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The incidence of cancer in pre-pubertal boys has significantly increased and, it has been
recognized that the gonado-toxic effect of the cancer treatments may lead to infertility.
Here, we have evaluated the effects on porcine neonatal Sertoli cells (SCs) of three
commonly used chemotherapy drugs; cisplatin, 4-Hydroperoxycyclophosphamide and
doxorubicin. All three drugs induced a statistical reduction of 5-hydroxymethylcytosine in
comparison with the control group, performed by Immunofluorescence Analysis. The
gene and protein expression levels of GDNF, were significantly down-regulated after
treatment to all three chemotherapy drugs comparison with the control group.
Specifically, differences in the mRNA levels of GDNF were: 0,8200 ± 0,0440, 0,6400 ±
0,0140, 0,4400 ± 0,0130 fold change at 0.33, 1.66, and 3.33mM cisplatin concentrations,
respectively (**p < 0.01 at 0.33 and 1.66 mM vs SCs and ***p < 0.001 at 3.33mM vs SCs);
0,6000 ± 0,0340, 0,4200 ± 0,0130 fold change at 50 and 100 mM of 4-
Hydroperoxycyclophosphamide concentrations, respectively (**p < 0.01 at both these
concentrations vs SCs); 0,7000 ± 0,0340, 0,6200 ± 0,0240, 0,4000 ± 0,0230 fold change
at 0.1, 0.2 and 1 µM doxorubicin concentrations, respectively (**p < 0.01 at 0.1 and 0.2
mM vs SCs and ***p < 0.001 at 1 mM vs SCs). Differences in the protein expression levels of
GDNF were: 0,7400 ± 0,0340, 0,2000 ± 0,0240, 0,0400 ± 0,0230 A.U. at 0.33, 1.66, and
3.33mM cisplatin concentrations, respectively (**p < 0.01 at both these concentrations vs
SCs); 0,7300 ± 0,0340, 0,4000 ± 0,0130 A.U. at 50 and 100 mM of 4-
Hydroperoxycyclophosphamide concentrations, respectively (**p < 0.01 at both these
concentrations vs SCs); 0,6200 ± 0,0340, 0,4000 ± 0,0240, 0,3800 ± 0,0230 A.U. at 0.l,
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0.2 and 1 µM doxorubicin concentrations, respectively (**p < 0.01 at 0.1 and 0.2 mM vs
SCs and ***p < 0.001 at 1 mM vs SCs). Furthermore, we have demonstrated the protective
effect of eicosapentaenoic acid on SCs only at the highest concentration of cisplatin,
resulting in an increase in both gene and protein expression levels of GDNF (1,3400 ±
0,0280 fold change; **p < 0.01 vs SCs); and of AMH and inhibin B that were significantly
recovered with values comparable to the control group. Results from this study, offers the
opportunity to develop future therapeutic strategies for male fertility management,
especially in pre-pubertal boys.
Keywords: eicosapentaenoic acid, Sertoli cells, infertility, chemotherapeutic agents, pre-pubertal boys
INTRODUCTION

Pre-pubertal boy’s cancer survival rate has markedly increased
in recent decades, with the current 5-year survival rate across all
childhood cancers above 80% (1), for both early diagnosis and
improved cancer treatment protocols (2). At present, alkylating
and alkylating-like agents such as cyclophosphamide and
cisplatin, as well as doxorubicin, are three drugs commonly
used in treatment regimens for a wide range of childhood
cancer, resulting in more clinical information available,
including that of patient serum concentrations. The alkylating
agents are considered to be highly toxic agents intercalating
into DNA, disrupting basic cellular processes, with the
doxorubicin that is often considered to be the least toxic of
the agents (3). It has long been recognized that chemotherapy
treatment can have adverse effects on male reproduction,
including impairment of subsequent fertility. In fact, it is
estimated that nearly half of male pre-pubertal cancer
survivors will experience difficulties to conceive a child
during adulthood presenting, therefore, a significant quality-
of-life issue for many men (4–6).

