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The model organism Saccharomyces cerevisiae has allowed the development of new functional genomics techniques devoted to the
study of transcription in all its stages. With these techniques, it has been possible to find interesting new mechanisms to control
gene expression that act at different levels and for different gene sets apart from the known cis-trans regulation in the transcription
initiation step. Here we discuss a method developed in our laboratory, Genomic Run-On, and other new methods that have
recently appeared with distinct technical features. A comparison between the datasets generated by them provides interesting
genomic insights into the different layers of gene regulation in eukaryotes.

1. Functional Genomics Techniques as a
Driving Force for Biology

In the 1980s, Sidney Brenner stated that, “.. .progress (in biol-
ogy) depends on the interplay of techniques, discoveries and
new ideas, probably in that order of decreasing importance”
[1]. It is absolutely true that most scientific revolutions
have appeared after technological developments which are,
directly or indirectly, the bases for obtaining new kinds of
data which, in turn, have led to the emergence of new ideas
among contemporary scientists. This statement also holds
true for the commonest case of nonrevolutionary develop-
ments. All new tools created by scientists or technicians are
always followed by novel data which, in most cases, have led
to new proposals, hypotheses, or theories.

Since genome sequencing projects began in the early
1990s, a new biology concept has started. This concept
was not new, but the development of new technologies
to sequence and analyze whole genomes provided such an
amount of new data, that a new kind of biological science
was born, the so-called “omics” [2]. Genomics and other
omics sciences have made a real revolution of molecular
biology itself. This is especially true because the preceding
molecular biology was an especially reductionist science; that

is, genes, proteins, and pathways were mainly analyzed and
screened individually in an attempt to decipher each one
in the most in-depth way possible. Obviously, although the
search for relationships among genes, proteins, and pathways
was also underway, all integrative approaches lacked the
most important component to be fully developed: data. At
the same time, molecular systems biology came into being
after Jacob and Monod’s operon model [3]. Although, it
was restricted to a few genes, proteins, and pathways, it
never attempted to check if proposed mathematical models
were more or less common in cells, and it certainly never
dreamed of building comprehensive models to explain the
whole behavior of a living cell.

The sequencing of the first eukaryote, the yeast Sac-
charomyces cerevisiae, made it possible to develop a totally
new field in biology: functional genomics [4]. Until that
time, genomics was a science devoted to obtaining genome
sequences and “in silico” analyses of them. Given the avail-
ability of a whole genome sequence for a model organism,
for which a huge amount of biological information existed
and because of the awesome power of yeast genetics, it was
possible to develop totally new tools and specialized mutant
collections in a relatively short time (see [2], for a review).
It also provided the data for establishing molecular systems
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biology from an omics perspective [2]. The characteristic
collaborative atmosphere of yeast genetics and a molecular
biology community contributed to the rapid establishment
of databanks (e.g., SGD or CYGD, [5, 6]), transnational
projects [5], and strain repositories (e.g., Euroscarf), which
are freely available for any interested scientist.

One of the most successful techniques in functional
genomics has been microarray technology. Microarrays were
fully developed by the mid-1990s, using mainly S. cerevisiae
as a workhorse for many of the technological advances
(reviewed in [7]). Different platforms have been created
since 1997 for the whole yeast genome; for instance, glass
c¢DNA microarrays [8] which have been the most widely
used. Nylon macroarrays [9] were one of the first to be
developed and are still a convenient alternative for specialized
purposes [7]. Oligonucleotide arrays were developed by
several laboratories and companies and are currently the
most used alternative, especially the type known as tiling
arrays, which cover the whole genome without leaving any
gap in it. They have been used to discover totally unpredicted
genes, noncanonical transcripts, either sense or antisense, as
regards canonical genes [10] and to also locate the binding
sites of many of the transcription-related proteins of this
lower eukaryote [11].

Sidney Brenner’s actual opinion does not correspond
exactly to what people may think about his quoted sentence
[1]. In fact, he has declared that this new emerging genomic
approach is “low input, high throughput and no output
biology” [12]. This opinion is widely extended among
biologists because it seems that genomic techniques are
just “fishing expeditions” in which there is no previous
hypothesis to support them. Obviously this criticism is,
at least in part, false. Each new genomic technique’s own
technical protocol is devoted to catching new kinds of
fishes. Although the nature of these new fishes is not totally
predicted in advance, it is rather obvious that there is a basal
hypothesis in the technique’s background: we are going to
fish new, unknown specimens that will have special features
that our new technique will be able to catch. A good example
of this is the discovery of CUT (cryptic unstable transcripts)
anywhere in the genome, but mainly in relation to canonical
genes loci by means of tiling arrays and high-throughput
sequencing (HTS) [13-15]. An additional corollary of this
is the interpretation of the fishing expedition as not being a
trivial question. Identifying the fishes and investigating the
biological mechanisms that originate them are also ways of
making science. In fact, the generation of new results is not
only a natural consequence of the development of a new
technique, but also a previous step to put forward a new
hypothesis. For instance, the analysis of CUTs has brought
about the discovery of new mechanisms of mRNA quality
control and transcription termination [13].

