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Abstract: Multiple sclerosis (MS), a chronic autoimmune disorder, affects the central nervous system
of many young adults. More than half of MS patients develop cognition problems. Although
several genomic and transcriptomic studies are currently reported in MS cognitive impairment, a
comprehensive repository dealing with all the experimental data is still underdeveloped. In this study,
we combined text mining, gene regulation, pathway analysis, and genome-wide association studies
(GWAS) to identify miRNA biomarkers to explore the cognitive dysfunction in MS, and to understand
the genomic etiology of the disease. We first identified the dysregulated miRNAs associated with
MS and cognitive dysfunction using PubTator (text mining), HMDD (experimental associations),
miR2Disease, and PhenomiR database (differentially expressed miRNAs). Our results suggest that
miRNAs such as hsa-mir-148b-3p, hsa-mir-7b-5p, and hsa-mir-7a-5p are commonly associated with
MS and cognitive dysfunction. Next, we retrieved GWAS signals from GWAS Catalog, and analyzed
the enrichment analysis of association signals in genes/miRNAs and their association networks. Then,
we identified susceptible genetic loci, rs17119 (chromosome 6; p = 1 × 10−10), rs1843938 (chromosome
7; p = 1 × 10−10), and rs11637611 (chromosome 15; p = 1.00 × 10−15), associated with significant
genetic risk. Lastly, we conducted a pathway analysis for the susceptible genetic variants and
identified novel risk pathways. The ECM receptor signaling pathway (p = 3.98 × 10−8) and PI3K/Akt
signaling pathway (p = 5.98 × 10−5) were found to be associated with differentially expressed
miRNA biomarkers.

Keywords: multiple sclerosis; cognition; genes; miRNA; GWAS signals; pathways; text mining

1. Introduction

Multiple sclerosis (MS) is a long-lasting autoimmune disease of the central nervous
system (brain and spinal cord) that leads to demyelination and neurodegeneration [1].
Nearly 2.5 million patients are suffering with MS worldwide, and individuals in the
age group of 20 to 40 are the most affected [2]. MS is termed as a medical mystery
because the cause of the disease remains elusive. A common assumption is that MS
is caused by an abnormal immune response to ecological factors in individuals with a
genetic predisposition [3]. A neurological manifestation of MS comprises motor and visual
deficits, limb weakness, sensory problems, gait ataxia, uncontrolled bladder, and cognitive
decline [4,5]. In addition to the known motor and sensory problems, the effect of cognitive
dysfunction is very common in more than half of all the individuals with MS [6,7].

Apart from MS, cognitive dysfunction is a common condition in patients with neu-
rodegenerative diseases. It causes focal impairment to brain structures mediating mild to
moderate cognition, and it affects personality, behavior, and decision-making abilities [8,9].
Cognitive dysfunction in MS patients specifically includes declined information processing,
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memory, concentration, reasoning, and verbal fluency [10,11]. The pathological characteris-
tics of MS include multifocal lesions, inflammation, loss of oligodendrocyte, various ranges
of axonal injury, gliosis, and temporary dysfunction to permanent loss [12].

In our study, we aimed to identify biomarkers in MS cognitive impairment analysis us-
ing miRNA pathway associations involved in MS cognition. Biomarkers play an important
role in the primary assessment and evaluation of a disease, which helps in early detection
and treatment. They act as the indicators of changes in normal biological processes and
pathological processes, helping to extend our knowledge about the underlying disease
conditions [13]. Biomarkers identify neurological disease at an early stage and help to
determine the disease condition. If the disease worsens or improves in the patient, the
concentration of the biomarker might increase or decrease accordingly; hence, biomarkers
act as a noninvasive method of detection for the patients [14].

Gaetani et al. investigated cerebrospinal fluid biomarkers and determined different
neuropsychological patterns of cognitive deficits in MS [15]. The cerebral hypoperfusion in
MS is associated with chronic hypoxia, focal lesion formation, diffuse axonal degeneration,
cognitive dysfunction, and fatigue. MS patients with pathological vascular abnormalities
may have reduced quality of life and worsened cerebral perfusion, which may contribute
to greater disease progression. Patients with cerebrovascular diseases have poor cognitive
performance in MS. These findings suggest that restoring the cerebral blood flow may act
as a new therapeutic target in MS [16,17].