The future fertility in men has been extensively studied and
there are now clear links between the use of chemotherapy drugs
in treatment regimens for childhood cancers and subsequent
impairment of their fertility status (7, 8). Indeed, a study by
Chow et al., 2016, has shown a reduced fertility rate for male and,
to a lesser extent, female survivors of childhood cancer in
comparison to their siblings. Several studies indicate that
chemotherapy treatments in pre-pubertal subjects, are able to
reduce the overall size of the testis where there is depletion of the
germ cells (spermatogonia Ad and Ap), resulting in Sertoli cell-
only tubules, as well as interstitial fibrosis and basement
membrane thickening (9–11). It is also known that treatment
with chemotherapeutic drugs induces a reduction of both Sertoli
Cell (SCs) viability (12) and function (13) resulting in a complete
inhibition of spermatogenesis and, finally, in sterility due to
azoospermia (7, 8).

The pre-pubertal testis appears to be more sensitive to
chemotherapy treatments than the adult testis because the
testicular environment is not quiescent but rather is in a
constant state of turnover of early germ cells (14, 15).
Establishment of spermatogenesis during puberty will depend
on the degree of damage caused by the treatment either directly
n.org 2
to spermatogonial stem cells (GSC) or indirectly by impairment
of Sertoli and Leydig cells. Complete depletion of GSC results in
permanent azoospermia (8). Therefore, the issue of infertility
treatment to maintain the ability to genetically father one’s own
children is a major concern for those young survivors who were
treated with gonado-toxic agents (16–18).

Preservation of semen before cancer treatment is currently
the only method of preserving future male fertility potential.
Obviously, this technique is not an option for pre-pubertal
patients who do not yet produce mature spermatozoa that can
be used for routine sperm cryopreservation (19–21). Recently,
the same European center has started to cryopreserve immature
testicular tissue from pre-pubertal boys before the commencement
of chemotherapy treatment. However, it is not yet certain if such
cryopreserved tissue can be successfully used later to restore
fertility in humans, as production of viable sperm from such
tissue has yet to be shown (2, 16).

The SCs, the only somatic cell type in the seminiferous tubules,
can be considered the real “director” of spermatogenesis (22).
They directly interact with germ cells, by the secretion of specific
factors, to control their proliferation and differentiation toward
spermatogenic completion (23–27). SCs growth factors, such as
glial cell line-derived neurotrophic factor (GDNF), have been
identified as the most important upstream factors that regulate
SSC germ cell self-renewal and spermatocyte meiosis (28). In
particular, the GDNF is a member of the transforming growth
factor beta (TGF-b) superfamily that binds to the RET/GFRA1
receptor complex at the surface of undifferentiated spermatogonia,
and is known for its ability to drive GSC self-renewal and
proliferation of their direct cell progeny (29, 30).

The importance of GDNF for germ cell development was
uncovered by the seminal work of Meng and colleagues (31)
who demonstrated that mice heterozygous for GDNF, though
fertile, exhibit increased numbers of seminiferous tubules lacking
spermatogonia as the animals aged. Conversely, transgenic
animals overexpressing GDNF display an accumulation of
undifferentiated spermatogonia. Thereafter, it was demonstrated
that GFRA1 and RET proteins and mRNA are expressed in these
cells (32–34), confirming that they are able to respond to
GDNF influence.

