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Abstract. During conjugation, haploid S. cerevisiae 
cells find one another  by polarizing their growth toward 
each other along gradients of pheromone  (chemotro- 
pism). We demonstrate that yeast cells exhibit a second 
mating behavior: when their receptors are saturated 
with pheromone,  wild-type a cells execute a default 
pathway and select a mate at random. These matings 
are less efficient than chemotropic matings, are induced 
by the same dose of pheromone  that induces shmoo 
formation, and appear to use a site near the incipient 
bud site for polarization. We show that the SPA2 gene 
is specifically required for the default pathway: spa2A 
mutants cannot mate if pheromone concentrations are 

high and gradients are absent, but can mate if gradients 
are present, ste2A, sst2A, and farlA mutants are 
chemotropism-defective and therefore must choose a 
mate by using a default pathway; consistent with this 
deduction, these strains require SPA2 to mate. In addi- 
tion, our results suggest that farl  mutants are chemot- 
ropism-defective because their mating polarity is fixed 
at the incipient bud site, suggesting that the FAR1 gene 
is required for inhibiting the use of the incipient bud 
site during chemotropic mating. These observations re- 
veal a molecular relationship between the mating and 
budding polarity pathways. 

H 
APLOID Saccharomyces cerevisiae cells communi- 
cate with each other during conjugation by secret- 
ing small peptide pheromones. MATa cells se- 

crete a-factor and MATct cells secrete a-factor. These 
pheromones cause yeast cells to differentiate into cells 
that are competent for mating (for reviews see Kurjan, 
1992; Sprague and Thorner, 1992). Pheromone binds to a 
seven-pass transmemhrane receptor and activates a het- 
erotrimeric G-protein, which activates a MAP kinase cas- 
cade (for reviews see Bardwell et al., 1994; Herskowitz, 
1995). This signal transduction cascade causes cells to ar- 
rest in the G1 phase of the cell cycle and to induce the ex- 
pression of genes that are important for mating. In addi- 
tion, pheromones act as chemoattractants. Cells find one 
another in space by polarizing their growth toward each 
other along gradients of pheromone (Jackson and Hartwell, 
1990a, b), a behavior that involves polarized changes in the 
actin cytoskeleton and in secretion (for a review see Chen- 
evert, 1994). For example, an a cell (and perhaps an 
cell), produces a projection that orients along a gradient of 
pheromone (Segall, 1993); pheromone receptors and the 
heterotrimeric G protein play integral roles in this chemo- 
tropic growth (Jackson et al., 1991; Schrick, 1994). Mating 
partners touch at the tips of their projections, fuse cell 
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walls, and then membranes, and finally nuclei (Byers and 
Goetsch, 1975; Byers, 1981). 

Jackson and Hartwell (1990b) devised a discrimination 
assay that indirectly measures the ability of cells to orient 
their growth along gradients of pheromone. When Wild- 
type a cells are given a choice between wild-type c~ cells 
and pheromoneless a cells, a cells discriminate between 
these two partners and mate with a pheromoneless c~ cell 
partner only once in 105 matings. One might expect that 
the ability of a cell to orient would be required for mating; 
however, mutants that are defective at orienting are fer- 
tile. For example, cells that are deleted for the pheromone 
receptor are capable of mating at a reduced efficiency if 
the signal transduction pathway is activated downstream 
(Jahng et al., 1988; Dolan and Fields, 1990; Whiteway et 
al., 1990; Jackson et al., 1991; Stevenson et al., 1992; Has- 
son et al., 1994; Schrick, 1994); these receptorless cells 
mate with the pheromoneless cell partner as frequently as 
they mate with the wild-type partner in the discrimination 
assay (Jackson et al., 1991; Schrick, 1994). Similarly, cells 
containing the sst2-1 mutation, a mutation that causes su- 
persensitivity to pheromone (Chan and Otte, 1982; Dietzl 
and Kurjan, 1987), are defective both at discriminating 
mating partners (Jackson and Hartwell, 1990b; Schrick, 
1994) and at orienting a projection along an artificial gra- 
dient of pheromone (Segall, 1993). To explain the fertility 
of these mutants, Jackson and Hartwell (1990b) proposed 
that when cells cannot sense pheromone gradients, they 
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execute a default pathway in which they select a mating 
partner at random. 

The existence of a default pathway may explain why 
wild-type a cells form a shmoo in the presence of an isotro- 
pic concentration of a-pheromone (Jackson and Hartwell, 
1990b). The shmoo is morphologically similar to a cell con- 
taining a gradient-induced projection (Lipke et al., 1976; 
Tkacz and MacKay, 1979; Baba et al., 1989; Segall, 1993), 
but the shmoo tip is formed at a predetermined site on the 
cell surface, near the site where the last bud was formed 
(Madden and Snyder, 1992). Similarly, haploid a and a 
ceils position their buds near the last site where they bud- 
ded (for reviews see Drubin, 1991; Madden et al., 1992; 
Chant, 1994). This budding pattern is under the control of 
the RSR1, BUD2, BUD3, BUD4, BUD5, AXL1, neck fila- 
ment protein genes, and others (Bender and Pringle 1989; 
Chant and Herskowitz, 1991; Chant et al., 1991; Fugita et 
al., 1994; for a review see Chant, 1994), and, in isotropic 
a-factor, the position of the shmoo tip is also dependent 
on at least four of these budding pattern genes (RSR1, 
BUD2, BUD3, and BUD4 ]Madden and Snyder, 1992]). 
These observations suggest that the shmoo tip is posi- 
tioned at the incipient bud site. In this paper we demon- 
strate that wild-type a cells mate at a reduced efficiency in 
the presence of high, isotropic concentrations of a-phero- 
mone, and we propose that under these conditions cells 
execute a default pathway in which they mate by initially 
producing a projection near the incipient bud site. 