The identification of disease-specific biomarkers provides an opportunity to the pa-
tients to start the treatment early enough to delay the disease progression [11]. Examples of
biomarkers in the progression of MS are (i) MxA expression defining the pathological effect
of interferon-β (IFN-β) in vivo [18], (ii) TNF-related apoptosis-inducing ligand (TRAIL), a
potential biomarker of IFN-β therapeutic efficacy [19], (iii) complement regulator factor
H, a serum biomarker predicted to be effective in disease progression [20], and (iv) the
genes CHI3L1 and NF-L, recently identified as biomarkers for mild cognitive impairment in
early stages of MS at genomic levels [21]. MicroRNAs (miRNAs) play an important role in
various cellular functions and disease-causing mechanisms [22,23]. miRNAs are known to
play a critical role in neuron development and maintenance of the central nervous system,
including neural differentiation, synaptic plasticity, and cognitive functions [24,25].

An MS cognition study performed by Liguori et al. demonstrated the expression
of miRNA in association with cognitive impairment in pediatric MS and reported the
associated genes, BST1, NTNG2, SPTB, and STAB1 [26]. Due to the complexity of the
disease, various clinical phenotypes are observed in patients at different stages of MS, which
led the researchers to analyze various biological and pathological pathways responding to
the therapy at both genomic and transcriptomic levels [27,28]. Despite the occurrence of
cognitive symptoms in MS, the role of miRNAs and their target mRNAs associated with
cognitive decline and neuropsychiatric problems in MS disease is less reported. A study by
Scapoli et al. highlighted the influence of vascular components in MS. The study combined
the transcriptome analysis of the internal jugular vein (IJV) walls from MS patients and
whole-exome sequencing (WES) [29]. Studies on the expression patterns of the IJV wall in
MS through combined transcriptome–protein analysis highlighted the proteins of interest
for MS pathophysiology [30].

GWAS and other mapping studies have identified 250 loci for autoimmune diseases,
some of which are common to two or more diseases. Most of the variants are in the noncod-
ing regions, especially in miRNA target sites [31]. miRNAs act by imperfect base paring
with target messenger RNA (mRNA), leading to the negative regulation of mRNA. Single-
nucleotide polymorphisms (SNPs) in mRNA sites complementary to miRNA are referred
to as miRSNPs [32]. miRSNPs have functional consequences for autoimmune diseases
including MS [31]. Statistical approaches and meta-analysis of neurological diseases A
recent study showed that miRSNPs have an expression quantitative trait locus (eQTL)
effect on genes reported in GWAS [33], and the number of miRSNPs associated with human
diseases keep increasing [34,35]; A recent study integrated GWAS with pathways to report
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novel risk pathways and genes [36]. We believe that the existing analysis on MS cognitive
dysfunction can reveal the pathways and genes with common risks that are associated
with the cognitive dysfunction in MS. This study can clarify the disease mechanism and its
genetic etiology.

This paper extracted the biomarkers for various cognitive function changes in MS
patients reported by high-throughput experiments and other experimental techniques
from PubMed abstracts using PubTator [37], a text-mining tool. Cognitive problems
occurring due to alterations in normal functions of memory, attention and concentration,
information processing, executive function, and verbal fluency that are associated with
cognitive dysfunction, cognitive impairment, cognitive decline, etc. are reported here. MS
cognition and potential disease associations were identified for a wide range of clinical use.
While many MS cognition-associated biomarkers have been reported in recent years, this is
the first attempt to present an integrated approach to study all the genes, miRNAs, and
associated pathways.

2. Materials and Methods
2.1. Data Collection

We extracted the research articles from PubMed (https://www.ncbi.nlm.nih.gov/
pubmed, accessed on 30 June 2019) using the search terms multiple sclerosis and cognition:
“multiple sclerosis” [MeSH terms] OR (“multiple” [all fields] AND “sclerosis” [all fields])
OR “multiple sclerosis” [all fields]) AND (“cognitive” [all fields] OR “cognition” [all fields])
AND “humans” [MeSH terms]. We retrieved 4102 publications (June 2019) and exported
the PubMed IDs of retrieved articles to a text file for further processing. The retrieved
articles were used as input for text-mining analysis.