In our lab, we study the whole gene transcription process
using S. cerevisige as a model system. RNAs, especially
mRNAs, are unstable molecules. They are degraded by
exo- and endonucleases, mostly in the cytoplasm [16]. The
amount of mRNA (RA), therefore, is not just the result of
transcription, but the equilibrium caused by transcription
rates (TRs) and degradation rates (DRs). We realized that
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the genomic techniques available at the beginning of the
21st century were able to quantify RA, but that there
were no techniques available to measure turnover rates. In
2002, Pat Brown’s group developed a genomic technique
to measure mRNA stabilities in yeast [17]. This technique
was an upgrade of the well-established transcription shutoff
protocols used for individual mRNA half-life studies [18].
These protocols cause stress in cells, which impedes the
measurement of many mRNAs’ half-lives involved in the
stress response [19]. The cell’s physiology is also affected: it is
not necessarily true that the measured half-lives correspond
to the real ones in nonperturbed cells [20]. For this reason,
we developed a new protocol called Genomic Run-On
(GRO), which is able to measure nascent transcription rates
(TR) for all yeast genes and, at the same time, the mRNA
amounts (RA) for them. In this way, mRNA stabilities can
be determined from RA and TR in cases in which RA does
not change, in steady-state conditions [21], and even during
abrupt changes in RA after stress [20].

2. Genomic Run-On (GRO) for Yeast Cells.
Features of the Nascent TR Dataset

The run-on method is a well-known procedure for detecting
elongating RNA polymerases (RNA pols) in eukaryotic
nuclei [22]. Figure 1 depicts the outline of the method.
In most eukaryotes, it is necessary to isolate nuclei before
doing the experiment [22]. In yeasts, however, whole cells
can be directly used, which allows a physiological freez-
ing of the actual transcription state in those organisms.
The permeabilization of cells by means of a detergent
(usually sarkosyl) provokes a sudden decrease of the NTP
pools and stalls all elongating RNA pol. The detergent
also disrupts the chromatin structure, thus avoiding any
further initiation event. A subsequent pulse of externally
added ribonucleotides, including labeled UTP (**P-UTP or
derivatized-UTP), induces a death rattle of these RNA pols,
which actively elongate. This postmortem elongation labels
the RNA molecules with a natural sequence of about 200-
300 nucleotides. Those RNA pols that were backtracked
or did not elongate do not incorporate nucleotides (red
and yellow ovals in Figure 1). Most nascent RNA becomes
labeled in this way. This RNA is probably less than 1%
of the total RNA in the cell. Because it is labeled, it is
possible to use it as a hybridizable molecule in a dot blot
or a DNA array or, alternatively, to purify it based on any
unique property conferred by the UTP analog used. The
latter could be used for high-throughput sequencing or for
DNA microarray hybridization. The signal associated with
a particular sequence (the probe in the DNA array) is a
reflection of the RNA pol density in it. If we assume a
constant speed for the RNA pol, then RNA pol density is
proportional to its transcription rate.

In 2004, we developed [23] a genomic upgrade of the
yeast run-on technique which we called “genomic run-on”
(GRO). It is based on a subsequent hybridization of RNA
extracted onto whole yeast genome nylon macroarrays [24].
This acronym has been used for a similar technique in
human cells [25]. The fact that this technique is user friendly
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FIGURE 1: Outline of the GRO method for yeast cells. Cells grown to the desired condition are sampled in duplicate. One aliquot (arrow
pointing rightwardly) is used for run-on labeling with either a radioactive precursor or 11-biotin-UTP. Total extracted RNA is used for
macroarray or tiling microarray hybridization. The second cell’s aliquot (arrow pointing downwardly) is frozen and used for RNA extraction
and cDNA labeling, with either 3*P-dCTP or biotin allonamide triphosphate, and hybridized in a new tiling microarray (BioGRO) or in
the same macroarray (GRO) previously used after stripping. This method can be used for single point determination in different strains or
can be easily adapted to time-point series after a stress or drug treatment, as shown. RNA pol II molecules are shown in different colors,
indicating molecules before the elongation step (yellow), elongating (green), or backtracked (red). Labeled parts of mRNAs or cDNA are

drawn in red. RA = mRNA amounts, TR = transcription.

allows it to be used in many situations, such as the study of
mutants, even when a metabolic fast change occurs. Indeed,
50 mL aliquots of yeast cells can be taken every two minutes
if needed and processed very quickly in a few minutes. This
allows to follow stress responses with a high resolution (see
Figure 1; for a detailed experimental protocol; see [26]). In
our protocol, another aliquot of cells is taken and frozen at
the same time. This aliquot can be used for routine RNA
purification (note that all RNAs are unlabeled in this case)
and for subsequent standard mRNA amount determination
after labeling as cDNA (Figure 1). Since both cell aliquots
come from exactly the same time point of the culture, TR
and RA values correspond to the average values of those
parameters for a given cell population. The existence of
experimentally determined TRs for all the genes of a given
organism allowed us to compare the response profiles of each
gene after an external change. We performed this kind of
studies in the change from a glucose to a galactose medium
[23] after oxidative stress [27], after osmotic stress [28] and
after heat stress [29]. In all cases, genes cluster according
to their response profiles by mostly following functional
relatedness. This can be the direct result of the common