The SPA2 gene is required for shmoo formation in high, 
isotropic pheromone concentrations (Gehrung and Sny- 
der, 1990), and the Spa2 protein localizes to sites of cell 
growth, including the shmoo tip (Snyder et al., 1991). In 
this report we demonstrate that SPA2 is required for mat- 
ings performed in an isotropic environment of a-phero- 
mone, but that SPA2 is not required for matings per- 
formed under conditions where pheromone gradients are 
present. In contrast, we show that the SST2 gene is impor- 
tant for oriented growth because it prevents cells from ex- 
ecuting the default pathway when a wild-type partner is 
present. In addition, our results suggest that the FAR1 
gene inhibits the use of the incipient bud site for mating 
and permits oriented growth along a pheromone gradient. 
We present a model in which two sets of genes define two 
pathways for mating partner selection, default and che- 
motropism: SPA2 is required for default; pheromone re- 
ceptors, SST2, and FAR1 are required for chemotropism. 

Materials and Methods  

Strains, Plasmids, and Media 

The strains used in this study are listed in Table I and are isogenic or con- 
genic with the strain 381G MATa cryl ade2-1 ° his4-580 ~ lys2 ° trpl a tyrl ° 
SUP4-3 f~ (Hartwell, 1980), unless otherwise indicated. Strains containing 
deletions of FAR1 were constructed by transformation (using the lithium 
acetate method [Gietz and Schiestl, 1991]) with the plasmid pFC13 
(Chang and Herskowitz, 1990) that was digested with NotI. Strains con- 
taining deletions of STE2 were constructed by transformation with 
BamHI-digested pKSU (a gift from J. Konopka), a plasmid containing a 
substitution of STE2 sequences with the URA3 gene. Strains containing 
deletions of SST2 were constructed by transforming with pBC14 (cut with 
NheI), a gift from H. Dohlman and J. Thorner that contains the SST2 
gene deleted for a 2.3-kb HpaI-HpaI fragment, adjacent to the URA3 
gene in the vector YIP5; colonies were selected on synthetic media lacking 

uracil, and prototrophs were replica plated to synthetic media containing 
5-FOA to obtain popouts of pBC14; these colonies were then tested for 
the presence or absence of a deletion of SST2. Deletions of SST2, STE2, 
and FAR1 were confirmed by PCR analysis of genomic DNA using oligo- 
nucleotides that flank the deleted regions of the wild-type genes (data not 
shown). Plasmid p21-1 (a gift from M. Whiteway) contains a galactose- 
inducible STE4 npt allele (Whiteway et al., 1994) in the vector pRS313 
(Sikorski and Hieter, 1989). 7611-4rnfalmfa2 was created by sequential 
gene replacement using pSM86 (mfal::LEU2) and pSM35 (mfa2::URA3) 
(Michaelis and Herskowitz, 1988) and confirmed by Southern hybridiza- 
tion. FUSI-lacZ fusions were integrated at the FUS1 locus by transforma- 
tion with plasmid pSB286 or pFL-LYS that had been linearized with SphI; 
pFL-LYS is a derivative of the integrating FUSI-lacZ (URA3) plasmid 
pSB286 (Chang and Herskowitz, 1990) in which the URA3 gene has been 
replaced with a fragment containing the LYS2 gene. The strain containing 
the ste6-81HM mutation contains a mutation that affects the STE6 gene, 
based on the observations that this strain secretes less pheromone and is 
complemented by a centromere-containing plasmid containing the wild- 
type STE6 gene (data not shown). Strains containing the farl-16D allele 
contain a mutation in the FAR1 gene, based on the observations that the 
mutation is complemented by a centromere-containing plasmid that con- 
tains the wild-type FAR1 gene and by a FARI strain, and the mutation is 
not complemented by a strain containing a farlzl mutation (data not 
shown). Liquid and solid media were described previously (Jackson and 
Hartwell, 1990a). 

Responses to Pheromone 

For [3-galactosidase assays, mating filters were suspended directly in ster- 
ile Z-buffer (Miller, 1972), and one-half was permeabilized and assayed 
for [3-galactosidase activity as previously described (Miller, 1972; True- 
heart et al., 1987). Units of 13-galactosidase activity were calculated as 
(1,000 x OD420 of reaction)/(OD660 of responding cell culture × volume 
of responding cell culture x minutes of assay). The OD660 was determined 
immediately before cells were mixed for the mating reaction. Arrest and 
shmoo formation were measured by counting the numbers of unbudded 
cells, budded cells, and shmoos in a sample that were sonicated and fixed 
in 3.7% formaldehyde; 200 cells were counted in each sample. Shmoos 
were scored as those cells with pointed projections; unbudded cells were 
round or oval. Halo assays were performed as described in Konopka et al. 
(1988). For the shmoo site selection assay (Fig. 2), strain 7611-4 was grown 
to a density of 5 x 106 cells/ml; the cells were sonicated, and then 105 cells 
were spread on a YEPD plate containing 4 ~M c~-factor. Patterns were 
scored as described in the text after a 2-3-h incubation at 30°C; 400 cell 
pairs were analyzed. 

Mating Assays 

Discrimination assays were performed as in Jackson et al. (1991) and 
quantitative mafings were performed as in Hartwell (1980). In the default 
mating assay, a and a-pheromoneless cells were mated quantitatively as in 
Hartwell (1980), except that 3 x 106 cells of each mating partner were 
mixed together, filtered onto 25-mm filters (0.45 p~m pore size; Millipore 
Corp., Bedford, MA), and placed onto Noble agar plates containing the 
indicated concentration of a-factor; these plates were prepared by adding 
c~-factor to warm liquid agar just before pouring the plates. Pheromone 
from the plate passes from the agar, through the filter, and into the mating 
mix on top of the filter. Because pheromone must diffuse through the fil- 
ter and because the a cells on the filter secrete the Barlp protease 
(MacKay et aI., 1988), the concentration of pheromone that the cells expe- 
rience is probably less than the concentration of pheromone on the plate. 
In the pheromone confusion assay, discrimination assays were performed 
as described (Jackson et al., 1991), except the Noble agar plates contained 
the indicated concentrations of a-factor. The mating efficiency was calcu- 
lated as: 100% × (the number of diploids formed/the smallest number of 
input haploids of one mating type); efficiencies greater than 100% occur if 
haploids divide before mating or if diploids divide after mating. 

