

4.3 | Experimental procedures: 7-T Color/Motion
version

Conducted in parallel, the second version of the experiment was

mostly matched to the first but was not entirely identical. Only differ-

ences between versions are emphasized in this section.

This 7-T version substituted dynamic colors and directions of

motion in lieu of faces and houses as state categories. Moreover,

these color and motion stimuli were not replaced every run as with

the 3-T version's faces and houses. Although the two pairs of stimuli

comprising the two categories remained constant across the entire

session, the factorial design of the 3-T version was preserved such

that the reward probabilities for these constant states still rotated as

before. The 7-T version was fully counterbalanced as before, and the

constant cues allowed for even further counterbalancing such that

each cue preceded exactly one quarter of the available rewards in a

session.

The color stimuli were flickering dot arrays that alternated

between two colors for each state. One stimulus alternated six times

between red dot arrays and green arrays at a rate of 6 Hz, and the

other similarly alternated between blue and yellow dots. These color

stimuli were essentially arranged as static frames of the motion cate-

gory's random-dot kinetograms (Newsome & Paré, 1988). Apparent

motion was generated by displacement of the dots in a consistent

direction every frame with 100% motion coherence. The two states in

this category were represented with upward or downward motion,

respectively. The speed of displacement was 2.1� per second.

For both color and motion stimuli, unique dot arrays were ran-

domly generated with every trial. These arrays contained over

100 square dots randomly positioned against a black background. The

array was framed by a gray square subtending 4.1� � 4.1� at the center

of the display—first flanked by two gray arrows each subtending

0.5� � 4.1� and centered at an eccentricity of 2.5�. If the participant

failed to respond in time, the nonrewarded outcome appeared immedi-

ately as the white fixation cross subtending 0.4� � 0.4� turned gray.

4.4 | Data acquisition: 3-T Face/House version

For the first version of the experiment, MRI data were collected with

a common set of protocols across five sites housing 3-tesla Magne-

tom Prisma scanners (Siemens Medical Solutions, Malvern, PA)

4770 COLAS ET AL.



equipped with 2-channel body-transmit and 32-channel head-receive

coils. The first structural volume covered the whole brain and was

acquired to guide subsequent functional imaging with a single-

inversion T1-weighted (T1w) 3-dimensional (3D) magnetization-

prepared rapid gradient-echo (MPRAGE) sequence that had the fol-

lowing parameters: repetition time (TR): 2400 ms, echo time (TE):

2.32 ms, inversion time (TI): 800 ms, RAGE flip angle (FA): 10�, in-

plane GRAPPA acceleration factor (R): 2, voxel: 0.9 mm isotropic, field

of view (FOV): 187 � 230 � 230 mm. A second structural volume

was acquired after the experiment with a T2-weighted (T2w) 3D

SPACE (“sampling perfection with application-optimized contrasts

using different flip-angle evolutions”) sequence that had the following

parameters: TR: 3200 ms, TE: 564 ms, FA: variable, R: 2, voxel:

0.9 mm isotropic, FOV: 187 � 230 � 230 mm.

During the experiment, functional images were acquired from the

whole brain using a blood-oxygen-level-dependent (BOLD) contrast with

a T2*-weighted gradient-echo echo-planar imaging (EPI) sequence

(Center for Magnetic Resonance Research, Department of Radiology,

University of Minnesota) featuring both in-plane GRAPPA (“generalized
autocalibrating partially parallel acquisitions”) (Griswold et al., 2002) and

multiband slice excitation (Feinberg & Setsompop, 2013; Moeller

et al., 2010) and having the following parameters: TR: 1120 ms, TE:

30 ms, FA: 54�, multiband acceleration factor (M): 4, R: 2, voxel: 2.0 mm

isotropic, FOV: 144 � 192 � 192 mm. Off-resonance distortion correc-

tion was based on phase-encoding polarity-reversed spin-echo EPI image

pairs with geometry, acceleration, and EPI echo spacing all matched to

the BOLD fMRI series (TR: 5130 ms, TE: 41.4 ms, FA: 90�, voxel:

2.0 mm isotropic, FOV: 144 � 192 � 192 mm). The session consisted of

four functional runs each having a duration of 17.7 min and each pre-

ceded by field maps.

Peripheral cardiac and respiratory signals were recorded during

scanning by way of scanner-integrated wireless sensors. The pulse

sensor was attached to the ring finger of either the left hand or the

right hand, such that this factor was counterbalanced across subjects.

The pneumatic sensor was secured under a strap to measure external

displacement of the lungs.

4.5 | Data acquisition: 7-T Color/Motion version

For the second version of the experiment, MRI data were collected at a

single site using a 7-tesla Siemens Magnetom Terra scanner equipped

with a single-channel head-transmit volume coil and a 32-channel head-

receive coil. In light of the tradeoff between the signal-to-noise ratio

(SNR) or the contrast-to-noise ratio (CNR) and either spatial or temporal

resolution, high-field neuroimaging allows for a superior SNR and CNR

(De Martino et al., 2018; Dumoulin et al., 2018; Torrisi et al., 2018;

U�gurbil, 2018) that could be relied upon here to achieve higher spatial

resolution. In the interest of maximizing spatial resolution at 7 T, tempo-

ral resolution for the EPI sequence was also compromised somewhat rel-

ative to the 3-T protocol, but simultaneous multislice acquisition still

enabled viable temporal resolution. Enhancing the volumetric resolution

by a factor of 4.6, this approach boasted more precise discernment of

mesencephalic nuclei (Eapen et al., 2011) in particular. Otherwise, the

7-T protocols were matched to the 3-T protocols as closely as possible

to allow for direct comparison.

The session again began with a whole-brain structural volume

acquired using a dual-inversion T1w 3D “MP2RAGE” sequence (Choi

et al., 2019) (TR: 4010 ms, TE: 2.86 ms, TI1: 1050 ms, TI2: 3200 ms, FA1:

6�, FA2: 4�, R: 2, voxel: 0.8 mm isotropic, FOV: 179 � 220 � 220 mm).

The complementary structural volume was acquired after the experiment

with a T2w 3D SPACE sequence (TR: 4270 ms, TE: 315 ms, FA: variable,

R: 3, voxel: 0.7 mm isotropic, FOV: 168 � 224 � 224 mm).

During the experiment, functional images were acquired from the

whole brain using a BOLD contrast with a T2*-weighted gradient-

echo EPI sequence (Center for Magnetic Resonance Research,

Department of Radiology, University of Minnesota) (TR: 1960 ms, TE:

22 ms, FA: 45�, M: 4, R: 2, voxel: 1.2 mm isotropic, FOV:

125 � 192 � 192 mm). Off-resonance distortion correction was

based on phase-encoding polarity-reversed spin-echo EPI image pairs

with geometry, acceleration, and EPI echo spacing all matched to the

BOLD fMRI series (TR: 7680 ms, TE: 30.6 ms, FA: 90�, voxel: 1.2 mm

isotropic, FOV: 125 � 192 � 192 mm). Cardiac and respiratory signals

were again recorded via wireless sensors during scanning.

4.6 | Data preprocessing

Real-valued, signed T1w images generated by the MP2RAGE

sequence at 7 T were first masked with Otsu thresholding

(Otsu, 1979) of auxiliary magnitude data generated by the same

sequence, thereby eliminating background noise in surrounding air.

This initial step ensured compatibility with subsequent structural pre-

processing as part of a common pipeline applied to both 3-T and 7-T

images.

Neuroimaging data were primarily preprocessed using fMRIPrep

version 1.2.5 (Esteban et al., 2019). This software package includes ele-

ments from the FMRIB Software Library (FSL) v5.0.9 (Centre for fMRI of

the Brain, University of Oxford) (Smith et al., 2004), Advanced Normali-

zation Tools (ANTs) v2.1.0 (Avants et al., 2010), FreeSurfer v6.0.1

(Laboratory for Computational Neuroimaging, Athinoula A. Martinos

Center for Biomedical Imaging) (Fischl, 2012), and Analysis of Functional

NeuroImages (AFNI) v16.2.07 (Scientific and Statistical Computing Core,

National Institute of Mental Health) (Cox, 1996)—all compiled with the

Nipype interface (Gorgolewski et al., 2011) and often facilitated by the

Nilearn toolbox (Abraham et al., 2014).