regulation of those genes belonging to a same regulon by
a transcription factor (TF). In fact, a meta-analysis done
with our data by a different group showed that TR profiles
were more suitable to predict functional relatedness than RA
profiles [30]. The reason for this is quite obvious; nascent
TR is the parameter directly affected by a TE. A change in
RA can be the result of not only a change in TR, but also in
mRNA stability (see Figure 2). Even the rate at which mRNA
appeared in the cytoplasm (mature TR) could be less suitable
for regulon finding because some posttranscriptional events,
like mRNA export, can affect the mature TR profile.
The effect of posttranscriptional changes blurs RA profiles
because some mRNAs display different posttranscriptional
behaviors. Therefore, the clustering of TR profiles seems to
be the best tool to find transcriptional regulons. Although
only formally demonstrated in S. cerevisiae, this statement
seems to be reasonably extended to other organisms when
methods to determine nascent TR become available. Nascent
TR is also the best way to classify genes for active chromatin
marks. It seems somewhat logical that the passage of RNA
pol II molecules along the chromatin template is affected by
particular nucleosomal organization. Because nascent TR, as
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FiGure 2: Outline of the different genomic techniques for TR and mRNA stability determination used in yeast. Determination of nascent TR
in the nucleus is based on the detection of RNA polymerases or nascent RNAs. (a) Native chromatin can be purified and nascent RNA can be
isolated. Then it is converted into cDNA and used for the tiling array analysis [32]. Alternatively, cells can be used for the GRO analysis (see
Figure 1). (b) Cells can be fixed with formaldehyde and subjected to chromatin fragmentation and immunoprecipitation with RNA pol II
antibodies. From this ternary complex, either DNA or RNA can be detached from polymerases and analyzed downstream. Recovered DNA
is suitable for array hybridization (ChIP-Chip) [10, 33, 34] or HTS (ChIP-Seq) [35], whereas RNA can be converted into DNA and subjected
to HTS [36]. The appearance of recently synthesized mRNA (newborn, orange) in the cytoplasm can be followed by thiouridine in vivo
labeling, which is purified, quantified, and compared with the non labeled old mRNA (green). With this technique, it is possible to calculate
mature TR and mRNA half-lives [37]. mRNA half-lives can also be calculated from a transcription shutoff experiment [38], from TR and
RA data by assuming the steady state (k4 = TR/RA), or even for non-steady-state conditions [39]. DR: degradation rate. Other symbols are

as in Figure 1.

determined by GRO, measures the actual elongation rate,
what is actually affected by nucleosome positioning and
readability should be a better predictor of the characteristic
chromatin marks of active genes than mature TR which,
as mentioned, considers other posttranscriptional steps. We
have shown that this is precisely the case. When comparing
the level of the different active chromatin features, such as
H3-Kj36 trimethylation, or the presence of Esalp or Gen5p
histone acetyltransferases, we found that the correlation
with nascent TR (calculated by GRO) is better than when
compared with the mature TR calculated from steady-state
RA and mRNA stabilities [31].

The GRO protocol has allowed us to obtain a whole TR
dataset for an organism for the first time [31]. Analyzing
the dataset provided a number of surprises: 90% of yeast
genes show TRs between 2 and 30 molecules/h, with a
median of 7 molecules/h. This corresponds to 0.078 RNA
pol II molecules/kb or 0.1 molecules/gene. As 25% of
transcription corresponds to 5% of most transcribed genes,

the distribution of RNA pol II molecules in a snapshot
of an actively growing yeast cell is mostly like a desert:
only 14% of genes have any actively transcribing RNA pol
II molecule. Transcription onto canonical genes does not
seem to be a common feature of the yeast genome in spite
of the high number of RNA pol II molecules present in
a cell (20000-30000) since only around 700-1400 would
transcribe genes that encode proteins at a given time. One
possibility is that part of these molecules is unable to
transcribe, and that the amount of CTD-phosphorylated
molecules (12000, according to [40]) suggests that they
can be transcribing in other regions outside the canonical
genes (see below), or perhaps that the mRNA molecules
reaching the cytoplasm are merely a fraction of the nascent
ones. The most transcribed genes are those that code for
histones, which reach about 206 mRNAs/hour during the
S phase. These results are rather similar to those obtained
by a different technique (dynamic transcriptome analysis
(DTA) in [37], see below) which measures mature TR. The
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similarity between total nascent and mature TRs, however,
does not mean genuine equality because the absolute units
were obtained by normalization in both cases against the
amount of mRNAs per cell. In any case, the similar medians
and distributions, and the high correlation (r Pearson 0.63;
see Figure 3) obtained, favor the quality of both datasets.