Assay of  Budding Pattern 

The budding patterns of microcolonies on agar were observed as in Chant 
and Herskowitz (1991), except that cultures were sonicated and spread on 
agar plates containing YEPD media (Hartwell, 1967) at a density of 105 
cells per plate. Plates containing a-factor were prepared by adding or-fac- 
tor to warm agar immediately before pouring the plates. After the indi- 
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Table I. Yeast Strains Used in This Study 

Strain Genotype Source 

PT-1 * a horn3 ilv l can1 Hartwell Laboratory 
PT-2* a horn3 i lvl  can1 Hartwell Laboratory 
3284-12" a ade3 lys2 ° tyrl  ° trpl  a can1 cyh2 SUP4-3 t` Hartwell Laboratory 
4213-67" a ade3 lys2 ° tyr l  ° trpl  a can l  cyh2 sst2-1 SUP4-3 t~ Hartwell Laboratory 
3284-12iFL* a ade3 lys2 ° tyr l  ° trpl  ~ can1 cyh2 FUSI::FUSI- lacZ(LYS2)  SUP4-3 ts This study 
4213-67iFL* a ade3 lys2 ° tyr l  ° trp l ~ can1 cyh2 sst2-1 FUS I : : FUS1-1acZ(LYS2 ) SUP4-3 ts This study 
7609-1-4" a cry1 ade2-1 ° lys2 ° tyrl  ° cyh2 SUP4-3 ts Hartwell Laboratory 
7609-6-4* a cryt  lys2 ° tyrl  ° ura2 SUP4-3 ts Hartwell Laboratory 
7611-2" a cryl  his4-581T lys2 ° trpl  a ura3-52 leu2-3,112 cyh2 SUP4-3 t" Hartwell Laboratory 
7611-4" a cry l his4-580 ~ lys2 ° tyr l  ° ura3-52 leu2-3,112 cyh2 SUP4-3 t" Hartwell Laboratory 
7611-4iFL* isogenic with 7611-4, except FUSI::FUS1-LacZ(URA3)  This study 
7611-4mfalmfa2* isogenic with 7611-4, except mfal: :LEU2 mfa2::URA3 This study 
7612-8-2" a cry1 ade2-1 ° lys2 ° tyr l  ° ura2 cyh2 sst2-1 SUP4-3 ts Hartwell Laboratory 
7623-16-3" a cry l  ade2-1 ° his4-580 a lys2 ° trpl  a ura3-52 leu2-3,112 cyh2 SUP4-3 ts Hartwell Laboratory 
7623-16-3iFL* isogenic with 7623-16-3, except FUS1 ::FUS1 -LacZ(LYS2) This study 
7647-20-1" a cry1 lys2 ° trplaleu2-3, I12 ura3-52 SUP4 t~ Hartwell Laboratory 
7680-8-1iFL* a cryl  his4-580 ~ lys2 ° trpl  ~ tyr l  ° ura3-52 sst2-1 cyh2 SUP4 FUSI: :FUSI-LacZ(URA3)  This study 
ste6-81HM* isogenic with 7623-16-3, except ste6-81HM This study 
8940-4-3* a cry l  ade6 his4-581T lys2 ° trpl  ~ tyr l  ° ura3-52 cyh2 f a r l A : : U R A 3  SUP4-3 t~ Kathrin Schrick 
8940-6-3* a cry1 ade6 his4-580 a lys2 ° trpl  a tyr l  ° ura3-52 cyh2 SUP4-3 ts Kathrin Schrick 
894 l-1-4" a cryl  ade6 his4-581T trpl  a tyrl  ° ura3-52 leu2-3,112 mfcd :: URA3D mfct2::LEU2C Kathrin Schrick 
8941-12-2* a cry l  ade6 his4-580 ~ trpl  ~ ura3-52 leu2-3,112 mfa l : :  URA3D tufa2::LEU2 C can l  cyh3 Kathrin Schrick 

SUP4-3 t~ 

a cry l  his3 lys2 ° ura3-52 cyh2 SUP4-3 t~ 
a cry1 ade6 his3 lys2 ° tyr l  ° ura3-52 leu2-3,112 SUP4-3 t~ 
a /a  ade2/  ADE2 cry l /cry  l his4-580~/his4-580 ~ lys2°/lys2 ° trp la/trp l ~ ura3-52/ura3-52 

leu2-3,112/leu2-3,1 I2 cyh2/cyh2 SUP4-3t~/SUP4-3 t~ 
a cryl  lys2 ° trpl  a tyr l  ° ura3-52 1eu2-3,112 cyh2 SUP4-3t ' far l -16D 
a cry l  his3 ura3-52 trpl  a leu2-3,112 cyh2 m f a l  :: URA3D mfa2::LEU2C SUP4-3 t" 
a spa2-A3::URA3 ura3-52 lys2-80l ade2-101 trpl-901 his3-A200 
a SPA2 ura3-52 lys2-801 ade2-101 trpl-901 his3-A200 
a SPA2 ura3-52 lys2-801 ade2-101 trpl-901 his3-A200 
a spa2-A2::TRPI ura3-52 lys2-801 ade2-101 trpl-901 his3-A200 
isogenic with Y604, excep t fa r lA: :  URA3 
isogenic with Y609, excep t fa r lA: :  URA3 
isogenic with Y604, except ste2A:: URA3 
isogenic with Y609, except ste2A::URA3 
isogenic with Y604, except sst2A 
isogenic with Y609, except sst2A 
ct ade2-1 trpl-1 1eu2-3,112 ura3-1 his3-11,t5 can l  
a ade2-1 trpl-1 Ieu2-3,112 ura3-1 his3-11,15 can l  m fa l : :LEU2C M F a 2  
a ade2-1 trpl-1 leu2-3,112 ura3-1 his3-11,15 can l  m fa l : :LEU2C tufa2:: URA3D 