Rather than utilizing the scanning system's internal bias-field cor-

rection, each T1w volume was first corrected for intensity nonunifor-

mity using “N4BiasFieldCorrection” (ANTs) (Tustison et al., 2010).

Skull stripping was then performed with “antsBrainExtraction” (ANTs)

using the Open Access Series of Imaging Studies (OASIS) template

(Marcus et al., 2007). Incorporating information from both T1w and

T2w volumes, brain surfaces were reconstructed using “recon-all”
(FreeSurfer) (Dale et al., 1999). The previously estimated brain mask

was refined with a custom variation of the method to reconcile ANTs-

derived and FreeSurfer-derived segmentations of cortical gray matter
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from Mindboggle (Klein et al., 2017). All images were converted to the

common Montreal Neurological Institute (MNI) space (Collins

et al., 1994). Spatial normalization to the MNI152-based ICBM 2009c

Nonlinear Asymmetric template (Fonov et al., 2009) was performed

through nonlinear registration with “antsRegistration” (ANTs) (Avants

et al., 2008), combining brain-extracted versions of both the T1w vol-

ume and the template. Segmentation of brain tissue into cerebrospinal

fluid (CSF), white matter, and gray matter was performed on the

brain-extracted T1w volume using FMRIB's Automated Segmentation

Tool (FAST) (FSL) (Zhang et al., 2001).

For functional BOLD images, slice-time correction was applied

with “3dTshift” (AFNI). Motion correction was applied using Motion

Correction with FMRIB's Linear Image Registration Tool (MCFLIRT)

(FSL) (Jenkinson et al., 2002). Utilizing field maps, distortion correction

and unwarping was performed with an implementation of the TOPUP

technique (Andersson et al., 2003) using “3dQwarp” (AFNI). Func-

tional volumes were coregistered to the corresponding structural T1w

volume via boundary-based registration (Greve & Fischl, 2009) with

9 degrees of freedom, as implemented by “bbregister” (FreeSurfer).

All transformations for motion correction, distortion correction,

BOLD-to-T1 coregistration, and T1-to-template coregistration were

concatenated and applied in a single step using “antsApplyTrans-
forms” (ANTs) with Lanczos interpolation.

First using only imaging data itself for denoising, dynamics of

sources of noise such as head motion, physiological events, and mea-

surement (i.e., scanner) artifacts were estimated by different

approaches to generate confound regressors of no interest for the

general linear model (GLM). Notably, BOLD signals throughout the

brainstem have an intrinsically low SNR and a low CNR and are espe-

cially susceptible to physiological artifacts (Barry et al., 2013; Dagli

et al., 1999; de Hollander et al., 2015, 2017; Düzel et al., 2009, 2015;

Enzmann & Pelc, 1992; Soellinger et al., 2007). The proximity of the

pulsatile interpeduncular cistern to the tegmentum further compro-

mises signals of purely neural origin in the key region of the dopami-

nergic midbrain. To address these issues as well as possible

differences in output between the different scanners for multisite

fMRI, further extensive efforts were dedicated to eliminating contami-

nant noise as follows.

Six rigid-body motion parameters—corresponding to three axes

for translation and three for rotation—were estimated relative to a

reference image and subsequently added to the design matrix. Time

series of signals averaged within the CSF mask, within the white-

matter mask, or globally across the entire brain mask were included

next. Framewise displacement quantified bulk head motion within

each functional run (Power et al., 2012, 2014). An index for the

rate of signal change across the entire brain was provided

with the standardized temporal derivative of root-mean-squared

variance over voxels (DVARS) (Power et al., 2012, 2014; Smyser et al.,

2010). Initial time points identified as nonsteady states according to

global signals were marked with unique indicator variables for each

outlier volume. Furthermore, these outliers were omitted from the fol-

lowing denoising procedures.

For temporal high-pass filtering, a discrete cosine transform

(DCT) (Ahmed et al., 1974) was employed to detect low-frequency

signal drift. Fifteen DCT basis functions were generated as regressors

after omitting the aforementioned outliers. The CompCor method for

denoising relied on principal-component analysis, and principal com-

ponents were generated with the two variants of the algorithm—

namely, “temporal” (tCompCor) and “anatomical” (aCompCor) (Behzadi

et al., 2007). A mask to exclude signals with cortical origins was first

obtained by eroding the brain mask so as to ensure it only contained

subcortical structures. Six tCompCor components were then esti-

mated with voxels above the 95th percentile for signal variability

within the eroded subcortical mask. Another six aCompCor compo-

nents were estimated within the intersection of the subcortical mask

and the union of CSF and white-matter masks in T1w space after pro-

jection to the native space of each functional run. Employing probabi-

listic spatial independent-component analysis (ICA) as implemented

by Multivariate Exploratory Linear Decomposition into Independent

Components (MELODIC) (FSL) (Beckmann & Smith, 2004), the

“aggressive” ICA-based strategy for Automatic Removal of Motion

Artifacts (ICA-AROMA) (Pruim et al., 2015) was utilized to distinguish

signal and noise components with dimensionality constrained to a

maximum of 200 components.

Additional preprocessing was performed outside of fMRIPrep

using Statistical Parametric Mapping (SPM) v12.7219 (Wellcome Cen-

tre for Human Neuroimaging, University College London) (Friston

et al., 1995). Spatial smoothing was a final step, convolving functional

images with an isotropic Gaussian kernel having a full width at half

maximum (FWHM) of 6 mm for the 3-T data set. As the aim of the

7-T protocol was to maximize spatial resolution, the FWHM parame-

ter was reduced to 2 mm for 7-T data and thus preserved the fine

granularity critical for detecting mesencephalic signals (Chase

et al., 2015; de Hollander et al., 2015).

Moreover, the PhysIO toolbox (Kasper et al., 2017) was used to pro-

duce confound regressors derived not with imaging data but rather with

peripheral cardiac and respiratory recordings. The retrospective image

correction (RETROICOR) method (Glover et al., 2000) generated third-

order Fourier expansion of the cardiac phase (i.e., 6 terms for sine and

cosine functions), fourth-order expansion of the respiratory phase

(8 terms), and first-order expansion of cardiorespiratory interactions

(4 terms) (as parameterized optimally in Harvey et al., 2008).

4.7 | Computational modeling: Generalized
reinforcement learning

As a quasi-model-based extension of model-free “reinforcement

learning” (RL) (Bush & Mosteller, 1951a; Rescorla & Wagner, 1972;

Sutton & Barto, 1998) with the temporal-difference (TD) prediction

method (Dayan, 1992; Dayan & Sejnowski, 1994; Sutton, 1988), this

“generalized reinforcement learning” (GRL) model introduced the

dichotomies of associative versus discriminative generalization and

state versus action generalization within the “critic/Q-learner”

4772 COLAS ET AL.



(CQ) model (Colas et al., 2017) (Figure 2). The CQ model integrates

the “critic” component of the “actor/critic” model (i.e., state-value

learning) (Barto et al., 1983, 2021; Sutton, 1984; Witten, 1977) with

the Q-learning model (i.e., action-value learning) (Watkins, 1989;

Watkins & Dayan, 1992) for passive and active states, respectively. If

it were instead a question of one model or the other for a paradigm

such as this having few discrete and constant actions, the Q-learning

model typically provides more accurate fits to behavior (Colas

et al., 2017; Hampton et al., 2006; O'Doherty et al., 2004); the actor/

critic model is instead ideal for a broad, continuous, or dynamic action

space. Although further hybridization of the two algorithms has been

demonstrated (Colas et al., 2017), the “actor” module of the proper

“actor/critic/Q-learner” (ACQ) model was omitted here because add-

ing a costly free parameter for this module is less essential for a task

with only one cue and two possible actions per trial; in any case, this

additional complexity was beyond the scope of the present study

despite the otherwise relevant handling of passive and active states.