TR is not dependent on G+C content, but decreases
for increasingly long genes [31]. This result was expected
because of the probability of RNA pol II failure increasing
with transcription unit length [41, 42]. The slope of this
bias is greater for the GRO dataset than for the other TR
evaluation method based on RNA pol II crosslinking to
the gene (RNA pol II chip-on-ChIP: RPCC; see below).
Moreover, the GRO curve shows a change in tendency for
those genes whose ORFs are longer than 3kb (see [31],
Figure S1). This effect can be caused by the macroarrays used
for both RPCC and GRO in which any gene whose ORF
length is longer than 3 kb is represented by a probe covering
only the last 1 kb downstream in the ORF, whereas the rest of
the genes (<3 kb) are represented by the whole of the ORF. As
the GRO method labels the elongating mRNA by extending it
200-300 nt downstream, it is expected to bias the label to the
3’ part of the genes. This would lead to an increased average
label in the genes as their length shortens and the relative
influence of their 3’ part increases. It also predicts a sudden
increase for the genes represented by probes that cover only
their last 1kb of the ORE. With this in mind, we conclude
that there is a general bias in the GRO which increases the
calculated TR inversely with the ORF (i.e., probe) length.
Additionally, there is an artifact for ORFs that are longer
than 3kb due to the use of 1kb probes from their 3 end.
This gene-/probe-dependent effect was corrected by using
the RPCC data for the lowest normalization of the GRO data.
Our TR dataset has, therefore, been corrected for this artifact.

Another potential artifact of GRO (and other nascent TR
methods) is the potential effect of cryptic transcription. Since
GRO labels any elongating RNA polymerase, those RNA
pol II molecules, that elongate anywhere inside the genome
regions contained in probes (ORFs), are labeled regardless
of making “canonical” transcripts or cryptic transcripts.
In the original GRO method [23], the macroarrays used
contain dsDNA probes. Because of this, both sense and
antisense transcriptions will be summed. The existence of a
vast number of cryptic transcripts has been demonstrated
in many organisms, including yeast (see [42], for a recent
review) in which two types have been defined: cryptic
unstable transcripts (CUTs), which are only detectable in the
absence of nuclear exosome activity and stable uncharacter-
ized transcripts (SUTs) [14]. Some authors argue that cryptic
transcription can be responsible for the differences observed
in the genes’ response to stress situations when comparing
mRNA data and TR data [15, 43]. This contrasts with the
recent unveiling of experimental evidence diminishing the
possible quantitative contribution of antisense transcripts to
the RNA pool when compared to their stable sense transcript
counterparts in the bidirectional promoter’s context [36, 42].
Moreover, we analyzed the different cryptic transcription
datasets published and we observed that they are quite
different, with very little overlap, and that the technique

used to find them vastly affects the type (sense or antisense)
of the cryptic transcripts found (Garcia-Martinez et al.,
submitted). Thus, it seems that most yeast genes have cryptic
transcripts, but mainly in a very low proportion (discussed in
[42]). Thus, although we agree that cryptic transcription is a
real contributor of nascent TR data, we believe that nascent
TR reflects mainly “canonical transcription” for most genes.

3. Alternative Methods for
Evaluating Transcription Rates and
mRNA Degradation Rates

Thus the GRO technique allowed the comparison of the rate
at which each mRNA is produced and its amount in the cell.
This idea has been used quite recently by other authors, who
have followed different TR evaluation methods (see below)
both in yeast [37] and higher eukaryotic cells [44]. In all
these studies, mRNA stabilities have also been calculated. The
possibility of calculating mRNA half-lives indirectly from TR
and RA is based on the aforementioned equilibrium between
TR and DRs. If they are equal, then RA is constant over
time. This is known as a steady-state situation, which mainly
occurs for most mRNAs. For instance, we demonstrated that
when yeast is grown in a flask (a batch culture), most of
the exponential growth phase maintains the steady state for
most mRNAs [21]. Although some mRNAs change slightly
after several hours, the steady-state condition can be a good
approximation to describe the mRNA pool. It is likely that
the steady state is also true for the stationary phase or in
chemostat cultures [45]. As DR follows a first-order kinetic
law, it is proportional to RA and to a degradation constant
(k4). The GRO protocol calculates RA and TR for all the yeast
genes. Because DR = TR, it is also possible to calculate kq for
them all. k4 has time™! units and the reverse meaning of the
half-life (kq = In2/half-life). When no steady-state situation
occurs, again the chemical kinetic laws can be used to develop
an equation in which the successive TR and RA time points
are employed to infer kq using the simplification, whose
changes in both are lineal between the successive time points
[20]. Although the mathematical computation increases the
experimental associated error, this approach has allowed us
to calculate kg variations for those groups of genes with
common RA and TR profiles during fast stress responses
[27-29]. In all the individual genes tested, the kq calculated
at different times during the stress response qualitatively
coincided with the experimentally determined one using Tet-
off promoters.