8998-4-2* Kathrin Schrick 
8998-4-3* Kathrin Schrick 
10703* This study 

10815-14-4" 
10843-9-2* 
Y601 ~ 
Y603 ~ 
Y604 * 
Y609 ~ 
Y 6 0 4 f a r l  A s 

Y609 far l  M 
Y604s te2A ~ 
Y609s te2A ~ 
Y604ss t2A ~ 
Y 609sst2 A ~ 
W303-1B § 
mfcd : : LEU2 C ~ 

m f a l m f a 2  § 

This study 
This study 
Gehrung and Snyder, 1990 
Gehrung and Snyder, 1990 
Gehrung and Snyder, 1990 
Gehrung and Snyder, 1990 
This study 
This study 
This study 
This study 
This study 
This study 
Kurjan, 1985 
Kurjan, 1985 
Kurjan, 1985 

* 381G strain background. 
$288C strain background. 

~W303 strain background. 

cated incubation time, microcolonies were viewed at 400× magnification 
(Nikon Labophot-2 microscope), and four cell microcolonies were scored 
as described (Chant and Herskowitz, 1991). The percentage of microcolo- 
nies containing three or four cells was determined at 100× magnification. 

Results 

MATa Cells Execute a Default Mating Pathway in the 
Presence of High, Isotropic Pheromone Concentrations 

Jackson and Hartwell (1990b) proposed that there is a de- 
fault pathway that a cells use to choose a mate when they 
cannot sense pheromone gradients. Therefore, in this pa- 
per we adopt this definition of the default pathway: mat- 
ings that occur by the default pathway are those that occur 
without sensing pheromone gradients. For clarity, we de- 
fine a chemotropic mating pathway as the mating pathway 
by which wild-type ceils mate when they sense pheromone 

gradients and orient their morphogenesis along the gradi- 
ent toward a mate. 

We designed the following experiments to study the de- 
fault pathway in wild-type a cells. Cells that are deleted for 
both of the a-pheromone structural genes, MFal and 
MFa.2, produce no pheromone and are sterile (Kurjan, 
1985; Table II; Fig. 1). Therefore, if a wild-type a cell is 
presented with this pheromoneless a cell as its sole mating 
partner and synthetic a-pheromone is added exogenously 
to the mating mix, then all matings must occur in the ab- 
sence of a-pheromone gradients and by the default path- 
way. We refer to this assay as the default mating assay. We 
measured the mating behavior of a cells over a large range 
of exogenous pheromone concentrations, and since the ex- 
perimental conditions cause the actual concentration of 
pheromone experienced by the a cells to be less than the 
concentration in the media (see Materials and Methods), 
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we included pheromone concentrations that were many 
fold higher than necessary to saturate pheromone recep- 
tors (Jenness et al., 1983, 1986). We found that the maxi- 
mum inducible mating efficiency of a cells with phero- 
moneless a cells was ~17-fold lower than the efficiency 
with which two wild-type cells mated in the absence of ex- 
ogenous pheromone (9.0% and 150%, respectively ([Fig. 1 
A; Table IID. Therefore, high levels of exogenous phero- 
mone can suppress the sterility of pheromoneless e~ cells, 
but cannot restore the efficiency of these matings to a 
wild-type level. Consistent with these results, Marcus et al. 
(1991) showed that the addition of a-factor could only par- 
tially suppress the sterility of a cells deleted for both a-fac- 
tor structural genes. 

These results suggest that matings that occur by the de- 
fault pathway are less efficient than those that occur by the 
chemotropic pathway. In support of this suggestion, we 
found that wild-type a and a cells mated 19-fold less effi- 
ciently in the presence of a high a-factor concentration 
(Table II), and Marcus et al. (1991) found that exogenous 
a-factor inhibited the mating efficiency of wild-type a and 
a cells. To determine whether these matings occurred at a 
reduced efficiency because a cells were unable to use the 
chemotropic pathway and instead mated by the default 
pathway, we measured the behavior of a cells in a discrim- 
ination assay (Jackson and Hartwell, 1990b) to which we 
added increasing amounts of a-factor. In this assay, a wild- 
type a cell is presented with a choice between equal num- 
bers of wild-type a cells and pheromoneless a cells. The 
two a cells carry different auxotrophic markers so that 
matings with each a cell can be scored independently. A 
randomness index is calculated as the fraction of diploids 
formed with the pheromoneless a cell, divided by the frac- 
tion of a cells that were pheromoneless in the mating reac- 
tion. When a wild-type a cell mates almost exclusively with 
the wild-type a cell partner, the randomness index is low. 
When the a cell mates equally often with both a cell mat- 
ing partners, the randomness index is 1.0. 