2.2. Gene Concept Finding Using PubTator

PubTator [37] supports five kinds of biological concepts: gene, disease, chemical,
species, and mutation. We utilized the gene concept finding, a module within PubTator,
for recognizing miRNA and gene mentions in PubMed articles. (https://www.ncbi.nlm.
nih.gov/research/bionlp/APIs/usage/, accessed on 30 June 2019) [38]. The gene concept
finding module contains information on genes (and gene IDs) reported in each PubMed
article. Text-mining results from PubTator were retrieved using libwww-perl (LWP), a
Perl script. The retrieved information was manually verified, and a nonredundant set of
data was mapped to Entrez gene name. For each gene, the official gene symbol approved
by the HUGO gene nomenclature committee (HGNC) [39] was retrieved from the NCBI
database [40].

2.3. Predicting Gene–miRNA Targets

We used DIANA-TarBase v8.0, a database which provides high-quality manually
curated experimentally validated miRNA–gene interactions [41], to determine the experi-
mentally validated miRNA–gene interactions. The database includes information on the
methodology, experimental conditions such as cell/tissue type, and study design. The
results are enhanced with detailed metadata. The genes associated with MS cognition
in human were used to determine the corresponding miRNA targets and the associated
mRNAs. A single miRNA can bind to hundreds of target mRNAs, or a single mRNA can
be targeted by multiple miRNAs. These miRNA–mRNA associations play an important
role in the regulation of genome [42–44].

2.4. Identification and Analysis of Genetic Risk Variants

GWAS Catalog [45] was used to identify the risk variants associated with MS and
cognitive dysfunction. For MS, we used the keyword “multiple sclerosis”. For cognitive
dysfunction, we used two keywords, “cognitive impairment” (CI) and “cognitive decline”
(CD). A list of 458 associated genetic variants were retrieved for MS, 150 associated genetic
variants were retrieved for CI, and 33 associated genetic variants were retrieved for CD.

https://www.ncbi.nlm.nih.gov/pubmed
https://www.ncbi.nlm.nih.gov/pubmed
https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/usage/
https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/usage/
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We selected 77 genetic variants for MS and 25 genetic variants for CI with a p-value less
than 1 × 10−5. For MS, the genetic variants were associated with MS, MS pleiotropy, MS
neuromyelitis optica, and MS cholesterol measurements. For CI, the genetic variants were
associated with cognitive decline rate in late mild cognitive impairment. For CD, no genetic
variants with a p-value less than 1 × 10−5 were retrieved.

2.5. Function Analysis

HaploReg tool (v4.1) [46] was used to annotate the genetic variants, 77 for MS and
25 for CI, and to identify both coding and noncoding mutations. PhenoScanner (v2) [47]
database, a collection of human genotype–phenotype associations, was used to perform
eQTL analysis on the selected genetic variants. In addition, we used miRDSNP (mirdsnp.ccr.
buffalo.edu), a database of disease-associated SNPs and microRNA target sites on 3’UTRs
of human genes and MSDD (MiRNA SNP Disease Database, http://bio-bigdata.hrbmu.
edu.cn/msdd/, accessed on 15 July 2019) [48] to determine miRNA.

2.6. Pathway Analysis

DIANA-mirPath (mirPath v.3) [49] is a webserver for miRNA pathway analysis that
utilizes KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways for analysis. This
webserver utilizes experimentally validated miRNA interactions derived from DIANA-
Tarbase database [41]. In this study, we used a combined list of MS cognition genes
by using overrepresentation statistical analysis. This enrichment analysis identified the
pathways significantly enriched with genes targeted by at least one of the selected miRNAs.
The network was visualized using Cytoscape Software 3.7.2 [50]. This study used the
cytoHubba plugin in Cytoscape to determine the potential association of pathways to genes
associated with MS cognitive dysfunction [51]. The key genes responsible for MS cognitive
dysfunction were identified by the cytoHubba plugin and miRNA–gene network.