In the last few years, other techniques apart from GRO
have been developed to study TRs and mRNA stabilities in
yeast and in other organisms at the genomic level. In all cases,
they use recently developed, higher resolution methods, such
as tiling arrays or high-throughput sequencing (HTS), which
provide deeper insights into the transcription process than
when using classical DNA arrays. For TR determination,
most methods focus on nascent TR (Figure 2). The classical
approach to unveil the dynamics of the transcriptional
process at the TR level relies on the generation of RNA
pol II density landscapes to precisely map where RNA
pol sit in the whole genome, regardless of transcriptional



states (active, paused, backtracked, etc.; see Figure 2). This
has been achieved with chromatin immunoprecipitation
methods coupled with microarray analysis, ChIP-chip [33,
37, 43] or HTS, ChIP-Seq [35]. With these high-throughput
methods, a plethora of different occupancy profiles for RNA
polymerase II and its different phosphorylation forms are
now publicly accessible. However, ChIP techniques cannot
circumvent the fact that the presence of polymerase in a
region should not be directly assumed as actual transcription
because of there being nonelongating polymerases and
because ChIP-associated techniques cannot discriminate the
sense/antisense transcripts (see above). A recent variation
of ChIP techniques has been able to partially skirt this
drawback (Figure 2). By isolating and deep sequencing
the nascent transcript associated with immunoprecipitated
RNA polymerases (NET-Seq, [36]), both problems are
avoided. Nascent mRNAs have been alternatively purified by
chromatin fractionation approaches [32], thus providing a
more direct measure of TR. The nonradioactive variants of
GRO, coupled with tiling array analysis (BioGRO, Jordan-
Pla et al., unpublished), or HTS (GRO-Seq), have been
successfully applied to dissect the regulatory circuitry of
yeast and human [25] cells. These high-resolution GRO
techniques are beneficial because they can discriminate
between active and nonactive transcription elongation states
and can also detect any type of noncoding unstable transcript
RNA polymerases generated in both the sense and antisense
orientations, for which accumulating evidence shows that
they play a crucial role in the regulation of gene expression
[14], thus broadening our knowledge and understanding of
gene regulation dynamics.

Mature TRs determine the rate of appearance of newborn
mRNA in the cytoplasm (Figure 2, right). In vivo metabolic
labeling of transcripts, with uracil or uridine analogs pulses,
subsequent mRNA isolation, fractionation between labeled
(newborn) and nonlabeled (old) mRNA and analysis, is an
essentially nonperturbing system which provides us with a
way of measuring mature TR directly [46]. The recently
developed DTA methodology in yeast [37] and mammalian
cells [44] focuses on newborn mature polyadenylated tran-
scripts and uses a metabolic time lapse of variable extent
(6 minutes in yeast). DTA technology is currently the only
technology available that is able to measure mature TR in
yeast experimentally. It can also determine mRNA half-lives
at the same time. The technique is, however, time consuming
and assumes that TR and DR are constant during the time
lapse used. It also leaves an important bulk of non coding
transcripts outside the frame [14]. Mature TR can also be
calculated from RA and mRNA stability datasets indirectly
(indirect TR, TRi = kg RA) by assuming a steady state
[47]. Alternatively, mRNA half-lives (kq) can be calculated
indirectly from experimental mature TR and RA datasets
using the same equation or directly using the previously
commented transcription shutoff methods [17, 19, 21].

The comparison of all existing yeast TR datasets [31, 33,
37, 47] (Jordén-Pla et al., unpublished) with each other and
with a standardized RA dataset [31] has revealed that they
all correlate quite well (Figure 3). Those corresponding to
nascent TR correlate better to each other. This is also true
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for those corresponding to the mature TR (DTA, [37]; TR,
[47]). The last ones better correlate with the RA dataset.
These results are logical because nascent mRNAs should
be processed and exported to the cytoplasm where mature
TR is measured. Moreover, nascent TR can be affected by
cryptic transcription and mature TR cannot. The specific
distribution of ribosomal protein (RP) genes (blue dots) is
biased in all the comparisons shown. The meaning of this
behavior is commented below.

4. Ribosomal Protein Genes: A Special Case of
RNA Pol II Transcription

Ribosomal proteins in yeast are coded by a set of 137 genes.
They are, perhaps, the most statistically significant group
that clusters together in many of the genomic analyses done
in yeast [23, 34]. This can be due to the fact that this
group is more coordinated and/or more numerous than
other regulons which are less coordinated (e.g., ribosome
biogenesis regulon, RiBi, and ~200 genes), less abundant
(Gal regulon, 7 genes), or both. Because translation is the
most costly synthesis process for the cell [48], and as the
ribosome is composed of stoichiometric amounts of RP, both
the control and coordination of these genes is very strict.
In yeast, they are mainly regulated at the transcriptional
level [48], involving several TFs (see [49, 50], for a detailed
updated review). RP mRNAs are among the most abundant
in the cell. They have also been traditionally considered
the most transcribed ones, representing as much as 50% of
transcribing events [48]. Our results, however, quantify the
overall TR of those genes as only 8.5% of total RNA pol
IT TR [31]. As previous estimations were based on indirect
evaluations of RP transcription rates [48], we considered it
merely a miscalculation. However, we now think that the
main mistake seems to lie in the use of very few examples
of RP mRNA half-lives at the time of the proposal. We
recalculate now the total TR for RP genes (indirect TR or
TRi) using all the available datasets of mRNA half-lives
[17, 19] and RA datasets [31, 37]. In all cases, these genes
represent less than 27% of total RNA pol II transcription in
yeast. Therefore, the original 50% was clearly miscalculated.
On the other hand, the plots of direct estimations of
TR versus indirect ones (Figures 3(d) and 3(f)) show an
overestimation of TRi values. The contribution of RP TR to
the total can also be currently calculated from mature TR
DTA data [37] to represent 16% of total TR. The differences
with the previous 27% may be due to either a mistake in
TRi or to a specific bias in DTA and GRO techniques for
these genes. However, we think that the main reason is
that transcription shutoff methods underestimate RP mRNA
half-lives as they can provoke destabilization caused by stress.
We have shown that this phenomenon does occur in all
the stress responses we have analyzed to date (see below).
In fact, RP mRNAs are 50% more stable than average in
the DTA dataset [37] instead of merely coming close to it
in transcription shutoff experiments [17, 19], or being less
stable than average, as stated in Warner’s review [48].