We found that as increasing amounts of a-factor were 
added to a discrimination assay, the mating efficiency de- 
creased by about sevenfold (160-23% [Table II; Fig. 1 A]), 
roughly to the mating efficiency of an a cell mated with an 
a-pheromoneless cell as the sole mating partner (9.0%) 
and an a cell mated with a wild-type a cell as the sole part- 
ner in the presence of a high pheromone concentration 
(7.8% [Table II]). In addition, we found that the dose de- 

pendence for the increase in mating efficiency to phero- 
moneless cells in the discrimination assay was identical to 
the dose dependence displayed for matings with phero- 
moneless cells when they were the sole mating partner 
(Fig. 1 A). Moreover, as the fraction of cells mating at ran- 
dom in the discrimination assay increased, the total mating 
efficiency decreased (Fig. 1 A); the efficiency of these mat- 
ings did not change once the randomness index reached 
1.0 and the majority of the cells mated by the default path- 
way (Fig. 1 A). Therefore, we conclude that the induction 
of the default pathway inhibits the use of the chemotropic 
mating pathway and that the default pathway is a less effi- 
cient mating pathway than the chemotropic pathway. This 
lower mating efficiency reflects how important it is that 
both partners mate by the chemotropic pathway, since the 
inability of just one partner to use the chemotropic path- 
way impairs mating efficiency. 

Default Mating Requires Saturation of  the Pheromone 
Response Pathway 

Since the execution of the default pathway depended on 
the dose of pheromone (Fig. 1 A), we asked to what de- 
gree the signal transduction pathway was activated when 
default matings were induced, FUS1 expression is induced 
by as much as 1,000-fold in the presence of a-factor (True- 
heart et al., 1987; McCaffrey et al., 1987; Fig. 1, B and C), 
so the level of FUS1 induction reflects the level of activity 
in the signal transduction pathway. Therefore, we mea- 
sured the [3-galactosidase activity expressed from a FUS1- 
lacZ construct in the a cell in the above experiments. 
When an a cell is maximally induced for FUSI-lacZ ex- 
pression, we interpret this as indirect evidence that the sig- 
nal transduction pathway is saturated. We found that for a 
cells in matings with pheromoneless cells alone or in the 
discrimination assay, the levels of FUSI-lacZ induction 
reached a maximum upon the addition of 25 IxM a-factor 
(Fig. 1 B), the same concentration at which the mating ef- 
ficiency of a cells with pheromoneless a cells reached a 
maximum (Fig. 1 A). Therefore, we suggest that the de- 
fault pathway is activated when the pheromone response 
pathway is saturated by high doses of pheromone. Fur- 
thermore, notice that the efficiency of default matings in- 
creased by five orders of magnitude with just a 10-fold in- 
crease in pheromone concentration, whereas FUSI-lacZ 
induction increased more gradually as the pheromone 

Table II. Mating Behavior of Wild-Type a Cells in the Presence of Exogenous a-factor 

a Cell partner(s)* a-factor* Mating efficiency ~ Randomness index r Fold inhibition by a-factor ~ 

MFoHMFa2 - 150 - 16 (3) N A  N A  

MFalMFa2 + 7.8 -+ 0 ,50  (3) N A  19 
mfalmfa2 - < 3 . 8  × 10 3(3)  N A  N A  

mfalmfa2 + 9.0 -+ 1.8 (3) N A  N A  
MFalMFa2, mfalmfa2 - 160 -- 16 (3) 9 .0  × 1 0 - 6 -  + 3.5 × 10 -6 (3 )  N A  

MFalMFa2, mfalmfa2 + 23 -+ 3.6 (3) I. 1 -+ 0 .10  (3) 7.0 

*The a strains used were 8941-12-2 (lines 3-6) and 7609-6-4 (lines 1,2, 5, and 6); all matings were with a wild-type a strain (7611-4). Equal numbers of cell partners were used 
in all matings. 
*Matings were allowed to occur for 3 h at 30°C on Noble Agar plates in the absence ( - )  or in the presence (+ )  of  20 tzM a-factor. The number of  experiments performed is indi- 
cated in parentheses. 
§Percent of input haploid cells that formed diploids. 
I! Calculated as the fraction of diploids formed between the a cells and the c~-pheromoneless cells, and divided by the fraction of a ceils that were a-pheromoneless in the mating re- 
action. 
1The total mating efficiency of the a strain in the absence of cx-factor, divided by the mating efficiency of  the a strain in the presence of a-factor. 
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Figure 1. The behaviors of wild-type cells executing the default 
pathway. (A and B) Wild-type a cells were mated either with 
pheromoneless a cells alone (open symbols) or with both wild- 
type c~ cells and pheromoneless c~ cells in a discrimination assay 
(closed symbols) on Noble agar plates containing the indicated 
pheromone concentrations for 2.5 h at 30°C (see Materials and 
Methods). (A) The mating efficiency with wild-type a cells 
(squares) and with pheromoneless c~ cells (circles) were measured 
in the discrimination assay; the mating efficiency with a-phero- 
moneless cells as the sole mating partner were measured under 
the same conditions (triangles). (B) The level of FUSI-lacZ ex- 
pression in the a cells was measured in each quantitative mating. 
Data are presented as a percentage of the maximum; the maxi- 
mum 13-galactosidase activity in a cells was 74 units in matings 
with pheromoneless cells alone and 96 units in the discrimination 
assay. (C) An a cell was treated exactly the same as in the mating 
assays, except that no tx cell partners were present. The percent- 
age of cells that arrested as unbudded cells (circles) or shmoos 
(triangles) was measured; diamonds represent the level of FUS1- 
lacZ expression in the a cell. The maximum percentage of cells 
that were unbudded and shmoos were 100 and 92%, respectively; 
the maximum 13-galactosidase activity was 24 units. The experi- 
ments in A,/3, and C were all performed in parallel; these data 
represent the average of duplicate experiments. The a strain 
used was 7623-16-3iFL, and the ~ strains used were 8941-1-4 and 
8998-4-3. 

concentra t ion increased (compare  Fig. 1, A and B). This 
dramat ic  increase in mat ing efficiency may reflect an im- 
por tan t  event  that  is induced during default  matings; per-  
haps there  are coopera t ive  effects or ol igomers  formed 
among components  that  induce default  matings. 