In the last few years evidence has been found linking germ cell
toxicity mediated by chemotherapy drugs to the appearance of
epigenetic modifications in treated subjects (35, 36).
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DNA methylation, considered as one of the main epigenetic
mechanisms, is already known to influence male fertility (37). In
particular, DNA methylation converts cytosine to 5’-methyl
cytosine by at least 5 types of DNA methyl-transferases
(DNMTs) (38). Such methylation occurs in the so-called “CpG
islands” (cytosine-phosphate-guanine), which are regions of
DNA rich in dinucleotide formed by cytosine that precedes
guanine. This mechanism, together with the eventual
deacetylation of histone lysine, is responsible for the compact
conformation of chromatin which inactivates the transcription of
the genes of interest by preventing the access of transcription
factors to promoter regions rich in CpG islands (39). Gene
silencing by DNA hypermethylation is the final result of this
process (40). DNA methylation and histone modifications are
important regulators involved in chromatin remodeling essential
for the transcription of several genes in the testes, indicating a
direct influence of epigenetic mechanisms on the process of
spermatogenesis. On the contrary, an aberrant methylation of
genomic DNA, which affects about 14% of the paternal genes, is
associated with oligospermia or oligo-astenoterazoospermia
(41). Moreover, recent data show that GDNF expression is
regulated by epigenetic mechanisms in glioma and Sertoli cells
(42, 43).

It was demonstrated that eicosapentaenoic acid (EPA), a fatty
acid with anti-cancer properties, is able to decrease DNA
methylation levels through the activation of ten-eleven
translocation enzymes proteins (TETs). They convert 5-
methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC),
thus promoting re-expression of si lenced genes by
hypermethylation (44).

Furthermore, EPA can inhibit histone deacetylase 1
(HDAC1) and DNMT expression and activity, which are the
enzymes responsible, respectively, for the deacetylation of
histone lysine residues and for the methylation of cytosine in
the CpG islands of DNA (45). Previous studies demonstrated the
protective effect of EPA through the inhibition of apoptosis,
lipoperoxidation and the production of oxygen-active radical
species in mouse SCs cultures (46).

In this study, we report the effects on porcine neonatal SCs “in
vitro” of three different chemotherapeutic agents, cisplatin, 4-
Hydroperoxycyclophosphamide (40HP) and doxorubicin,
commonly administered to pre-pubertal candidates undergoing
anti-cancer therapy, and the positive effects of EPA on these
gonado-toxic compromised SCs.
MATERIALS AND METHODS

Primary Cultures of Porcine
Pre-Pubertal SCs
Animal studies were performed in agreement with the guidelines
adopted by the Italian Approved Animal Welfare Assurance (A-
3143-01) and European Communities Council Directive of 24
November 1986 (86/609/EEC). The experimental protocols were
approved by the University of Perugia. Three large white
neonatal pigs (15 to 20 days old) were used as SCs donors.
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Pure porcine neonatal SCs were isolated, purified and
characterized according to previously established methods
(47, 48).

Chemotherapeutic Drugs/EPA Treatment
Pure porcine pre-pubertal SCs cultures were maintained at 37°C
in a 5% CO2 humidified atmosphere in HAMF12 (Euroclone,
Milan, Italy) supplemented with 0.166 nM retinoic acid (Sigma-
Aldrich Co., St. Louis, MO, USA) and 5 mL/500 mL of Insulin-
Transferrin-Selenium (ITS) + Premix (Cat. No. 354352; Corning,
MA, USA) in the absence (untreated-control group) or presence
of chemotherapeutic agents whose concentrations were chosen
to include the range of detected serum levels in patients (49) and,
cisplatin at the highest concentration plus EPA and 5-aza-2’-
deoxy-cytidine (50, 51).

EPA effects were evaluated using the final concentration of
100 µM according to Finstad et al. (50).Variable effects of PUFA
(polyunsaturated fatty acids) on proliferation, differentiation and
apoptosis in leukemia cells have been reported in relation to cell
line and fatty acid concentration. EPA; 20:5, n-3 turned out to be
the most potent inhibitor of proliferation in a dose-dependent
way; [100 µM] is the optimal concentration to get the maximum
effect without inducing cytotoxicity.