On the other hand, the bias observed in the RP nascent
TRs measured by GRO, as mentioned above, may provide
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dataset obtained with Biotin-UTP and tiling arrays (Jorddn-Pla et al, unpublished). RPCC is the RNA pol II chromatin immunoprecipitation
performed by us [31]. RPB3 is the RNA pol IT chromatin immunoprecipitation performed by Mayer et al. [33] using an anti-RPB3 antibody.



relevant insights into the elongation mechanism of these
genes. We have seen that RP genes show a high percentage
of nondetectable RNA pol II by GRO [34]. In exponential
growth in glucose, they have about 36% more RNA pol II
molecules present in the coding region of the RP, which are
unable to do a run-on, more than the genome average (see
Figures 3(a)-3(c)). We concluded that this reflects how the
transcription of these genes involves a higher percentage of
non elongating (probably backtracked) RNA pol II [31, 34].
This bias toward nonactive RNA pol II is also seen when
comparing the results from mature TR (DTA technique,
[37], Figure 3(e)) and RNA pol Il immunoprecipitation [33],
which reinforces our previous calculations. In this case,
excess lies at about 31%, meaning that in RP genes, there is
more RNA pol II present in those genes that do not produce
mature mRNA in the cytoplasm than for the average gene.
From the difference between the 36% and the 31% excess
when using GRO or DTA in the comparison, or by directly
comparing the DTA and GRO datasets (see Figure 3(e)),
we conclude that between 15% and 40% of the RNA pol
II molecules which are not labeled during the run-on are
unable to resume elongation and to produce mature mRNA.
This is perhaps because they are trapped in some step of
the backtracking process [51]. The rest of the non labeled
molecules (60-85%) would thus represent the efficiency of
the backtracking process in recovering paused RNA pol II
molecules, at least, for this group of genes.

What is the reason for the special abundance of non
elongating RNA pol II molecules over RP genes? We hypoth-
esized that a special chromatin structure of those genes could
be responsible. In fact, TF Raplp has a known chromatin-
organizing activity (reviewed in [49]), which is predicted or
demonstrated to activate 127 of the RP genes. However, this
factor plays another, apparently opposed, role in telomeres:
it organizes repressive subtelomeric chromatin [49]. Some
years ago, it was shown that repressor activity resides in the
C-terminal part of the protein, the sil domain, that a mutated
version of Rapl lacking it, rapI-sil, derepresses the genes
within 50kb from the telomere, and that it has increased
levels of RP mRNAs [52]. We found that the excess of non
elongating RNA pol II molecules disappeared in the rapI-
sil mutant, which also occurs in a tpk single mutant [34].
Tpkl,2,3 are the alternative catalytic subunits of protein
kinase A (PKA), which controls signaling from glucose [53].
Our model reveals that Rapl not only recruits RNA pol
II to the RP promoters, but it also organizes a partially
repressed chromatin, which hinders RNA pol elongation,
thus leading to pauses and arrest. This difficulty occurs at
the beginning of the transcribed region [34] and could be
an additional control mechanism for the regulation of these
important genes. This mechanism would act only at the
highest transcription rates (during exponential growth in
glucose-rich media) as a way to accumulate truly elongating
RNA pol II molecules which, due to this mechanism,
slow down in the first part of the gene. After passing the
control, these molecules increase their velocity and become
sufficiently separated to avoid collisions. A similar elongation
control has been proposed for ribosome translation [54]
and has been mathematically demonstrated to increase the
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speed of RNA polymerases and to reduce noise (cell-to-cell
variation, [55]), which is a typical, convenient feature of RP
genes [56].