In addit ion,  these da ta  suggest that  in a wild-type mating 

reaction,  a cells receive a subsaturat ing level of signal, a 
condi t ion that is required for a cell to detect  a gradient  of 
phe romone  surrounding the cell; in a saturat ing concentra-  
tion of  exogenous pheromone ,  a cells expressed about  six- 
fold more  FUSI-lacZ than when all phe romone  was sup- 
plied by the MATc~ cells in the discriminat ion assay (Fig. 1 
B). This subsaturat ing level of expression is not due to a 
small fraction of a cells undergoing mating and giving high 
expression levels in the absence of exogenous pheromone ,  
because in the absence of phe romone  the major i ty  of cells 
mate,  and it is not  due to an inhibit ion of FUSI-lacZ 
expression after cell fusion occurs because FUSI-lacZ ex- 
pression in MATe~ cells is identical when ei ther  M A T a  cells 
or matA cells are used as par tners  (data  not  shown). 

Shmoo Formation Correlates with the Execution o f  the 
Default  Pathway 

When  a cells are exposed to high concentrat ions of exoge- 
nous pheromone ,  they form a shmoo (for a review see 
Chenevert ,  1994) by producing a project ion on one side of  
their  cell. Madden  and Snyder  (1992) showed that these 
project ions are located adjacent  to the last bud site on the 
cell. They stained shmoos with calcofluor, which incorpo-  
rates into the cell wall, and observed that  bud scars were 
predominant ly  in the third of  the cell where the shmoo tip 
was located. We have made  a similar observat ion in the 
381G strain background.  We found that  when a cells were 
grown to mid- logrhythmic phase,  and then spread on a 
Y E P D  plate  containing a high concent ra t ion  of a - fac tor  
(4 IxM), cells that  were past  S T A R T  at the t ime of plating 
arres ted in the G1 phase as a pair  of  mother  and daughter  
ceils. Af te r  2-3 h, the pair  p roduced  shmoos,  the tips of 
which were posi t ioned next to their  last bud site; for 86% 
of the cell pairs, both ceils p roduced  project ions  adjacent  
to their  last bud site (class I, Fig. 2), while in only 0.25% of  
the cell pairs both cells formed project ions opposi te  their  
last bud site (class III, Fig. 2). This pa t te rn  is similar to the 
pa t te rn  of bud site selection that occurs if no a- factor  is 
present in the media (Chant and Herskowitz, 1991; Table X). 

We hypothesized that  these project ions are formed 
when a cells execute the default  mat ing pathway.  There-  
fore, we compared  shmoo format ion with the induction of  
default  matings in a cells in response to increasing concen- 
trat ions of added  a - p h e r o m o n e  (Fig. 1 C). Consistent  with 
the observat ions of Moore  (1983), we observed that  a cells 
require  higher concentrat ions  of phe romone  to form 
shmoos than they requi re  to ar res t  as u n b u d d e d  cells; at 
1 IxM pheromone  ~ 9 0 %  of the cells were unbudded,  and 
less than 1% of the cells formed shmoos (Fig. 1 C). We 
found that  shmoo format ion  increased dramat ical ly  (from 
1.5-89% of the cell popula t ion)  be tween 2.5 txM and 25 
txM (Fig. 1 C), the same range over  which default  mat ing 
efficiency increased dramatical ly  in paral le l  exper iments  
(Fig. 1 A). In addit ion,  the point  of maximal  shmoo forma- 
tion corre la ted  with the point  at which the phe romone  re- 
sponse pathway was saturated,  as measured  by FUSI-lacZ 
induction (Fig. 1 C); consistent with this deduct ion,  shmoo 
format ion  and receptor  sa tura t ion have similar dose- 
response profiles (Moore ,  1983; Jenness et al., 1983, 1986). 
Since shmoo format ion and default  mat ing efficiency also 
have similar dose-response  profiles, we suggest that  when 
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Figure 2. MATa cells produce shmoos adjacent to their last bud- 
ding site in the presence of a high concentration of a-factor. Cells 
were grown to rnid-logrhythmic phase, sonicated, and spread on a 
YEPD plate containing 4 ixM a-factor (see Materials and Meth- 
ods). After a 2.5-h incubation at 30°C, the position of the shmoo 
tips in the mother and daughter cell pairs was scored accordingly; 
data are the percentage of 400 cell pairs scored that were in each 
class. In class I pairs, both shmoo tips are positioned in the half of 
each cell that is adjacent to the other cell in the pair. In class III, 
each shmoo tip is positioned in the half of the cell that is opposite 
the other cell in the pair; in class II one shmoo tip is in the half of 
the cell adjacent to the other cell in the pair (as in class I), but the 
second shmoo tip is in the half opposite the other cell (as in class 
III). 

a cells receive saturating levels of pheromone they execute 
the default pathway and form a shmoo. 

The SPA2 Gene Is Specifically Required for the Default 
Mating Pathway 

Given these observations, we hypothesized that mutants 
that are defective for shmoo formation might be defective 
for the ability to mate with pheromoneless cells at high 
pheromone concentrations. Therefore, we tested cells de- 
leted for the SPA2 gene in the default mating assay, since 
these mutants fail to form pear-shaped shmoos at high 
pheromone concentrations and instead become oval, spher- 
ical, or peanut-shaped, depending on the strain back- 
ground and allele (Gehrung and Snyder, 1990; Yorihuzi 
and Ohsumi, 1994; Chenevert et al., 1994). 