The treatments were performed for 48 plus 24 h of recovery
as follows:

• cisplatin 0.33 µM, 1.66 µM and 3.33 µM;
• 40HP 50 and 100 µM;
• doxorubicin 0.1 µM, 0.2 µM and 1 µM;
• cisplatin 3.33 µM plus EPA 100 µM;
• cisplatin 3.33 µM plus 5-aza-2’-deoxy-cytidine (5 AZA) 1 µM.
Immunofluorescence Analysis
To detect the presence of 5hmC, immunostaining was performed
according to previously reported methods with minor changes
(52). Briefly, untreated and cisplatin plus EPA treated SCs
monolayers were grown on glass chamber slides (LabTek II,
Nunc; Thermo Fisher, Rochester, NY, USA) and fixed in 4%
PFA-PBS for 30 min. Ten fixed cells then were subjected to
permeabilization (PBS, 0.2% Triton X-100) for 5 min at room
temperature and blocked with 0.5% BSA (Sigma-Aldrich) in PBS
for 10 min prior to exposure to mouse 5hmC HMC/4D9
(EPIGENTEK, Farmingdale, New York, USA, 1:300) over
night at +4°C. The cells were then washed in PBS three times
for 5 min and then exposed to the secondary Alexa Fluor 488-
labeled anti-mouse secondary antibody (Thermo Fisher
Scientific, Waltham, MA, USA, 1:100). Thereafter, the cells
were treated with RNAse (10 mg/ml; Sigma-Aldrich) and
counterstained for 1 min with 4′,6-Diamidino-2-phenylindole
dihydrochloride (DAPI) Sigma-Aldrich).

Negative controls bypassed the primary antibody treatment.
Cells were mounted on slides with ProLong Gold anti-fade
reagent (Molecular Probes). To evaluate the percentage of
5hmC positive cells, chamber slides were analyzed using a BX-
41 microscope (Olympus, Tokyo, Japan) equipped with a
fluorescence photocamera (F-viewer; Olympus); images were
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processed with Cell F imaging software (Olympus), and 10
different sections, containing at least 500 cells in total,
were counted.

Quantitative, Real-Time PCR
Total RNA was extracted using the TRIzol reagent (Invitrogen,
Carlsbad, CA, USA), according to the manufacturer’s guidelines
(53). Total RNA (1mg) was subjected to reverse transcription
using Quanti Tect Reverse Transcription Kit (Qiagen, Hilden,
Germany) in a final volume of 20 mL. Real-time PCR was
performed using 16 ng of cDNA prepared by the RT reaction
and SYBR Green master mix (Stratagene, Amsterdam, the
Netherlands). The primer sequences of each gene are listed in
Table 1. Real-time PCR was carried out in an Mx3000P cycler
(Stratagene, Amsterdam, Netherlands) using FAM for detection
and ROX as a reference dye. The mRNA level of each sample was
normalized by b-actin mRNA and expressed as fold changes vs
the level of the control group.

Protein Extraction and Western
Blot Analysis
Protein samples (70 µg) from total cell lysates were subjected to
SDS-PAGE, electroblotted onto a nitrocellulose membrane
(Schleicher and Schuell, Keene, NH, USA), and probed with
anti GDNF EPR2714N (ab176564, abcam, Cambridge, UK)
antibody. Immunoreactive bands were visualized using the
ECL assay (Amersham Pharmacia Biotech, Little Chalfont,
United Kingdom). Anti-b-Tubulin antibody (Millipore Sigma)
was used to normalize. Images were acquired using the VersaDoc
Imaging System (Bio-Rad, Hercules, CA, USA), and signals were
quantified using Quantity One software (Bio-Rad).

AMH and Inhibin B Secretion Assay
Aliquots of culture media from untreated and cisplatin plus EPA
treated SCs were collected and stored at -20°C for subsequent
assessment of AMH (AMH Gen II ELISA, Beckman Coulter,
Webster, TX, USA) and inhibin B (inhibin B Gen II ELISA,
Beckman Coulter) secretion levels as previously described (54).

Chemicals and Reagent
Ketamine (Ketavet 100) was purchased by Intervet, Milan, Italy.