Here, this richer account of internal decision variables—one that goes

beyond what is immediately evident in behavior—facilitated not only

theory but also the interpretability of the neuroimaging analysis for

triple dissociation of value signals, RPE signals, and decision signals

modulated by value.

By design, the model is scalable for arbitrary numbers of hierarchi-

cally organized actions, states, and state categories. Yet, for clarity, the

equations herein are not written in their general form (see Colas

et al., 2017, for CQ(λ) sans generalization) but rather are tailored to only

what is applicable for the present paradigm. The CQ model employs two

variants of the reward-prediction error (RPE) to learn value-based

associations—namely, the state-value-prediction error (SVPE) and the

action-value-prediction error (AVPE). A more precise label for the GRL

model postulated here could be the “generalized critic/Q-learner” (GCQ)

model, but generalized Q learning was the primary mechanism under

scrutiny. Whereas such a critic module would feature only state generali-

zation, the “generalized Q-learner” (GQL) module features both state

and action generalization.

To begin with, only the preparatory state of the ITI was repre-

sented by the CQ model's critic module as a passive state s0. As repre-

senting priors in the absence of previous associations would entail

some kind of internal model, a naïve model-free agent initializes the

value of this novel state Vt(s0) to zero (Li et al., 2011):

V0 s0ð Þ¼0

The Q-learner module is instead concerned with the active states. The

beginning of a run marks initialization of action values Qt(s,a) for all

novel state-action pairs—again at zero:

8 s,að Þ :Q0 s,að Þ¼0

Upon transitioning from the preparatory state to an active state,

an SVPE δVt is computed as the difference between cached values per

a TD algorithm. Despite not necessarily being relevant for behavior at

the moment of exposure, passive states are tracked automatically

because behavioral relevance can be unpredictable in the real world

(Colas et al., 2017). For the sake of parsimony, the relevant input here

is the prespecified action value rather than an additionally posited

state value that could be represented in parallel by the critic module

(cf. Colas et al., 2017). There was only one opportunity for action per

episode in the present paradigm, so as far as fitting behavior is con-

cerned, the “off-policy” Q-learning method could not be distinguished

from an “on-policy” alternative such as the state-action-reward-state-

action (SARSA) method (Rummery & Niranjan, 1994). The former

computes an RPE using the maximal value across subsequently avail-

able actions, whereas the latter computes an RPE using the value of

the action actually chosen according to the current policy. Distin-

guishing these particular algorithms would require at least one addi-

tional step with an active state per episode. Yet, as the original

standard for an action-value-learning algorithm, Q learning was

assumed for neural modeling without further consideration of the

SARSA model. Additionally, the standard discount factor γ was omit-

ted here (i.e., γ = 1) inasmuch as only one reward could be delivered

after a constant delay within episodic trials, leaving this reduced

delta-learning rule:

δVt ¼ max
a

Qt stþ1,að Þ�Vt s0ð Þ

The value of the preparatory state is updated in turn with a fitted

learning rate α (for 0 ≤ α ≤ 1) as follows:

Vtþ1 s0ð Þ¼Vt s0ð ÞþαδVt

Upon transitioning from an active state to an outcome state, an

AVPE δQt is determined by the discrepancy between the current

action-value estimate Qt(st,at) and the reward (or lack thereof) rt+1

presented in the binary outcome state:

δQt ¼ rtþ1�Qt st,atð Þ

As with any standard RL model, the value of the chosen state-action

pair is updated accordingly once the outcome has been processed.

The learned information is assumed to be integrated immediately,

which would be an optimal use of the time preceding the next trial:

Qtþ1 st,atð Þ¼Qt st,atð ÞþαδQt

Considering that the reward magnitude is fixed for this paradigm,

state values and action values effectively correspond to the probabil-

ity of reward. To prevent duplicated and relayed prediction errors

from producing an illogical expected value for probabilistic outcomes

(i.e., 0 ≤ P ≤ 1), the function f(x) constrains state and action values

between zero and unity as an ad-hoc solution for this case where

probability is equivalent to value. Inasmuch as a guaranteed improve-

ment in fit in the absence of this constraint would be uninterpretable

here, it is not a possibility that is considered for now: Probability esti-

mates above unity or below zero would be meaningless as probabili-

ties per se, and the latter would also correspond to negative valence

despite an absence of punishment. Although reference dependence

and normalization are mechanisms of relevance to value-based
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learning (Carandini & Heeger, 2012; Kahneman & Tversky, 1979;

Palminteri & Lebreton, 2021; Rangel & Clithero, 2012), the present

paradigm is not suitably amenable to these complexities. When

applied to the (computational) model-based neuroimaging analysis,

these simulated signals have substantial implications for the interpre-

tation of value signals in the brain, which should be maximized with

certain reward and range from neutral to appetitive rather than

including anything in the aversive range. The x here refers to a trans-

formation for an updated value estimate:

f xð Þ¼ max 0, min 1,xf gf g

With the addition of the “TD(λ)” eligibility trace (Dayan, 1992;

Dayan & Sejnowski, 1994; Klopf, 1972; Sutton, 1988; Sutton &

Barto, 1981, 1998), this “CQ(λ)” model learns more rapidly with credit

assignment across serial events. The eligibility trace of the TD(λ)

prediction-error signal weights updates prior to the most immediate

one according to the eligibility parameter λ (for 0 ≤ λ ≤ 1) as the base

(i.e., inverse decay rate) of an exponential function modulating the

learning rate α. With discretely episodic paradigms such as the present

one, the eligibility trace only propagates back to the onset of the trial.

Owing to this temporal generalization, the preparatory state is

updated by the AVPE as well:

Vtþ1 s0ð Þ¼ f Vt s0ð ÞþλαδQt

� �
Thus far, the CQ model has been described in its original form.

Aside from generalization, the value of any state-action pair not

encountered remains as is rather than being subject to decay or “for-
getting” with potential for overfitting (Barraclough et al., 2004; Ito &

Doya, 2009; Kato & Morita, 2016; Morita & Kato, 2014; Toyama

et al., 2017, 2019). (There are intriguing parallels in the mathematics

of value decay and counterfactual updating for nonencountered rep-

resentations that remain to be investigated elsewhere.) In contrast to

previous RL models, the GRL (or GQL) model introduced here addi-

tionally applies a common AVPE signal to learning of other state-

action pairs belonging to the same category as the current state. Pres-

ently, the two-alternative forced choice allows for a straightforward

model of discriminative action generalization, such that the noncho-

sen action a0t receives an inverse value update as the complement of

the chosen action at (where prime notation refers to complementarity

here). The variables aL and aR stand for the left action and the right

action, respectively:

a0t ¼
aR, at ¼ aL
aL, at ¼ aR

�

This counterfactual update is regulated by a negative parameter for

the action-generalization weight gA (for �1 ≤ gA ≤ 0) that modulates

the original learning rate. Although associative action generalization is

a possibility elsewhere, this parameter is not allowed to be positive

here because the effective input to the choice function is the differ-

ence between two action values, rendering overgeneralization across

actions essentially indistinguishable from a mere absence of learning.