We found that MATa spa2A cells mated with an ~3,000- 
fold lower efficiency in the default mating assay than an 
isogenic wild-type control strain (about 0.003% and 10%, 
respectively [Table III]). This mating defect was specific to 
default-inducing conditions: when no pheromone was added 
to the mating mix, an a spa2A strain mated about as effi- 
ciently as an isogenic wild-type control strain mated either 
with SPA2 ~ cells (50% and 112%, respectively) or with 
spa2/t a cells (60% and 124%, respectively) under the con- 
ditions of this mating assay, where a and c~ cell partners 
were mated at high cell densities (Table III; Materials and 
Methods). These data for matings with wild-type cells are 
consistent with the observations of Gehrung and Snyder 
(1990), who showed that SPA2 is not required for matings 
with wild-type cells when cell densities are high. There- 
fore, SPA2 is specifically required for the default mating 

Table III. SPA2 Is Required for Matings with a-pheromoneless 
Cells 

a Strain* a Strain * a-factor § Mating efficiencyll 

% 

SPA2 m f a l m f a 2  ~ + 7.9 

12 

spa2-A2::TRP1 m f a l m f a 2  ~ + 0,002 

0 .004 

SPA2 SPA2 ~ - 112 

112 
spa2-A2::TRP1 SPA2 ~ - 54 

46 

SPA2 ~ SPA2 - 138 

114 
SPA2 ~ spa2- A 3 : : URA 3 - 127 

121 
spa2-A2::TRP1 spa2-Zl3::URA3 - 62 

58 

*The a strains used were Y604 (lines 1 and 3), Y609 (lines 2, 4, and 7), and PT-1 
(lines 5 and 6). 
~The a strains used were 8941-12-2 (lines 1 and 2), PT-2 (lines 3 and 4), Y603, and 
Y601 (lines 6 and 7). 
§Matings were allowed to occur for 3 h at 30°C on Noble Agar plates in the absence 
( - )  or in the presence (+)  of 10 ixM c~-factor. 
liSee footnote §, Table II. 
~381G strains. All others are $288C. 

pathway in a cells, since SPA2 is not required for chemo- 
tropic matings. 

In addition, we tested cells deleted for SPA2 in the dis- 
crimination assay, either in the presence or in the absence 
of exogenous a-factor (Fig. 3). We found that in the pres- 
ence of increasing concentrations of a-factor, the total 
mating efficiency of spa2A cells was reduced dramatically, 
from 81% (no a-factor added) to 0.073% (100 rtM c~-fac- 
tor), a 1,100-fold reduction. In contrast, the presence of 
100 ixM a-factor caused only an eightfold reduction in the 
mating efficiency of the isogenic wild-type control strain 
(from 160% to 21%). Therefore, the addition of exoge- 
nous a-factor to the discrimination assay dramatically in- 
hibited the ability of spa2A cells to mate with wild-type 
cells, demonstrating that SPA2 is required for all default 
matings induced in the presence of high, isotropic a-factor 
concentrations, not just matings with a-pheromoneless 
cells. Moreover, unlike the SPA2 control cells, spa2A cells 
showed only about a 16-fold increase in mating efficiency 
with the c~-pheromoneless cell partner (from 0.0011% to 
0.018%) compared with an 11,000-fold increase for the 
wild-type control (from 0.0011% to 12%). It is also inter- 
esting to note that as more pheromone was added to the 
discrimination assay above a concentration of 10 IxM, the 
total mating efficiency of the spa2A cells decreased signifi- 
cantly, from 4.4% to 0.073% (60-fold), and the efficiency 
of the wild-type control decreased only slightly, from 35% 
to 21% (1.7-fold). Since this assay is a population assay, 
the continued decrease in mating efficiency in the spa2A 
mutant population is most likely explained by suggesting 
that with the increasing concentration of pheromone, an 
increasing percentage of the spa2A ceils had their phero- 
mone receptors saturated by pheromone; in other words, 
even in the presence of a high exogenous pheromone con- 
centration, some a cells in the population could sense a 
gradient of pheromone produced by an opposite mate and 
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Figure 3. SPA2 is specifically required for 
the default mating pathway, spa2A mu- 
tants (circles) and SPA2 cells (squares) 
were each mated in discrimination assays 
in the presence of the indicated concentra- 
tions of a-factor on Noble Agar plates for 
3.0 h at 30°C. The mating efficiencies with 
the wild-type a cell partner (closed sym- 
bols) and with the pheromoneless ct cell 
partner (open symbols) we calculated for 
each mating assay (see Materials and 
Methods). 

mate by growing along that gradient. At the highest phero- 
mone concentration, 100 I~M, most of the spa2A a cells 
were surrounded by saturating pheromone, and as a result 
very few gradients remained in the population; since the 
cells could neither sense a gradient of pheromone because 
of the high pheromone concentrations, nor execute the de- 
fault pathway due to the deletion of SPA2, very few cells 
mated (only 0.073%). 

The SST2 Gene Is Important  f o r  Chemotropism but Is 
No t  Required fo r  the Defaul t  Mating Pathway 

In contrast to SPA2, the SST2 gene is important for 
chemotropism. Both sst2-1 a and sst2-1 a strains, contain- 
ing null mutations in the SST2 gene, are 100-fold more 
sensitive to pheromone than wild-type a and a strains 
(Chan and Otte, 1982; Dietzel and Kurjan, 1987). The fol- 
lowing three observations suggest that SST2 is important 
for chemotropism: (a) both a and a sst2-1 mutants mate 
randomly in the discrimination assay (Jackson and 
Hartwell, 1990b; Schrick, 1994); (b) sst2-1 mutants mate 
with wild-type cells ~10-fold less efficiently than SST2 
cells (Jackson and Hartwell, 1990b; Table IV [18 _ 3.6% 
and 190 -+ 32%, respectively]); and (c) sst2-1 cells show a 
defect in orienting growth along pheromone gradients that 
wild-type cells can detect (Segall, 1993). Despite this role 
for SST2 in chemotropism, we found that SST2 is not re- 
quired for the default mating pathway, since we observed 
that sst2-1 mutants mated as efficiently as SST2 cells 
mated with pheromoneless cells in the presence of 20 txM 
a-factor (3.5 _+ 0.59% and 2.0 _+ 0.21%, respectively [Ta- 
ble IV]). Therefore, the chemotropic and default mating 
pathways are genetically distinct, since these mating path- 
ways show reciprocal requirements for the SST2 and 
SPA2 genes. 