5. The Relative Importance of TR and DR in
Controlling mRNA Amounts

At any time, RA is the result of the balance of TR and DR.
When RA has to be changed, it is theoretically possible to
act only on one side of the equilibrium, or on both sides.
Traditionally, most studies on RA conducted at either the
single gene level or the genomic level implicitly assumed that
changes were due to only TR changes. A given gene is induced
because a TF binds a promoter and attracts RNA pol II to
transcribe it (by increasing TR) which, in turn, increases RA.
Thus, RA profiles were considered to be a mere consequence
of TR profiles. A few years ago, some authors started to pay
attention to the potential effect of DR in the gene expression.
Theoretically, the same effect on RA can be obtained by
a change in DR rather than by an inverse change in TR.
The mRNA half-lives determined by transcription shutoff
methods were found to be very different between mRNAs
and organisms [16]. More importantly, they were discovered
to change for a given mRNA in different physiological
situations [16]. When genomics strategies appeared [17], it
was seen that the mRNAs belonging to the same pathways
or functions tend to have similar half-lives, suggesting that
regulons also exist at the mRNA stability level [57]. The trans
factors acting in these posttranscriptional regulons were
found to be mainly RNA-binding proteins (RBPs), which
were relatively selective in the mRNA population because of
their sequence specificity [58, 59].

As the GRO technique is able to indirectly determine
mRNA stabilities in steady-state situations, as explained
above, our first experiment [23] enabled us to reveal that
those genes belonging to functionally related groups behave
coordinately in DR. This was the first formal demon-
stration of the existence of post-transcriptional regulons.
Similar studies in other organisms arrived at comparable
conclusions, although not a whole genome-scale level (e.g.,
[38, 60]). In that first experiment, the times selected after
changing cells from a glucose to a galactose medium were
separated by hours, and the steady-state conditions can
apply to each of them. Fast responses, typical of stress
situations or sudden changes, did not meet the steady-state
conditions. For such cases, we developed an algorithm, as
previously described. With it, we have been able to determine
approximate k; profiles in response to different stresses for
most genes and to verify the hypothesis of the influence of
DR changes on RA profiles. Our studies [27-29] and those
of others [61, 62] reveal that many genes have undergone
changes in DR during stress responses. Many other genes,
however, do not change their mRNA stability substantially.
In line with this, interesting differences have been noted
between various stresses [61], which probably depend on
stress intensity. A good number of genes respond by slightly
decreasing their RA level transiently to recover after several
minutes. These genes tend to have flat k; profiles, meaning
they result from a mere transient decrease in TR. Other genes
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that respond to stress by lowering their RA are the RP and
RiBi genes. In all cases, we have seen that the mRNAs of
all these genes showed a transient destabilization, which can
be accompanied by different degrees of TR decrease. These
results indicate that DR can be used to reduce mRNA levels
and, as explained later, to also speed up this reduction. It is
interesting to note that some genes, which do not exhibit
coordinated behavior at the TR level in some instances,
actually display coordinated behavior with mRNA stability.
This is the case of mitochondrial RP genes which cluster
in the mRNA stability analysis, but not in the TR analysis,
during the shift from a glucose to a galactose medium [23].
These genes do not present obvious regulatory elements in
their promoters, but a Puf3 element in their 3’UTR has been
demonstrated to coordinate their stability after changes in
respiratory behavior [63]. Thus, our study was able to show
that, for some specific gene categories, coordination takes
place at the posttranscriptional level and that DR is the main
player in shaping a response.

Those genes that positively respond to stress by increas-
ing TR also show interesting changes in DR. For instance
after osmotic stress, many genes present increased RA by
increasing their TR and decreasing their DR (increase in
mRNA stability) for several minutes [28]. A similar observa-
tion was reported by other authors using a different method
to determine mRNA stabilities [61, 62] in the oxidative stress
response. Thus after some minutes of osmotic stress, these
genes reverse the change in DR in parallel to transcription
shut-off [28]. This effect has been interpreted as the DR
change which precedes changes in RA [62]. Other authors
postulate that the changes in DR in both yeast [61] and
mammalian [44] cells contribute to sharp response peaks. In
mammalian cells with substantially longer mRNA half-lives,
the contribution of DR changes to speed up the increases
and decreases in mRNA levels is probably more important
than in yeast. Nevertheless, the short yeast generation time
(~100 minutes) and the need for faster, more economically
adjusted responses to environmental situations than for
mammalian cells mean that it is also necessary to use changes
in mRNA stability to sharpen RA peaks in order to restrict
energy expenditure while they take place [20]. The width
of the TR response peaks seen in all the stress-activated or
repressed genes is about 15-30 minutes, which is somewhat
narrower than the RA peaks in our experiments and in
those performed by others [64]. It has to be considered
that the results obtained in experiments using about 107cells
are the average of all the possible individual states for a
given cell. The difference in RA between individual cells is
known as “transcriptional noise”. It has been determined
to considerably differ for two kinds of genes: the TATA-less
genes, with nucleosome-depleted constitutive promoters, for
example, RP genes [49], which are less noisy [56] than the
inducible genes with a TATA box at their SAGA-dependent
promoters, known to be transcribed in “bursts” of several
consecutive mRNAs separated in time [65], and thus in a
much noisier manner [56]. Stress-activated genes belong to
this last group. Thus, it is conceivable that the relatively sharp
TR peaks result from much sharper peaks in individual cells
in which a single (or very few) transcription burst occurs

at their single gene locus during a stress response. At the
molecular level, this would correspond to a switch from off to
on in the promoter chromatin structure. The consequence of
a sharp TR peak in an RA peak would be sharp only if mRNA
has very low stability (see [20]). Therefore for mRNAs with
half-lives longer than 10—15 min, it is necessary to unstabilize
them if a fast return to the original mRNA level is needed.
At the molecular level, this also assumes a binary switch in
a given cell represented by a change in the affinity of an
RBP to its cognate 3-UTR mRNA element [59]. In this case,
however, the existence of multiple mRNA molecules per cell
probably makes the “degradation burst” less acute.