The constraint that absolute generalization weights do not exceed

unity resolves the potential nonidentifiability issue of multiplied free

parameters for generalized delta learning. More importantly, this con-

straint reflects the assumption—one shared with TD(λ)—that here gen-

eralized RPE signals would not be relayed with greater gain than the

original RPE signal but rather lesser or equal gain. (In a different set-

ting, this assumption might be relaxed under the appropriate circum-

stances.) As with state generalization, this equation is analogous to

the previous one for the temporal generalization of the TD(λ) eligibility

trace:

Qtþ1 st,a
0
t

� �¼ f Qt st,a
0
t

� �þgAαδ
Q
t

� �
Likewise, with only two states per category, state generalization

entails an analogous formula where—in addition to the encountered

state st—the other, complementary state within the category s't

receives a value update. The variables sA and sB refer to state A and

state B (arbitrarily designated as such):

s0t ¼
sB, st ¼ sA
sA, st ¼ sB

�

This update is regulated by a state-generalization weight gS (for

�1 ≤ gS ≤ 1) that modulates the learning rate. Unlike overgeneraliza-

tion across actions here, overgeneralization across states within a cat-

egory can be detected. That is, the agent could incorrectly operate as

if the category itself is a unitary state or at least partially conflate

exemplars within a category. As the present paradigm is characterized

by anticorrelational linkage between states within a category, a nega-

tive sign for gS produces correct discriminative generalization, while a

positive sign for gS produces incorrect associative overgeneralization:

Qtþ1 s0t,at
� �¼ f Qt s0t,at

� �þgSαδ
Q
t

� �
As an intuitive constraint for the 7-parameter model, the two fac-

tors of action generalization and state generalization interact multipli-

catively to also update the complementary action for the

complementary state. (This assumption in lieu of a third generalization

parameter is also pragmatic in the interest of avoiding overfitting here,

but it does not necessarily apply universally.) In the ideal case combin-

ing discriminative generalization across both dimensions

(i.e., �1 ≤ gA < 0 and �1 ≤ gS < 0), this interactive state-action general-

ization weight would appropriately be associative (0 < gSgA ≤ 1) for

the one state-action pair that is correlated with the original pair rather

than anticorrelated:

Qtþ1 s0t,a
0
t

� �¼ f Qt s0t,a
0
t

� �þgSgAαδ
Q
t

� �
Although the preceding constraint was hypothesized to be an

appropriate one here, the possibility of an unconstrained interaction

term as part of an 8-parameter model was also considered and tested.

Yet, in keeping with the initial constraint of only negative action
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generalization (i.e., �1 ≤ gA ≤ 0), the partial constraint that the two

updates for the complementary state could not share a common (non-

zero) sign remained such that the interaction term was not deter-

mined by a wholly independent free parameter. Rather, a more

general version of the preceding equation (from the nested case of

gSA = gA) includes the third factor of interactive state-and-action gen-

eralization gSA (for �1 ≤ gSA ≤ 0) as follows:

Qtþ1 s0t,a
0
t

� �¼ f Qt s0t,a
0
t

� �þgSgSAαδ
Q
t

� �
These learned action values serve as inputs to a probabilistic action-

selection policy πt(s,a) characterized by the Boltzmann-Gibbs softmax

model as a discriminative (rather than generative) model of decision mak-

ing (Luce, 1959; Shepard, 1957; Sutton & Barto, 1998). The approxima-

tion of a softmax (with perfect subtraction between two alternatives)

does have limitations in accounting for decision-making processes in an

actual brain (Colas, 2017), but this component can suffice for the present

purposes as a standard assumption for learning models. The choice func-

tion also includes inputs that simultaneously incorporate learning-

independent effects of action-specific bias and hysteresis (Colas

et al., 2017). For any interactive environment, including these terms is

imperative—not only to account for additional variance but also to disso-

ciate illusory mimicry of learning via sequential dependence from actual

learning. That is, as learning promotes consistent repetition of responses

within a state, so too can autocorrelational effects of hysteresis produc-

ing response repetition or alternation that coincidentally aligns with

rotating states. (For example, perseveration offers a more parsimonious

explanation for action repetition that could otherwise be attributed to

an optimistic confirmation bias (Frank et al., 2004; Sharot, 2011; Sharot

et al., 2011; Thorndike, 1932, 1933); in RL terms, the latter could trans-

late to an asymmetry in learning rates favoring positive over negative

outcomes (Cazé & van der Meer, 2013; Daw et al., 2002; Frank

et al., 2007, 2009; Niv et al., 2012)—but at the cost of susceptibility to

overfitting (relative to hysteresis) (Chambon et al., 2020;

Gershman, 2016; Katahira, 2015, 2018; Palminteri, 2021; Sugawara &

Katahira, 2021).) The baseline hysteresis model includes a dynamic per-

severation (or alternation) bias βt(a) (cf. Lau & Glimcher, 2005; Schönberg

et al., 2007) as well as a constant lateral bias βR with the arbitrary con-

vention that rightward is positive. These internal biases complemented

the learned external action values to dictate the policy's probabilities for

each action via the following softmax function with temperature τ (for τ

> 0), which regulates the stochasticity of choices reflecting noise as well

as exploration against exploitation (Cohen et al., 2007; Daw et al., 2006;

Gershman, 2018; Schulz & Gershman, 2019; Speekenbrink &

Konstantinidis, 2015; Sutton & Barto, 1998; Thompson, 1933; Wilson

et al., 2014). This equation reduces to a logistic function in the present

two-alternative forced-choice task:

πt st,að Þ¼P at ¼ a j stð Þ¼
exp Qt st,að Þþβt að ÞþβRIR að Þ

�
=τ

� on
P

a� exp Qt st,a�ð Þþβt a�ð ÞþβRIR a�ð Þ
�
=τ

� on

Modeling action hysteresis in terms of the dynamics of cumula-

tive perseveration or alternation biases first requires an initialization

of βt(a), which is here notated so as not to be confused with the

parameter β0 described later:

8 a : βt¼0 að Þ¼0

A counter variable Nt is initialized at the beginning of each run to

index the total number of actions performed within the run:

N0 ¼0

This action-counter variable is simply incremented with each action

performed successfully:

8 at :Nt ¼Nt�1þ1

Using this action index, the indicator function INt að Þ tracks the action

history across the run:

INt að Þ¼ 0, a≠ at
1, a¼ at

�

The exponentially decaying hysteretic bias is determined by its initial

magnitude β0 and inverse decay rate λβ (for 0 ≤ λβ ≤ 1). A positive

magnitude for such autocorrelation represents a perseveration bias in

favor of repeating previous actions, whereas a negative magnitude

represents an alternation bias in favor of switching between actions—

that is, “antiperseveration”. The decay parameter is notated with the

convention adopted for the eligibility trace, such that bases λ and λβ

both correspond to the complement of (i.e., unity minus) the exponen-

tial decay rate. The exponential decay of the bias proceeds with each

action executed, as described in the following equation that integrates

cumulative hysteretic biases:

βtþ1 að Þ¼
XNt�1

i¼0
β0λ

i
βINt�i að Þ

The indicator function IR(a) is used for a constant lateral bias with

the arbitrary convention that a positive sign for βR corresponds to a

rightward bias while a negative sign corresponds to a leftward bias:

IR að Þ¼ 0, a¼ aL
1, a¼ aR

�

The final GRL model presently includes seven free parameters

altogether—namely, learning rate α, action-generalization weight gA,

state-generalization weight gS, softmax temperature τ, rightward

(or leftward) bias βR, and initial magnitude β0 coupled with inverse

decay rate λβ for the exponential decay of the perseveration

(or alternation) bias. For a paradigm such as this, the eligibility parame-

ter λ cannot be tuned as a free parameter without a multistep Markov

decision process (MDP) including intermediate states. As the time

steps are discretized with a single step back per trial here, this element

was fixed at λ = 0.5 by default for predicting dynamics of neural activ-

ity. This assignment, which did not substantially impact the results if

changed, is also in agreement with previous fitted results (mean
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λ = 0.684) arrived at with a two-step MDP and otherwise comparable

methodology (Colas et al., 2017).