Dexmedetomidine (Dexdomitor) was purchased by Orion
Corporation, Finland.

HAMF12, PBS, HBSS were purchased by Euroclone,
Milan, Italy.

Retinoic acid, PFA, bovine serum albumin (BSA) fraction V
(fatty acid free), Triton X-100, RNase, 4′,6-Diamidino-2-
phenylindole dihydrochloride (DAPI) were purchased by
Sigma-Aldrich Co., St. Louis, MO, U.S.A.
Frontiers in Endocrinology | www.frontiersin.org 4
Insulin-Transferrin-Selenium (ITS) + Premix was purchased
by Corning, MA, U.S.A.

Cisplatin and Doxorubicin were purchased by TEVA,
Milan, Italy.

4-hydroxxycyclosphosmamide (4OHP) was purchased by
Niomech, Bielefeld, Germany.

Eicosapentaenoic acid (EPA, 20:5, n-3), anti-b-Tubulin
antibody and 5-aza-2’-deoxycytidine (5-aza) were purchased
from MilliporeSigma, Burlington, MA, U.S.A.

Glass chamber slides (LabTek II), were purchased by Nunc,
Thermo Fisher, Rochester, NY, U.S.A.

5-hydroxymethylcytosine (5-hmC), HMC/4D9 was
purchased by EPIGENTEK, Farmingdale, New York, U.S.A.

Secondary Alexa Fluor 488-labeled anti-mouse secondary
antibody was purchased by Thermo Fisher Scientific, Waltham,
MA, U.S.A.

ProLong Gold anti-fade reagent was purchased by Molecular
Probes, Eugene, Oregon, U.S.A.

BX-41 microscope, fluorescence photocamera (F-viewer) and
Cell F imaging software were purchased by Olympus,
Tokyo, Japan.

TRIzol reagent was purchased by Invitrogen, Carlsbad,
CA, U.S.A.

Quanti Tect Reverse Transcription Kit was purchased by
Qiagen, Hilden, Germany.

SYBR Green master mix was purchased by Stratagene,
Amsterdam, the Netherlands).

Mx3000P cyc l e r was purchased by St ra tagene ,
Amsterdam, Netherlands.

Nitrocellulose membranes were purchased by Schleicher and
Schuell, Keene, NH, U.S.A.

anti GDNF EPR2714N (ab176564) was purchased by Abcam,
Cambridge, UK.

ECL assay was purchased by Amersham Pharmacia Biotech,
Little Chalfont, United Kingdom.

VersaDoc Imaging System and Quantity One software were
purchased by Bio-Rad, Hercules, CA, USA.

AMH (AMH Gen II ELISA) and inhibin B (Inhibin B Gen II
ELISA) were purchased by Beckman Coulter, Webster,
TX, U.S.A.

SigmaStat 4.0 software was purchased by Systat Software Inc.,
CA, U.S.A.

Statistical Analysis
Values are reported as the means ± S.E.M. of three independent
experiments, each performed in triplicate. Statistical analysis was
performed using the paired Student’s t-test with SigmaStat 4.0
software (Systat Software Inc., CA, USA). All tests were
performed in triplicate, and differences were considered
May 2021 | Volume 12 | Article 694796
TABLE 1 | Primer sequences for PCR analyses.

Gene Forward sequences (5′–3′) Reverse sequences (5′–3′)

AMH GCGAACTTAGCGTGGACCTG CTTGGCAGTTGTTGGCTTGATATG
Inhibin B CCGTGTGGAAGGATGAGG TGGCTGGAGTGACTGGAT
GDNF TCAAGCCACCATCAGAAGA TAGCCCAAACCCAAGTCA
b-actin ATGGTGGGTATGGGTCAGAA CTTCTCCATGTCGTCCCAGT
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statistically significant at p <.05, p <.01, and p <.001 compared to
untreated SCs.
RESULTS

SCs Purification and Characterization
SCs isolated from testes of Large White pre-pubertal pigs were
highly purified (95%) as indicated by the immunostaining for
AMH, a specific and unique pre-pubertal SCs marker.