All these results suggest the importance of DR in
controlling mRNA levels during transcriptional responses.
Reciprocally important quantitative analyses of TR and DR
in shaping RA have shown that despite being theoretically
equivalents, TR and DR do not seem to play the same role
in determining the amount of mRNA in stress responses
or at steady-state conditions. It is interesting to note that
when comparing the different datasets for TR, RA, or mRNA
half-lives, in all cases TR and RA show a positive significant
correlation, which mRNA half-lives never do (e.g., stable
mRNAs are not the most abundant, and unstable mRNAs
are not the least abundant); indeed, they even show slightly
negative correlations with RA and TR in yeast [37, 39]
or mammalian [66] cells. When measuring the number of
genes whose response profiles are significantly affected by
DR changes, we [23, 27, 29] and other authors [44, 66],
found a large majority of genes in which TR changes are the
main determinant of RA profiles. Thus, it seems that DR is
not used for the quantitative control of most mRNA levels
in the majority of situations, but for classifying them into
rapid or less-rapid response genes according to the stability
of their mRNA [20, 44]. Many mRNAs have a relatively
constant DR. Nevertheless, some special gene categories,
such as stress-induced or RP genes in stress responses in yeast
(see above), mitochondria-related genes during metabolic
reprogramming from glucose to galactose in yeast [23], or
inflammatory and immune signaling genes in dendritic cells
[44], have a highly variable DR because of the cis elements
in their 3'-UTRs targets of specialized RBPs [29, 58, 59]. In
some instances in which growth stops, like the stationary
phase [67], after a change from a glucose to a galactose
medium in yeast or after strong stress, a general change in DR
is observed [23, 68]. This situation probably relates more to a
general change in DR machinery and/or p-body organization
and can overlap with particular responses.

The corollary of this scheme is that each particular group
of genes has a TR through their promoter organization, and
a DR through their particular 3'-UTR sequences, which are
subjected to transcriptional (regulons) and posttranscrip-
tional (posttranscriptional regulons) regulation [58]. Both
should evolve coordinately to achieve a common expression
strategy (CES) for the group of genes. We analyzed the
existence of CES not only for transcriptional regulation, but
also for translational regulation [39]. We found that our
hypothesis was true: each analyzed functional gene category
had a statistically significant CES for both transcription
and translation. Genes whose protein products belong to
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large stable stoichiometric complexes, such as the cytosolic
ribosome, the nucleosome, the proteasome, and many
others, present characteristic profiles with relative unstable
mRNAs and proteins, as well as relatively high transcription
and translation rates. This probably reflects the need for
fast changes in both mRNA and proteins in some instances
to coordinate the amounts of subunits during a cell’s life.
Energy pathways genes, however, have more equilibrated
profiles. A similar study in mammalian cells was done to find
that CES also exists, but not quite the same as in yeast. For
instance, in this case, RPs show very stable mRNAs, and pro-
teins are very much like energy pathways genes [66]. These
analyses reveal that, as expected, translation (translation rate
and protein stability) is also a layer for gene regulation in
all eukaryotes. From our study of yeast CES profiles, we
conclude that the transcriptional layer is quantitatively more
important for gene regulation than the translational one.
However, Schwanhiusser et al. [66] conclude that the layer
of translation is more important for determining the abun-
dance of proteins in mouse fibroblasts. Hence, it seems that
every life style needs particular gene expression strategies.

6. Future Trends

The similarities and differences observed between yeast and
mammalian cells in organizing gene regulation indicate that
the multiple layers used by eukaryotes provide a flexible
network upon which every gene class can find its best
strategy. Furthermore, this fitting can evolve according to the
organism’s requirements.

Variability in the single-cell gene expression in both
microorganisms and tissue cells indicates that genomic
transcription measurements should be complemented by
techniques designed to quantify the gene expression at the
single cell level [65, 69] and on the genomic scale.

Given the adjustment required between TR and DR
(and also translation), it seems that cells have to contain
mechanisms that allow cross-talk between mRNA transcrip-
tion and degradation at both the single mRNA level (by
coordinating transcription from a promoter with the fate
of the mRNAs producing that) and the general level to
coordinate the regulons and posttranscriptional regulons
composed of several different gene species. The recent
publications by M. Choder’s group [70] and others [71]
reveal that such mechanisms do exist.

Finally, it is worth mentioning that most of the results
reviewed herein would not have been possible without
comparing large datasets because the general tendencies and
the differences between genes categories are only significant
if we look at the whole genome at the same time. Therefore,
we consider that although anyone is free to believe that high
throughput genomic technologies may be of “low input’,
nowadays it comes over quite clearly that they actually
provide some output to molecular biology.
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