4.8 | Computational modeling: Model-based
learning

Rather than the implicit model of task structure that emerges from

the discriminative generalization of GRL, a cognitive map (i.e., model)

could instead be represented explicitly as part of a proper model-

based algorithm. The following (cognitive) model-based algorithms

track a hierarchical metastate that corresponds to the generalizable

structure within each state category (e.g., faces or houses). From this

intuition, the possible hypotheses h for the binary metastate can be

summarized as “AL/BR” or “AR/BL” for a given category c with com-

plementarity between states and actions (Figure 1c), where “AR/BL”
means state sA rewards the right action aR while state sB rewards the

left action aL. Whereas the model-free learner naïvely initialized at

zero, the model-based learner initializes the estimated probabilities of

the metastate hypotheses Pt(hjc) at 1/2 for a uniform prior within

each category:

8 c, h j cf gð Þ :P0 h j cð Þ¼ 1
h j cf gj j ¼

1
2

For both types of model-based systems that follow, the consis-

tent hypothesis ĥ(st,at,rt+1) for an observed state-action-outcome

sequence is first inferred according to a binary rule. Yet the trial's

consistent hypothesis ĥ (“h-hat”) is not necessarily true to the block's

actual metastate for the category because of the stochastic nature

of the environment. In other words, this initial inference only func-

tions as an intermediate input to either model-based learning

process:

Given the two possibilities, the trial's alternative hypothesis

ĥ0(st,at,rt+1) is represented with the previous convention for prime

notation such that “h-hat-prime” is complementary to “h-hat”:

bh0 st,at, rtþ1ð Þ¼ AL,BRð Þ, bh st,at, rtþ1ð Þ¼ AR,BLð Þ
AR,BLð Þ, bh st,at, rtþ1ð Þ¼ AL,BRð Þ

(

4.9 | Computational modeling: State-prediction
error

The simpler model-based algorithm operates with a heuristic analo-

gous to the delta learning of model-free RL but computes a state-

prediction error (SPE) δSPEt rather than a reward-prediction error

(RPE). The SPE is essentially a generalized prediction error in its own

right. Whereas for a multistep MDP the transition function for states

and state-action pairs (Bellman, 1957; Sutton & Barto, 1998) could be

learned with another type of SPE as part of a dynamic-programming

algorithm (cf. Gläscher et al., 2010; Lee et al., 2014), this novel type of

SPE is instead concerned with the generalizable metastate of the

active state's category ct. Hence the SPE here is a “metastate-

prediction error” (MPE). Unlike the signed RPE, the unsigned SPE or

MPE takes the difference between unity and the probability estimate

for the state-action-outcome sequence's consistent hypothesis:

δSPEt ¼1�Pt bh st,at, rtþ1ð Þ j ct
� �

The update of the probability estimate is weighted by a model-based

learning rate αSPE (for 0 ≤ αSPE ≤ 1), which is again analogous to RL:

Ptþ1
bh st,at, rtþ1ð Þ j ct

� �
¼Pt bh st,at, rtþ1ð Þ j ct

� �
þαSPEδ

SPE
t

Moreover, the probability estimate for the trial's alternative hypothe-

sis ĥ0(st,at,rt+1) is proportionally decreased as well, thus fixing the sum

of the probabilities to unity:

Ptþ1
bh0 st,at, rtþ1ð Þ j ct

� �
¼ Pt bh0 st,at, rtþ1ð Þ j ct

� �
�αSPEPt bh0 st,at ,rtþ1ð Þ j ct

� �

4.10 | Computational modeling: Hidden Markov
model

The more complex model-based algorithm utilizes Bayesian optimization

while specifying an even more explicit and complete model of the

exploitable structure in this environment. Whereas previous implementa-

tions of the hidden Markov model (HMM) (Ghahramani, 2001) have

emphasized reversals between linked states or actions (as a Markov

process) (cf. Aquino et al., 2020; Hampton et al., 2006; Prévost

et al., 2013), the hidden state in this HMM uniquely corresponds to the

hierarchical metastate of a category subsuming active states—that is, a

“hidden metastate”. The likelihood function for an outcome given the

preceding state-action pair and an assumed hypothesis P(rt+1jh,(st,at)) is
determined by a consistency parameter θ0 (for ½ ≤ θ0 ≤ 1) for a binary

distribution, representing the agent's belief about the consistency of the

rule for a given metastate's probabilistic outcomes:

PLikelihood rtþ1j h, st,atð Þ
� �

¼ θ0, h¼bh st,at, rtþ1ð Þ
1�θ0, h¼bh0 st,at, rtþ1ð Þ

(

An optimal Bayesian learner tasked with reversal learning such as

this can employ belief propagation (Jordan, 1998), such that

ĥ st,at, rtþ1ð Þ¼

AR,BLð Þ,

st ¼ sA,at ¼ aL, rtþ1 ¼0

st ¼ sA,at ¼ aR, rtþ1 ¼1

st ¼ sB,at ¼ aL, rtþ1 ¼1

st ¼ sB,at ¼ aR, rtþ1 ¼0

�����������

AL,BRð Þ,

st ¼ sA,at ¼ aL, rtþ1 ¼1

st ¼ sA,at ¼ aR, rtþ1 ¼0

st ¼ sB,at ¼ aL, rtþ1 ¼0

st ¼ sB,at ¼ aR, rtþ1 ¼1

�����������

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
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knowledge of reversing contingencies is directly factored into the

integration of changing evidence. For the full HMM, a second fitted

parameter represented the reversal rate θ1 (for 0 ≤ θ1 ≤ 1) applied to

either complementary hypothesis h0, but the reduced HMM0 variant

omits this parameter (θ1 = 0) so as to not represent any specific

expectation of metastate reversals. By the onset of a new trial, the

preceding posterior forms the new prior with an update determined

by this baseline reversal rate:

PPriort h j ctð Þ¼ θ1P
Posterior
t�1 h0 j ct

� �þ 1�θ1ð ÞPPosteriort�1 h j ctð Þ

Following Bayes' rule, the updated posterior upon experiencing a

new state-action-outcome sequence integrates prior knowledge with

the likelihood of the observation given a hypothesis for the category's

metastate:

PPosteriortþ1 h j ctð Þ¼
PLikelihood

�
rtþ1 jh, st,atð Þ

�
PPriort h j ctð ÞP

h�P
Likelihood

�
rtþ1 jh�, st,atð Þ

�
PPriort h� j ctð Þ

4.11 | Computational modeling: Model-based
value

Unlike RL and GRL, the model-based algorithms just described do not

learn about value per se; rather, these algorithms track the probabili-

ties of hypothesized metastates and with inference translate these to

subjective value in an additional layer of computation. As an alterna-

tive to a cached value estimate, the model-based action value

QMB
t(c,s,a) is inferred for the hierarchy of a category-state-action trip-

let from probability estimates for the category's metastate. Note that,

as an input to model-based decision making in this setting, this action-

value estimate is not equivalent to the action's expected value for the

actual reward yield of the outcome Et[rt+1jct,st,a]. For the Bayesian

HMM, that expectation also factors in the likelihood function with

beliefs about rule consistency:

Et rtþ1 j ct,st,a½ � ¼
X

h

X
r
PLikelihood r jh, st,að Þ

�
PPriort h j ctð Þr

�

Although analogous to the cached reward prediction of RL, the

preceding expected value would instead be computed on the fly by

the HMM. However, this expectation was not the relevant input to

the action-selection policy. Rather, the HMM follows the SPE in more

efficiently choosing according to the estimated probability that an

action's congruent hypothesis for the category and state is correct.