The presence of contaminating cells was extremely low (<5%)
according to a previously describe staining technique by Arato
et al. (54).

5hmC Immunofluorescence Analysis
After 48 h of treatment to various concentrations of Cisplatin,
including 0.33 µM, 1.66 µM and 3.33 µM immunofluorescence
analysis showed a statistical reduction of 5hmC in a dose-
dependent manner compared to untreated SCs (Figures 1A–D).

The same behavior was observed following treatment with 50
and 100 40HP (Figures 2A–C) and at the 0.1 µM, 0.2 µM and
1µM doxorubicin concentrations in comparison with the control
group (Figures 3A–D).

GDNF Protein and Gene Expression
The gene expression levels of GDNF were significantly down-
regulated after treatment to all three cisplatin concentrations in a
dose-dependent manner compared to untreated SCs.

Similarly, the protein expression level of GDNF also was
significantly down-regulated in all experimental conditions
compared to the untreated SCs (Figures 1E–G).
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A similar trend was recorded upon 50 and 100 of 40HP, in
term of gene and protein expression levels, in comparison with
the control group (Figures 2D–F). In addition, compared with
the control group, the gene and protein expression levels of
GDNF were significantly down-regulated also following
treatment to all three doxorubicin concentrations in a dose-
dependent manner compared to untreated SCs (Figures 3E–G).

Finally, the Figures 4A–C shows the protective effect of EPA
100 µM by an up-regulation in both gene and protein expression
levels of GDNF at the 3.33 µM cisplatin concentration in
comparison with the control group. SCs were also treated with
the combination of cisplatin 3.33 µM plus 5AZA 1µM in order to
further validate the involvement of the methylation process in
GDNF gene regulation; this molecule is a well-known
demethylating agent used in various therapeutic anticancer
treatments. The figure shows that the effect induced by 5AZA
with cisplatin treatment is comparable to that caused by EPA
with cisplatin treatment, thus assuming a link between the
protective effect of the fatty acid and a demethylating action.

Sertoli Cell Functional Competence
The gene expression levels of AMH and inhibin B, as specific
markers of SCs function, were significantly down-regulated
following cisplatin 3.33 µM treatment but, were significantly
recovered only when coupling the cisplatin 3.33 µM and EPA
100 µM treatment, with values comparable to the control group
(Figures 5A, C). Similarly the secretion of AMH and inhibin B,
was significantly decreased after cisplatin 3.33 µM treatment but
were significantly recovered following treatment with cisplatin
3.33 µM plus EPA 100 µM with values comparable to the control
group (Figures 5B, D).
A B D

E F G

C

FIGURE 1 | Cisplatin treatment: Immunofluorescence Analysis - Real-Time PCR -WB and densitometric analysis. 5hmC was evaluated by IF (A–D) and GDNF by
Real Time PCR (E) WB and densitometric analysis (F, G) in control group and after cisplatin 0.333, 1.66 and 3.33µM treatment. See text for more details. Data
represent the mean ± S.E.M. (**p < 0.01 and ***p < 0.001 respect to untreated SCs) of three independent experiments, each performed in triplicate.
May 2021 | Volume 12 | Article 694796
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A B D

E F G

C

FIGURE 3 | Doxorubicin treatment: Immunofluorescence Analysis - Real-Time PCR - WB and densitometric analysis. 5hmC was evaluated by IF (A–D) and GDNF
by Real Time PCR (E) WB and densitometric analysis (F, G) in control group and after doxorubicin 0.l, 0.2 and 1 µM treatment. See text for more details. Data
represent the mean ± S.E.M. (**p < 0.01 and ***p < 0.001 respect to untreated SCs) of three independent experiments, each performed in triplicate.
A B