2.7. Functional Annotation

We performed functional annotation in two phases, functional annotation of genes
from text mining and other databases, and identification of risk pathways from the list
of risk variants from GWAS. We used DAVID, a Database for Annotation, Visualization,
and Integrated Discovery (https://david.ncifcrf.gov/, accessed on 1 August 2019), for
identifying the functional annotation of MS cognition genes. The input to DAVID was a list
of official gene symbols with a p-value cutoff of 0.05. We identified key biological processes
(BP), molecular functions (MF), and cellular components (CC) using DAVID [52,53]. For
this analysis, p < 0.05 was considered to be statistically significant, and the calculated false
discovery rate (FDR) score was taken for the study.

3. Results
3.1. Collection of MS Cognition Genomic and Transcriptomic Data from Literature

PubTator identified 16 genes and 20 miRNA mentions in 4102 PubMed articles re-
trieved for MS and cognition. A total of 318 gene–miRNA associations were retrieved
using the gene concept identification module of PubTator. All these associations were
manually curated and verified to get an accurate list of genes/miRNAs. A nonredundant
list of genes/miRNA and PubMed IDs were collected using an in-house Perl program. The
genes associated with MS cognition were further mapped to their official gene symbols
approved by HGNC, and a set of 16 genes were found to be involved in the cognition. A set
of 20 nonredundant miRNAs associated with cognitive dysfunction in MS were identified
and mapped to miRNA IDs from miRBase [54]. The identified list of genes and miRNAs
with PubMed reference is shown in Supplementary Table S1 (gene-pubmed).

3.2. Identification of miRNA–mRNA Targets

Using DIANA-TarBase v8.0, experimentally validated miRNA–gene interactions were
identified for each of the gene entity from our list of 16 genes. A total of 248 miRNA–

mirdsnp.ccr.buffalo.edu
mirdsnp.ccr.buffalo.edu
http://bio-bigdata.hrbmu.edu.cn/msdd/
http://bio-bigdata.hrbmu.edu.cn/msdd/
https://david.ncifcrf.gov/
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mRNA associations were found along with the experimental evidence and related PubMed
resource. This miRNA–mRNA pairs contained 83 nonredundant miRNAs, and these were
visualized using Cytoscape software. The list of miRNA–mRNA interactions is shown in
Supplementary Table S1 (gene-miRNA).

3.3. Functional Analysis of Genetic Variants

Functional analysis of genetic variants using Haploreg tool identified 63 eQTLS from
MS and one eQTL associated with CI. A total of 57 coding and 19 noncoding mutations
were found in MS, while 14 coding and 11 noncoding mutations were found in CI. Among
the noncoding mutations, 16 were novel transcripts and three were long noncoding RNAs
in MS, while eight were novel transcripts and three were long noncoding RNAs in CI. Using
PhenoScanner, we identified that 77 genetic variants were eQTLs in MS, and intronic and
intergenic locations were identified. The detailed descriptions are shown in Supplementary
Table S2 for MS and Supplementary Table S3 for CI. Allelic variations and more detailed
information are also provided.

3.4. KEGG Pathway Analysis

miRNAs involved in MS cognition dysfunctions were subjected to pathway analysis
using DIANA-mirPath (mirPath v.3). KEGG pathway analysis utilizes overrepresentation
statistical analysis and determines the experimentally validated results with a p-value.
The network was visualized using Cytoscape 3.2, and the cytoHubba plugin was used to
identify the hub genes associated with the reported pathways [55]. The miRNA–pathway
associations are shown in Supplementary Figure S1. The complete list of 185 miRNA
pathway interactions is given in Supplementary Table S4 (miR-KEGG).