This feature is optimal for the HMM here and was not just implemen-

ted in the interest of control in model comparison: For the comple-

mentary hypotheses of this paradigm, it proportionately amplifies the

difference between action values so as to create greater opportunity

for greedy exploitation of presumed knowledge while still achieving

exploration through counterfactual learning. Hence the model-based

action value is yoked to the dynamic beliefs of either algorithm with a

shared equation more directly translating the probability estimates for

the metastate hypotheses:

QMB
t c,s,að Þ¼

X
r
Pt bh s,a, rð Þ j c
� �

r¼

Pt AL,BRð Þ j c
� �

, s¼ sA,a¼ aL

Pt AR,BLð Þ j c
� �

, s¼ sA,a¼ aR

Pt AR,BLð Þ j c
� �

, s¼ sB,a¼ aL

Pt AL,BRð Þ j c
� �

, s¼ sB,a¼ aR

8>>>>>>>>><>>>>>>>>>:

4.12 | Computational modeling: Dual systems

The different model-based models and basic RL were all nested

within dual-systems models that combine model-based and model-

free techniques in parallel. The action-selection policy can thus be

expanded with another parameter as the model-based weight wMB

(for 0 ≤ wMB ≤ 1), which modulates the weight of either model-

based system's estimate of action value. Model-based weighting

can reflect the fidelity of the model-based system as well as the

arbitrating agent's confidence in its reliability (Daw et al., 2011;

Gläscher et al., 2010; Lee et al., 2014). The nested cases of

wMB = 0 and wMB = 1 correspond to purely model-free and purely

model-based agents, respectively. Whereas a model-free system—

including GRL despite linked representations—caches value for only

state-action pairs, inferential model-based value explicitly factors

in the hierarchical metastates characterizing category-state-action

triplets:

πt ct ,st ,að Þ¼
exp wMBQ

MB
t ct,st,að Þþ 1�wMBð ÞQt st,að Þþβt að ÞþβRIR að Þ

� �
=τ

n o
P

a� exp wMBQ
MB
t ct ,st ,a�ð Þþ 1�wMBð ÞQt st ,a�ð Þþβt a�ð ÞþβRIR a�ð Þ

� �
=τ

n o

4.13 | Model fitting

A total of 17 learning models were tested against each other and the

hysteresis model (α = gA = gS = 0) (Table 2). A subset of 11 models

corresponded to a factorial model comparison including every nested

permutation with respect to the two dimensions of generalization in

GRL—to wit, no generalization (gA = gS = 0), maximally optimal dis-

criminative action generalization (gA = �1, gS = 0), free action gener-

alization (�1 ≤ gA ≤ 0, gS = 0), maximally suboptimal associative state

generalization (gA = 0, gS = 1), maximally optimal discriminative state

generalization (gA = 0, gS = �1), free state generalization (gA = 0,

�1 ≤ gS ≤ 1), maximally optimal discriminative action generalization

and maximally suboptimal associative state generalization (gA = �1,

gS = 1), maximally optimal discriminative action and state generaliza-

tion (gA = gS = �1), free action and state generalization with a shared

parameter (gA = min{0, gS}, �1 ≤ gS ≤ 1), free action generalization

plus free state generalization with dual parameters (�1 ≤ gA ≤
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0, �1 ≤ gS ≤ 1), and free interaction between state and action general-

ization (gSA ≠ gA). Competing degenerate models thus benefited from

having fewer degrees of freedom to penalize.

The (cognitive) model-based models were tested similarly along-

side the others. The SPE model was nested within a dual-systems

“SPE+RL” model. Nested within the full HMM was the HMM0 vari-

ant without explicit reversals of the hidden state (i.e., metastate)

(θ1 = 0). These two models were nested within their respective dual-

systems models that included RL in parallel—that is, “HMM0+RL” and
“HMM+RL”. The instantiation of the GRL model optimally tuned with

gA = gS = �1 is also of special note for serving as a model-free

approximation (cf. Gläscher et al., 2009; Hampton et al., 2007) of a

model-based scheme for an idealized optimal agent in an environment

with perfectly anticorrelated states and actions. (Under different cir-

cumstances elsewhere, differing degrees of generalization in propor-

tion to the statistics of another environment could be better suited to

partially or dynamically correlated or anticorrelated states and

actions.) As the most interpretable model comparison is one grounded

in a factorial design with systematic testing of parameters, emphasis is

due for commensurable models within a single class such as RL

(including GRL in this context).

In capturing action-specific bias and hysteresis, the 4-parameter

hysteresis model offers a nested null model that is more viable as a

control than a zero-parameter chance model with random choices or

even an intercept model, which has only one parameter for the proba-

bility of an arbitrary action P(A1). Thus, sensitivity to learnable out-

comes or lack thereof can be detected with greater precision by

setting the fitting performance of the hysteresis model as a bench-

mark for comparison with candidate models that feature relevant

learning; a participant could then be set aside in the Nonlearner group

for demonstrating a lack of reward sensitivity across all learning

models. (In the absence of learning, inclusion of τ is redundant in prac-

tice but nevertheless maintained as a degree of freedom because of

its conceptual relevance as the stochasticity parameter as opposed to

a learning parameter per se.)

This uniquely comprehensive modeling approach—that is, the

foundation of a 5-parameter model (Colas et al., 2017) rather than the

standard 2-parameter model with only learning rate and

temperature—also aims to enhance parameter identifiability with

respect to actual learning as opposed to other sources of variance that

may obscure or mimic learning (Lau & Glimcher, 2005; Schönberg

et al., 2007). Whereas alternative solutions find recourse in regulariza-

tion via fully group-level estimation (i.e., concatenating data sets or

averaging parameters) or the intermediate approach of hierarchical

Bayesian modeling across individuals (Ahn et al., 2017; Daw, 2011;

Gershman, 2016), the present solution of a more complete yet parsi-

monious model—in this case accounting for action-specific bias and

hysteresis—avoids compromising the independence of separate data

sets. As per the bias-variance tradeoff, even reducing variance with

the constraints of hierarchical group-level estimation would necessar-

ily introduce bias both toward the average across individuals and

toward the specifications of a parametric probability distribution. In

other words, the present technique cannot be diminished by poten-

tially inappropriate assumptions that a given participant is learning

and furthermore learning in a particular way merely because other

participants in the aggregate have mostly demonstrated learning and

an overall tendency to learn in a particular way. Added complexities

such as idiosyncratic strategies for generalization impose even greater

demands for accommodating individual differences. This subject-level

interpretability also extends to (computational) model-based analysis

of neurophysiological data (O'Doherty et al., 2007), where advantages

can include more precise estimation of signal dynamics and parame-

ters of interest—including between-subject analyses—as well as the

capacity to classify distinct types of performance in subgroup

analyses—for example, learners versus nonlearners (Colas et al., 2017)

or associative generalizers versus discriminative generalizers.

The competing models were all fitted to empirical behavior at the

level of individual subjects via maximum-likelihood estimation. Free

parameters were optimized for overall goodness of fit to a subject's

sequence of actions with randomly seeded iterations of the Nelder-

Mead simplex algorithm (Nelder & Mead, 1965). All modeling and fit-

ting procedures were programmed with MATLAB. The Akaike infor-

mation criterion with correction for finite sample size

(AICc) (Akaike, 1974; Hurvich & Tsai, 1989) provided a means to

adjust for model complexity when comparing models that differ in

degrees of freedom. The preferred model was also to provide the

basis for the subsequent neuroimaging analysis.

To verify the discriminability of the preferred 7-parameter GRL

model, each fitted instantiation of the model was subsequently used

to simulate a data set yoked to that of the respective subject. Another

complete model comparison was conducted for these simulated data

as a test of model recovery that would indicate whether this model

could be discriminated reliably among the competing alternatives. The

same procedure was repeated with simulations conversely derived

from 5-parameter basic RL for additional reassurance that the original

results could not be reduced to mere overfitting.

4.14 | Data analysis: Behavior

Performance on the learning task was assessed for each participant by

calculating overall accuracy as the proportion of choices of the option

that could result in delivery of a reward, excluding choices made for

initial encounters with novel cues. Accuracy was compared with the

chance level of 50% for each participant using a one-tailed binomial

test. A subset of participants was initially set aside as the “Good
learner” group if the accuracy score was significantly greater than the

chance level (Schönberg et al., 2007); subsequent modeling could also

confirm that this label was appropriate for each individual within the

group. The remaining participants with accuracy not significantly

greater than chance were subsequently assigned to either the “Poor
learner” group or the “Nonlearner” group according to whether or not

a learning model could yield a significant improvement in goodness of

fit relative to a hysteresis model without sensitivity to actual
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outcomes (Colas et al., 2017). Reaction time (RT) was also compared

between these primary groups via one-tailed independent-samples

t tests hypothesizing a speed-accuracy tradeoff.