D E F

C

FIGURE 2 | 4OHP treatment: Immunofluorescence Analysis - Real-Time PCR – WB and densitometric analysis. 5hmC was evaluated by IF (A–C) and GDNF by
Real Time PCR (D) WB and densitometric analysis (E, F) in control group and after 40HP 50 and 100 µM treatment. See text for more details. Data represent the
mean ± S.E.M. (**p < 0.01 respect to untreated SCs) of three independent experiments, each performed in triplicate.
Frontiers in Endocrinology | www.frontiersin.org May 2021 | Volume 12 | Article 6947966
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DISCUSSION

The increasing numbers of male pre-pubertal cancer survivors
has spurred interest regarding the quality of adult life in these
individuals, with increasing importance given to reducing the
well-defined long-term side effects of toxic agents used in anti-
cancer therapies (55, 56). At present, chemotherapeutic drugs are
considered to be highly toxic to the pre-pubertal testis by direct
Frontiers in Endocrinology | www.frontiersin.org 7
DNA and RNA damage and the activation of apoptotic
pathways (57).

Clearly the use of these agents pose a significant likelihood of
reducing the establishment of a normal adult fertility potential in
young boys undergoing cancer treatment (58, 59) making,
therefore, fertility preservation, as determined by intra-
testicular cellular events in pre-pubertal testes, most important.
In the present study we addressed the effect of EPA on pre-
pubertal porcine SCs “in vitro” which had been previously
exposed to a clinically-relevant range of the anti-cancer agents
cisplatin (0.33, 1.66 and 3.33 µM), 40HP (50 and 100 µM) and
doxorubicin, (0.1, 0.2 and 1 µM) all of which have deleterious
effects on normal male fertility.

Determining the impact of these gonado-toxic anti-cancer
agents on the compromised pre-pubertal porcine SCs was
considered appropriate because animal studies have
determined that anti-cancer treatment, in the form of cytotoxic
chemotherapy and radiotherapy, can cause long-lasting damage
to SCs critical in promoting germ cell survival (49, 60).
Establishment of complete spermatogenesis will depend on the
degree of damage caused to GSC, either directly or indirectly
following impairment of SCs in the pre-puberal testis; and, of
course, pre-pubertal boys subjected to gonado-toxic cancer
treatment, as previously described, can likely suffer significant
depletion of GSC due to SC damage and ultimately resulting in
permanent azoospermia (8). GSC is the only germ cell
population present during pre-pubertal life until the onset of
spermatogenesis at puberty at which time they divide and
ultimately enter meiosis to form spermatozoa in the adult
(61–63).

SCs are a critical component of the GSC niche where
homeostasis is maintained by the interplay of several
signaling pathways and growth factors such as the GDNF
(64). The GDNF, interacting with the RET/GFRA1 receptor
complex on the surface of undifferentiated spermatogonia, acts
as a mitogenic agent regulating the renewal of the pool of GSC
spermatogonial stem cells, a target of gonado-toxic therapies
(28). In particular, RET and GFRA1 are concomitantly
expressed in Apaired and some Aaligned GSC. The role of
GDNF signaling in GSC proliferation and differentiation has
been unequivocally demonstrated by studies in vivo using
Gdnf+/- mice and mice testis as well as by studies “in vitro”
in which GDNF was identified as an essential factor for
spermatogonial stem cell (65). Additionally, by using
xenograft transplantations of neonatal knockout testes,
Naughton et al. demonstrated that the absence of GDNF or
its receptors RET and GFRA1 after birth led to a lack of GSC
and failure of spermatogenesis (29).