Our results show the most significant pathways identified using the highest degree
of distribution of the nodes. hsa-mir-155-5p has a higher number of pathway interactions;
hence, this miRNA entity may serve as the main target for MS cognitive dysfunction
therapy and treatment. hsa-mir-182-5p, hsa-mir-320a, hsa-mir-148b-3p, and has-mir-301a-
5p also serve as the biomarkers in MS cognitive impairment analysis. Further analysis of
these miRNA pathway interactions determined the most significant pathways, as shown in
Figure 1. The ECM receptor pathway is highly involved in the miRNA pathway network.
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3.5. Identification of KEGG Pathways Based on Genetic Variants from GWAS

Using these 76 mapped genes of MS, we identified 100 pathways associated with
MS. Using 26 mapped genes of these genetic variants in CI, we identified 88 pathways
associated with CI. These pathways were determined using KEGG pathway mapper
https://www.genome.jp/kegg/tool/map_pathway1.html/, accessed on 15 August 2019).
From these results, we determined that the genes mapped by the genetic variants are also
involved in the ECM signaling pathway, PIK3/Akt signaling pathway, estrogen signaling
pathway, and TGF-beta signaling pathway. In addition, we performed the functional
annotation of the mapped genes of MS and CI.

3.6. DAVID Functional Annotation

All the target genes in the list were given as input to the DAVID tool to identify the
related KEGG pathways. Gene Ontology (GO) analysis results revealed that the target
genes were expressively enriched in biological processes (BP), including regulation of
neurological system process, defense response, regulation of neuron apoptosis, regulation
of synaptic transmission, regulation of signaling, neuron development, etc., as shown in
Table 1. Molecular functions (MF) in GO included cytokine activity, growth factor activity,
neurotrophin receptor binding, interferon-alpha/beta receptor binding, tumor necrosis
factor receptor superfamily binding, and structural constituent of cytoskeleton, as shown
in Table 2. Cellular components (CC) in GO involved the extracellular region, extracellular
region part, and extracellular space functions, as shown in Table 3. Data with the complete
list of reported GO functional annotation are shown in Supplementary Table S4. The genes
involved in each of GO term functional enrichment analysis reflect the enriched genes
involved in various biological pathways, as shown in Figure 2.

Table 1. GO analysis biological process (BP) of genes associated with cognitive dysfunction in MS.

GO ID Description Count p-Value Genes

GO:0031644 Regulation of neurological system process 6 4.75 × 10−7 BDNF, TNF, NTF4, NTF3, IL10, NGF

GO:0006952 Defense response 8 1.81 × 10−6 IL17A, IFNA1, TNF, STAB1, IFNB1, IL17F,
IL10, NGF

GO:0043523 Regulation of neuron apoptosis 5 2.36 × 10−6 BDNF, TNF, NTF3, NEFL, NGF

GO:0050804 Regulation of synaptic transmission 5 1.22 × 10−5 BDNF, TNF, NTF4, NTF3, NGF

GO:0009611 Response to wounding 7 1.30 × 10−5 IL17A, TNF, STAB1, IL17F, NEFL, IL10, NGF

GO:0044057 Regulation of system process 6 1.50 × 10−5 BDNF, TNF, NTF4, NTF3, IL10, NGF

GO:0051969 Regulation of transmission of
nerve impulse 5 1.66 × 10−5 BDNF, TNF, NTF4, NTF3, NGF

GO:0006954 Inflammatory response 6 1.91 × 10−5 IL17A, TNF, STAB1, IL17F, IL10, NGF

GO:0009617 Response to bacterium 5 4.85 × 10−5 TNF, STAB1, IFNB1, IL10, NGF

GO:0051384 Response to glucocorticoid stimulus 4 7.98 × 10−5 TNF, NEFL, IL10, NGF

GO:0031960 Response to corticosteroid stimulus 4 1.03 × 10−4 TNF, NEFL, IL10, NGF

GO:0042981 Regulation of apoptosis 7 1.36 × 10−4 BDNF, TNF, NTF3, IFNB1, NEFL, IL10, NGF

GO:0043067 Regulation of programmed cell death 7 1.44 × 10−4 BDNF, TNF, NTF3, IFNB1, NEFL, IL10, NGF

GO:0031175 Neuron projection development 5 1.45 × 10−4 BDNF, NTF3, NTNG2, NEFL, NGF

GO:0010941 Regulation of cell death 7 1.47 × 10−4 BDNF, TNF, NTF3, IFNB1, NEFL, IL10, NGF

GO:0051094 Positive regulation of
developmental process 5 1.99 × 10−4 BDNF, TNF, NTF3, NEFL, NGF

GO:0042742 Defense response to bacterium 4 2.34 × 10−4 TNF, STAB1, IFNB1, IL10

GO:0048666 neuron development 5 4.25 × 10−4 BDNF, NTF3, NTNG2, NEFL, NGF

GO:0043066 Negative regulation of apoptosis 5 5.01 × 10−4 BDNF, TNF, NEFL, IL10, NGF

https://www.genome.jp/kegg/tool/map_pathway1.html/
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Table 1. Cont.