Across the two learner groups, the second stage of model com-

parison reclassified these individuals in secondary “Discriminative

generalizer”, “Nongeneralizer”, and “Associative generalizer” groups

for the cases of gS < 0, gS = 0, and gS > 0, respectively, as determined

by the individually fitted GRL model. A subset of diagnostic trials were

selected to represent the first opportunities for generalization of

reward within each block. Sixteen trials in total corresponded to the

two categories each having two newly rewarded actions per each of

four runs (i.e., 2 � 2 � 4). First-generalization accuracy was compared

against chance with one-tailed one-sample t tests within each model-

defined group; Discriminative generalizers were hypothesized to per-

form above chance, whereas Nongeneralizers and especially Associa-

tive generalizers were hypothesized to perform below chance in the

absence of direct reinforcement for the new reward contingencies.

One-tailed independent-samples t tests followed to verify the pre-

sumed ranking of Discriminative generalizers, Nongeneralizers, then

Associative generalizers. Moreover, a correlation between the GRL

model's fitted parameter and first-generalization accuracy was tested

for using linear regression with a one-tailed one-sample t test and the

Pearson correlation coefficient. For a posterior predictive check of

each generative model with respect to these results, simulated data

sets were yoked to the empirical data sets and analyzed in the same

fashion after averaging across 1,000 simulations.

Taking the free parameters fitted for each subject, the overall

reward sensitivity of each instantiation of the GRL model was quanti-

fied as log(α(1�gA�gS+gSgA)/τ) (cf. Colas et al., 2017; Schönberg

et al., 2007) with a logarithmic transformation for more interpretable

rescaling prior to presentation of the results. Relative to the softmax

temperature τ, this formula factors in the magnitudes of all four possi-

ble updates of action values with each duplicated and relayed RPE

signal—that is, for the current (α) and complementary (gAα) actions

within the current state as well as the current (gSα) and complemen-

tary (gSgAα) actions within the complementary state. Considering that

fitted RL models are typically characterized by a correlation between

learning rate and softmax temperature that reflects elongated maxima

in their joint likelihood function (Daw, 2011), this sensitivity ratio is a

more precise and more relevant measure of a learning model's sensi-

tivity than either the learning rate or the temperature alone. Such an

alpha-tau correlation was observed across Learner groups in both data

sets (3FH: r = 0.518, t38 = 3.73, p < 10�3; 7CM: r = 0.427,

t19 = 2.05, p = .027). Accordingly, sensitivity was compared between

the Good-learner and Poor-learner groups by way of a one-tailed

independent-samples t test. Post-hoc one-tailed independent-samples

t tests were subsequently conducted for action generalization and

state generalization. To test for correlations between sensitivity and

accuracy or RT, between action generalization and accuracy or RT,

between state generalization and accuracy or RT, and between action

generalization and state generalization, linear regression was per-

formed with one-tailed one-sample t tests and reported with the

Pearson correlation coefficient.

Across all trials, analyses of choice data based on preceding out-

comes first separated the most recent trials in which either the same

(i.e., current) state was encountered or the other, complementary

state within the current category was encountered. These trials were

further binned according to whether the trial rewarded a given action

or provided no such reward. The probability of repeating the prior tri-

al's action was calculated within each of four bins: “same/reward”,
“same/no-reward”, “other/reward”, and “other/no-reward”. Given

the complementarity of states within a category to facilitate discrimi-

native state generalization by design, the hypothesis for repeating

actions from the “other” state was an inversion of the hypothesis for

the “same” state: A previous reward in the same state was supposed

to increase repetition of the action, whereas a previous reward in the

other state was supposed to decrease repetition. For each participant

group, one-tailed one-sample t tests compared the probability of

repeating the respective state's last action between the “reward” and
“no-reward” conditions either within same-state trials or within

other-state trials. Moreover, another set of one-tailed one-sample

t tests assessed the between-state interaction of the effect between

the “reward” and “no-reward” conditions. To verify that the GRL

model could quantitatively reproduce these results as well, simulated

data sets yoked to the empirical data sets were analyzed in the same

manner for a second posterior predictive check.

As computational modeling provided quantitative trial-by-trial

estimates of action-value representations, these dynamic variables

could in turn be related to psychometric functions for choices and

RTs. A logistic-regression model first modeled the probability of

repeating the most recent action (independent of state) as a function

of the normalized difference between action values. A linear-

regression model likewise modeled the RT as a function of the nor-

malized absolute value of the difference between action values. In

order to accommodate intersubject variability in the range of esti-

mated values, differences in action values were normalized with

respect to the maximum absolute value for each subject. Parameters

for these mixed-effects models were first estimated at the level of

individual subjects and subsequently assessed within each subject

group using one-tailed one-sample t tests.

4.15 | Data analysis: Neuroimaging

Analysis of the fMRI data was conducted with SPM and carried out

identically within each of the 3-T and 7-T data sets. This (computa-

tional) model-based analysis (O'Doherty et al., 2007) was grounded in

the explicit quantitative dynamics predicted by the GRL model with

subject-specific parameters (Figure 7). The GLM of BOLD signals was

essentially a tripartite model characterized by parametric regressors

for value, RPE, and RT. For a paradigm such as this with a single-step

cue-outcome sequence, disambiguating all three types of signals is

nontrivial (as alluded to previously with reference to the CQ model).

Indicator variables modeled as boxcar functions described all of

the events within the sequence of each trial. These indicators included

decision time (with variable duration), face (or color) cues (with a
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duration of 2 s), house (or motion) cues (2 s), left-hand responses (2 s),

right-hand responses (2 s), the ISI (3 s), outcomes (1 s), and the ITI (3–

7 s). In the case of a missed trial marked by failure to respond in the

2-s window, events were coded as separate indicator variables for

face (or color) cues (2 s), house (or motion) cues (2 s), error feedback

(1 s), late left-hand responses within a 1-s window (1 s), late right-

hand responses within a 1-s window (1 s), and the ITI (6–10 s). In pre-

venting the complications of temporal prediction-error signals such as

in TDRL (McClure et al., 2003; O'Doherty et al., 2003; O'Doherty

et al., 2004; Sutton, 1988; Sutton & Barto, 1998), the fixed ISI was

sufficient and did not result in rank deficiency for the design matrix

because of not only jitter in the ITI but also the quantitative precision

of narrowly specified (computational) model-based regressors.

The RT regressor was specified as a boxcar function aligned with

cue onset and extending with a variable duration corresponding to

trial-by-trial RT. Value signals were continuous and included the state

value Vt(s0) of the preparatory state, the chosen action value Qt(st,at)

for the active state, and the value of the outcome state. Similarly,

learning signals in the form of RPE signals included both the SVPE δVt

computed upon encountering the cue—as per the TD algorithm—and

the AVPE δQt computed upon encountering the outcome. Value and

learning signals were modeled as parametric modulators of boxcar

functions, and the duration of each boxcar function corresponded to

the duration of the respective stimulus with one exception: Value sig-

nals were assumed to persist beyond stimulus offset through the sub-

sequent ISI. The reason for this convention is that the expectation for

value should remain the same with negligible temporal discounting.

Although the distinctions between state value and action value—or

between the SVPE and the AVPE—are important in general

(Averbeck & O'Doherty, 2022; Colas et al., 2017; O'Doherty

et al., 2004), such distinctions are beyond the scope of the present

study and were necessarily omitted here in consideration of the

single-step cue-outcome sequence, which challenges dissociability.