In the current study, we observed that there was a significant
reduction in both gene and protein expression levels of GDNF
after treatment with all three cisplatin concentrations in a dose-
dependent manner compared to untreated SCs. A similar trend,
in a dose-dependent manner in comparison with the control
group, was recorded following treatment with 50 and 100 µM
40HP and also following treatments with all three doxorubicin
concentrations. These effects were concomitant with a significant
A

B

C

FIGURE 4 | Cisplatin plus EPA treatment: Real-Time PCR - WB and
densitometric analysis. Evaluation of the protective effect of EPA 100µM on
GDNF gene (A) and protein expression upon cisplatin 3.33 µM treatment by
WB (B) and densitometric analysis (C). See text for more details. Data represent
the mean ± S.E.M. (*p < 0.05, **p < 0.01, and ***p < 0.001 respect to
untreated SCs) of three independent experiments, each performed in triplicate.
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reduction of 5hmC levels on the entire genomic DNA in a dose-
dependent manner following treatment with all three
chemotherapeutic drugs when compared to control groups.
After observing the damage of chemotherapy treatments on
porcine SCs culture, in terms of gene and protein expression of
GDNF and the reduction of 5hmC levels, we have shown the
protective effect of EPA only at the highest concentration of
cisplatin of 3.33µM, since this drug had a greater toxic effect than
exposure to 4OHP or doxorubicin.

After observing that EPA treatment resulted in maintaining
the functional status of SCs by increasing both gene and protein
expression levels of GDNF, compared with the control group, we
hypothesize the involvement of a demetilating action in up-
regulating GDNF gene transcription. In support of this
speculation, SCs were treated with cisplatin plus 5AZA (a well-
known demethylating agent used in different chemotherapy
treatments of tumor pathologies) obtaining an up-regulation of
GDNF expression comparable to that induced by EPA treatment,
even though the treatment with fatty acid showed a greater
efficacy. The use of EPA as a demethylating agent avoids the
onset of the toxic effects that normally accompany the
chemotherapy treatment with generalized-acting demethylating
agents such as 5-AZA. EPA in fact, acts to recover a correct gene
expression if this is modified (66).

In the present study, we further assessed the effect of EPA
on SCs functional competence the evaluation of AMH and
inhibin B secretion, two well-known specific and important
Frontiers in Endocrinology | www.frontiersin.org 8
markers of SCs functionality (67, 68). We observed an up-
regulation in both AMH gene expression and secretion
following cisplatin 3.33 µM plus EPA 100µM treatment
with values comparable to the control group. This is
consistent with previous findings that AMH represents one
of the most useful markers of testis functionality during the
pre-pubertal period (54). In addition, we observed an
increase in inhibin B gene expression and secretion upon
cisplatin 3.33 µM plus EPA 100µM treatment also with values
comparable to the control group. Inhibin B measurements are
used in clinical practice to evaluate the presence and function
of SCs during childhood and may be a promising indicator of
diminished sperm production as a result of cytotoxic
chemotherapy (69).

The present work, pertinent to male infertility in pre-pubertal
candidates for gonado-toxic therapies, suggests that EPA acts as
a modulator of SCs GDNF, promoting its epigenetic regulation
and restoring SCs function damaged following radio or
chemotherapy drugs.

Because EPA resulted in the recovery of GDNF in SCs “in
vitro”, a mechanism by which new germ cells are induced
“in vivo”, we hypothesize that the use of EPA may be useful in
suppressing the deleterious effects of chemo and or radiotherapy
on fertility potential for cancer in pre-pubertal and pubertal boys.
In conclusion, with the growing population of early childhood
cancer survivors, there is an urgent need to develop new
strategies against oncological treatments to safeguard the
A B

DC

FIGURE 5 | Cisplatin plus EPA treatment: SCs functional analysis. AMH (A, B) and inhibin B (C, D) were evaluated by Real Time PCR (A, C) and ELISA assay
(B, D) following cisplatin 3.33µM plus EPA 100µM treatment. Data represent the mean ± S.E.M. (*p < 0.05, **p < 0.01, and ***p < 0.001 respect to untreated SCs)
of three independent experiments, each performed in triplicate.
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fertility potential of this group of patients, strategies such as
suggested by the results of this study.
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