GO ID Description Count p-Value Genes

GO:0043069 Negative regulation of programmed
cell death 5 5.28 × 10−4 BDNF, TNF, NEFL, IL10, NGF

GO:0060548 Negative regulation of cell death 5 5.33 × 10−4 BDNF, TNF, NEFL, IL10, NGF

GO:0030030 Cell projection organization 5 5.80 × 10−4 BDNF, NTF3, NTNG2, NEFL, NGF

Table 2. GO analysis molecular function (MF) of genes associated with cognitive dysfunction in MS.

GO ID Description Count p Value Genes

GO:0005125 Cytokine activity 6 1.30 × 10−6 IL17A, IFNA1, TNF, IFNB1,
IL17F, IL10

GO:0008083 Growth factor activity 5 2.07 × 10−5 BDNF, NTF4, NTF3, IL10, NGF

GO:0005165 Neurotrophin receptor binding 2 0.002156 NTF3, NGF

GO:0005132 Interferon-
alpha/beta receptor binding 2 0.009666 IFNA1, IFNB1

GO:0032813 Tumor necrosis factor receptor
superfamily binding 2 0.032931 TNF, NGF

GO:0005200 Structural constituent
of cytoskeleton 2 0.076944 NEFL, SPTB

Table 3. GO analysis cell component (CC) of genes associated with cognitive dysfunction in MS.

GO ID Description Count p Value Genes

GO:0005576 Extracellular region 12 1.04 × 10−6
IL17A, IFNA1, BDNF, TNF, NTF4,
NTF3, IFNB1, IL17F, CHI3L1,
NTNG2, IL10, NGF

GO:0044421 Extracellular region part 9 3.93 × 10−6 IL17A, IFNA1, TNF, IFNB1, IL17F,
CHI3L1, NTNG2, IL10, NGF

GO:0005615 Extracellular space 8 5.43 × 10−6 IL17A, IFNA1, TNF, IFNB1, IL17F,
CHI3L1, IL10, NGF
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The functional annotation of 63 mapped genes from MS genetic variants and 26 mapped
genes from CI genetic variants was determined using the DAVID tool. The results of KEGG
enrichment analysis and GO pathway analysis are shown in Supplementary Table S5 for
MS and Supplementary Table S6 for CI.

3.7. Identification of Key Risk Genes in miRNA–Gene Network

The miRNA–mRNA interactions involving 16 genes and 83 miRNAs were studied
to determine the most significant genes that may act as risk genes in the complete MS
cognition network. Among these interactions, brain-derived neurotrophic factor (BDNF)
was the most significant gene, followed by interferon beta (IFNB), neurofilament L (NEFL),
neurotropin (NTF3), and interleukin 10 (IL10). These genes were found to be the top five
nodes ranked by cytoHubba, as shown in Figure 3. Other important genes included nerve
growth factor (NGF) and chitinase-3-like protein 1 (CH3L1).
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4. Discussion

We presented an integrated bioinformatics approach to analyze and report the most
significant genes that could act as biomarkers in the treatment of MS cognitive impairment.
Our approach used text mining, GWAS signals, and pathway analysis to identify the
biomarkers associated with MS. Although several genomic and transcriptomic studies are
currently reported in MS cognitive impairment, a comprehensive repository dealing with
all the experimental data is still underdeveloped. Automated approaches like our approach
will be useful to identify the biomarkers associated with MS cognitive impairment in an
efficient way.

Cognitive impairment is known to be involved in the mTOR signaling pathway [56,57],
PI3K/Akt/mTOR signaling pathway [58], cholesterol biosynthesis pathway [59,60], cholin-
ergic pathway [61–63], visual pathway [64], etc. Management of cognitive dysfunction
and decline in MS patients is more important to improve the lifestyle of people with MS.
Several clinical trials reported the use of simvastatin in MS (MS-STAT trial), affecting brain



Diagnostics 2022, 12, 1914 9 of 13

atrophy, clinical, and cognitive outcome measures. These studies implicate the involvement
of metabolites in the cholesterol synthesis pathway.