As orthogonalization was forgone to avoid potential distortions of

the parameter estimates or their interpretation (Mumford

et al., 2015), the complete predictions of this TDRL model were taken

advantage of to minimize inevitable multicollinearity (Colas

et al., 2017; cf. Behrens et al., 2008; Zhang et al., 2020). In addition to

effects of value on RT (Busemeyer & Townsend, 1993; Colas, 2017;

Laming, 1968; Luce, 1986; Ratcliff, 1978; Usher & McClelland, 2001),

there is also a relation between value and the RPE; the latter is a linear

combination (i.e., subtraction) of outcome value and estimated value.

By collapsing events across a trial into unitary regressors for value and

learning signals, the correlation between value and the RPE could be

mitigated to a tractable level of dissociability (3FH: mean r2 = 0.431

across subjects; 7CM: mean r2 = 0.389). Dissociation was also

achieved between value and RT (3FH: mean r2 = 0.008; 7CM: mean

r2 = 0.007) as well as between the RPE and RT (3FH: mean

r2 = 0.014; 7CM: mean r2 = 0.021), such that triply dissociated value,

decision, and learning signals could all be accounted for in parallel.

All of the aforementioned predictor variables were convolved

with a canonical double-gamma hemodynamic-response function as

inputs to the GLM. The design matrix also included the confound

regressors without convolution—to wit, motion parameters, CSF sig-

nal, white-matter signal, global signal, framewise displacement, stan-

dardized DVARS, indicators for nonsteady states (i.e., outlier

volumes), DCT basis functions, tCompCor components, aCompCor

components, ICA-AROMA noise components, and RETROICOR com-

ponents from cardiac and respiratory data. Also among the noncon-

volved regressors were a first-degree autoregressive (i.e., “AR(1)”)
term and a constant term. GLMs were first estimated at the level of

an individual subject, and contrasts of parameter estimates were sub-

sequently computed for the parametric regressors at the group level

as part of a mixed-effects analysis. The groups corresponded to Good

learners, Poor learners, Nonlearners, or all learners (including both

Good and Poor learners). Positive effects of these contrasts were

tested for using one-tailed one-sample t tests.

Strictly aiming for the rigor of quantitative parametric regressors,

the default thresholds for statistical significance and cluster extent

were preset at standard levels of p < .005 and k ≥ 10 voxels (Forman

et al., 1995; Lieberman & Cunningham, 2009). Whereas whole-brain

correction for multiple comparisons was precluded by so many voxels

being sampled with high resolution—and especially so at 7 T—precise

regions of interest (ROIs) could constrain the hypothesis space a priori

with established precedents for the neural correlates of evaluation

and value-based decision making and learning. Spherical coordinate-

based ROIs with 6-mm radii were applied to small-volume correction

(SVC) controlling for the familywise error rate (FWE) at p < .05. A

given set of ROIs was first tested as a network; post-hoc tests fol-

lowed for individual ROIs within the set. For visualization, statistical-

parametric maps were overlaid on averages of processed anatomical

images from the respective participants included in a given analysis.

For learning signals, a prior high-resolution study with comparable

methodology (Colas et al., 2017) provided focal coordinates for vari-

ants of the RPE signal in the left anterior caudate nucleus at (�8,

18, �8) or (�8.4, 18, �8.4) for 3-T or 7-T images, respectively; the

right nucleus accumbens at (8, 12, �4) or (8.4, 12, �3.6); the right

ventral putamen at (18, 12, �12); the left nucleus accumbens at (�12,

10, �6) or (�12, 9.6, �6); the right dorsal putamen at (28, 6, 0) or

(27.6, 6, 0); the left dorsal caudate nucleus at (�18, 2, 16) or (�18,

2.4, 15.6); and the left SN at (�10, �14, �12) or (�9.6, �14.4, �12).

More broadly, exploratory anatomical ROIs to be searched for uncor-

rected results included the entire striatum and the dopaminergic mid-

brain, comprising the SN and the ventral tegmental area.

For value signals, a pair of meta-analytic studies with largely com-

patible results (Bartra et al., 2013; Clithero & Rangel, 2014) provided

coordinates for the correlates of monetary value in bilateral ventro-

medial prefrontal cortex (vmPFC) at (0, 46, �8) or (0, 45.6, �8.4) for

3-T or 7-T images, respectively; the right nucleus accumbens at

(10, 16, �6) or (9.6, 15.6, �6); the left nucleus accumbens at (�10,

10, �6) or (�9.6, 9.6, �6); and bilateral posterior cingulate cortex

(PCC) at (�2, �34, 38) or (�2.4, �33.6, 38.4). Coordinates were aver-

aged between the two meta-analyses, which identified a common set

of regions for the pertinent contrast. Exploratory ROIs to be searched

for uncorrected results included the entirety of vmPFC, the striatum,

and PCC.
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For decision signals, a meta-analysis (Yarkoni et al., 2009) pro-

vided coordinates for the correlates of RT across different tasks in

bilateral medial frontal cortex (MFC) at (0, 12, 48). Encompassing the

vicinity of the supplementary motor area (SMA), the pre-SMA, and

dorsal anterior cingulate cortex, MFC as a whole also served as an

exploratory ROI to be searched for uncorrected results. Although

other brain areas such as premotor cortex and posterior parietal cor-

tex have been implicated in decision-making processes as well

(Cisek, 2012; Cisek & Kalaska, 2010; Gold & Shadlen, 2007), greater

effector-specific lateralization in these regions limits their interpret-

ability with respect to the more abstract value-based decision making

sought here. In any case, the scope of the present study is limited

such that the gamut of diverse decision-making signals is not investi-

gated in the fullest detail.

Regressors for specific effects of state generalization and action

generalization were quantified as �gS/τ and �gA/τ, respectively, to

test for interactions with RPE signals at the second level between

subjects. The ROIs applied to the original RPE contrast were utilized

here as well. However, the paradigm of the study that these ROIs

were derived from (Colas et al., 2017) did not include the present fac-

tor of generalization in any form. As such, the hypotheses motivating

these ROIs in their original context were less definitive for exploration

in this new context. On the other hand, the ROIs still can serve as

candidates for first-pass investigation. Lacking proper precedent,

exploratory investigation throughout the striatum and especially the

dopaminergic midbrain was considered more openly here.

Additionally for effects of generalization, the most active locus

within the hippocampus was extracted from broad meta-analytic

results in the Neurosynth database (Yarkoni et al., 2011). Across

results including the term “hippocampus” in the report's abstract, the

peak activations derived from uniformity and association tests coin-

cided at (�28, �18, �16), which was reflected across hemispheres

with bilateral SVC as (±28, �18, �16) or (±27.6, �18, �15.6) for 3-T

or 7-T images, respectively. Another exploratory ROI further included

the entire hippocampal region.

With regard to state generalization, presenting categorical

stimuli elicited activation in the expected cortical regions: The cate-

gories of faces, houses, colors, and directions of motion activated

the FFA (Kanwisher et al., 1997), the PPA (Epstein &

Kanwisher, 1998), color-sensitive visual area V4 (or V8) (Beauchamp

et al., 1999; Hadjikhani et al., 1998; Wade et al., 2002; Zeki

et al., 1991), and the motion-sensitive middle-temporal area MT

(or V5) (Tootell et al., 1995; Watson et al., 1993; Zeki et al., 1991),

respectively (p < .005). With regard to action generalization, actions

executed with the left and right hands generated the expected acti-

vation in contralateral motor cortex and ipsilateral cerebellar cortex

(Grafton et al., 1992) at both 3 T and 7 T (p < .005). In the interest of

being concise, results for these less critical contrasts are not

reported in further detail.

As a control analysis, a regressor for the normalized learning rate

was quantified as α/τ to test for interactions with RPE signals at the

second level. This contrast was juxtaposed with the generalization

contrasts for the same sets of ROIs—the goal being to determine if

the findings for generalization specifically were possibly confounded

with a nonspecific effect of learning performance.
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