The development of computational models might elucidate the causal architecture
underlying the treatment effects in clinical trials of progressive MS. Physical activity is
associated with the motor function and mobility of healthy people, and MS patients
have poor physical activity. MS and aging predict the motor function in people, but their
cognitive function is not modified. Hence, there is huge need to evaluate and treat cognitive
dysfunction in these patients who suffer from MS.

Studies suggest that visual pathway measures are known to bring improved outcomes
in MS cognition during neuroprotection trials [65,66]. MS cognition is associated with
the cholinergic pathway, but studies suggest that MS does not involve the reduction of
cholinergic neurons as in other diseases like Alzheimer’s [67]. Acetyl choline esterase
(AChE) inhibitors are used to treat cognitively impaired MS patients, but their therapeutic
effects are poor and unsatisfactory [67,68].

CI genetic variants determined from GWAS signals reveal the presence of eQTLs
that could regulate the expression of genes with p < 0.01, e.g., mapping gene PARP6
with the variant rs11637611 and risk allele C. This study was earlier reported by Hu et al.
(rs11637611 with SNPs at chr15q23 and locus p = 1.07 × 10−15 [69]. Risk genes associated
with CI are involved in risk pathways such as the TGF-beta signaling pathway, ECM
receptor interaction, PI3k/Akt signaling pathway, mTOR signaling pathway, and estrogen
signaling pathway. These results are in correlation with gene/miRNA functional analysis,
thus confirming that these risk genes are highly associated with MS cognitive dysfunction.

Risk variant rs703842 located on chromosome 12 was found to be in association with
CYP27B1 with a p-value < 1.00 × 10−5. However, this association was earlier reported
by Jiang et al. in the association between genetic polymorphism rs703842 in CYP27B1
and MS [70]. Although MS genes were associated with cognition genes, the genes re-
ported by GWAS variants in MS and CI were not correlated. When functional annota-
tion was performed on these genes, we found that their pathways were correlated (see
Supplementary Table S7).

In addition to the identification of risk genes from GWAS, we identified miRSNPS
from the MSDD database [47] and found that hsa-miR-223 and hsa-miR-23a were associated
with genetic variants such as rs1044165 and rs3745453, respectively [70]. These associations
were reported in the literature [70,71]. However, our GWAS analysis did not validate
these results. Variants such as rs17119 and rs1843938, located on chromosomes 6 and 7,
were mapped with novel transcripts with a p-value of 1.00 × 10−10. These variants were
highly correlated. Their associations were earlier validated by GWAS studies performed by
Disanto et al. [72].

5. Conclusions

Our study showed that BDNF, IFNB, IL10, NEFL, and CHI3L1 could be the potential
core genes that play an important role in cognitive dysfunction and impairment in MS.
GWAS signals identified the risk variants and alleles associated with MS and cognition,
as well as their association with the mapped genes and risk pathways. To further confirm
these studies, we utilized miRNAs and their target genes to determine the risk pathways
associated with miRNAs. The results from both miRNA functional annotation and GWAS
risk gene functional annotation were correlated to determine the key functional genes and
risk pathways. In the future, we will evaluate our findings using gene expression datasets
in MS patient samples who are cognitively impaired or have cognitive decline.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/diagnostics12081914/s1: Table S1. List of genes and miRNAs
associated with MS cognitive dysfunction; Table S2. Genetic variants associated with MS; Table S3.
Genetic variants associated with cognitive impairment (CI); Table S4. miRNA pathway interactions
from KEGG for MS cognitive dysfunction; Table S5. KEGG enrichment analysis and GO pathway
analysis for MS; Table S6. KEGG enrichment analysis and GO pathway analysis for CI; Table S7. List

https://www.mdpi.com/article/10.3390/diagnostics12081914/s1
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of KEGG correlated pathways in MS and CI. Figure S1. miRNA-pathway associations involved in
MS-cognition (Orange nodes represents miRNA and the green nodes represent KEGG pathways).
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