A n  sst2-1 a Strain Executes  the Defaul t  Pathway to 
Mate  with a Wild-Type Partner 

Although SST2 is important for chemotropism, two pieces 
of evidence suggest that it is not absolutely required for 

chemotropism, but instead alters the range of pheromone 
concentrations over which cells can orient. First, Segall 
(1993) demonstrated that while sst2-1 mutants are defec- 
tive at orienting their growth along pheromone gradients 
that wild-type cells can use to orient, they are capable of 
orienting their growth if the concentration in the gradient 
is very low. Second, we found that both the low mating ef- 
ficiency and the discrimination defect of sst2-1 ct cells 
could be suppressed if the a cell partner produced very low 
levels of pheromone. During a screen for MATa mutants 
that mate poorly with an sst2-1 et strain (Dorer, R., and L. 
H. Hartwell, unpublished observations), we found mutant 
a cells that mate better than wild-type a cells with a sst2-1 
cells. Most of these a cells contain hypomorphic mutations 
in STE6 (data not shown), the gene encoding the a-factor 
transporter (for a review see Michaelis, 1993), and they se- 
crete less pheromone (unpublished observations). One of 
these mutants, ste6-81HM, partially suppressed both the 
low mating efficiency and the discrimination defect of c~ 
sst2-1 cells (Table V); when the pheromone-producing a 
strain contained the ste6-81HM mutation the randomness 
index for the sst2-1 strain was 0.014 --- 0.0016 and the mat- 
ing efficiency was 67%, compared to a 29-fold higher ran- 
domness index (0.41 --- 0.058) and a 2.4-fold lower effi- 
ciency (28 +_ 1.2%) when the a strain was STE6. In 
contrast, the ste6-81HM a strain mated poorly with a wild- 
type c~ strain (0.85 _+ 0.69%, compared with 180 _ 20% for 

Table IV. sst2-1 Mutants in the Default Assay 

a Strain* a-factor :~ (x Strain § Mating efficiency II 

% 

SST2 - MFal  MFce2 190 ± 32 (3) 
sst2-1 - MFalMFa2 18 ± 3.6 (3) 
SST2 + mfalmfa2 3.5 ± 0.59 (3) 
sst2-1 + mfalmfa2 2.0 ± 0.21 (3) 

*The a strains used were 7609 t-4 (SST2) and 7612-8-2 (sst2-1). 
~Matings were allowed to occur for 3 h at 30°C on Noble Agar plates in the absence 
(lines 1 and 2) or in the presence (lines 3 and 4) of 20/,zM c~-factor. 
§The a strains used were 7611-2 (lines 1 and 2) and 8941-12-2 (lines 3 and 4). 
NSee footnote §, Table II, 
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Table V. The Mating Defects of an sst2-1 a Strain Are Suppressed by Mating with an a Strain Containing a Mutation in STE6 

Pheromone-producing Total mating 
a-Strain* a strain ~ efficiency § Randomness index I 

% 

SST2 STE6 180 _+ 20 (3) 5.9 x 10 6 + 3.4 × 10 -6 (3) 

SST2 ste6-81HM 0.85 ± 0.69 (3) <9.1 × 10 4 ± 6.9 × 10 -5 (3) 

sst2-1 STE 28 ± 1.2 (3) 0.41 +_ 0.058 (3) 

sst2-1 s te6-81HM 67 +- 0 (3) 0.014 +- 0.0016 (3) 

*The a strains used were 3284-12 (SST2) and 4213-67 (sst2-1). 
*The pheromone producing a strains used in the discrimination assay are isogenic with 7623-16-3. All assays used 7611-4mfalmfa2 as the pheromoneless a strain, 
~The percentage of a ceils that formed diploids with either the a wild-type or the a-pheromoneless strain partners. The mean and standard error of the number of independent ob- 
servations shown in parentheses are indicated. 
IISee footnote II, Table II. 

a STE6 a strain), consistent with a pheromone secretion 
defect. Therefore, these results demonstrate that SST2 is 
only required for discriminating mating partners when one 
of its partners produces wild-type levels of pheromone. 

In addition, we measured the level of FUSI-lacZ expres- 
sion in sst2-1 a ceils in mating mixes with wild-type a cells 
and found that the level of FUSI-lacZ expression could 
not be increased by adding exogenous a-pheromone, sug- 
gesting that for sst2-1 cells the pheromone response path- 
way is saturated when wild-type mating partners are present 
(Table VI). Since wild-type a cells activate the default 
pathway when the signal transduction pathway is satu- 
rated, these data suggest that a wild-type mating partner 
causes sst2-1 a ceils to execute the default pathway. Con- 
sistent with this hypothesis, we found that a sst2-1 cells are 
maximally induced for FUSI-lacZ expression when their 
mating partner is a wild-type a cell, but not when their 
partner contains the ste6-81HM mutation (Table VI). This 
hypothesis also predicts that the deletion of SPA2 in an 
sst2A strain should prevent an sst2A mutant from complet- 
ing any matings by the default pathway. We predicted that 
as a result the mating efficiency of the spa2Asst2A double 
mutant would be reduced while the apparent discrimina- 
tion defect would be suppressed. Indeed, the mating effi- 
ciency of the sst2Aspa2A strain was 43-fold lower than the 
sst2A strain (0.74 _+ 0.41% compared to 32 -4- 3.0%, re- 
spectively [Table VIII). In addition, while the sst2a strain 
discriminated poorly between wild-type a cells and phero- 
moneless a cells (randomness index of 0.51 - 0.083), the 
sst2Aspa2a a strain discriminated mating partners very 
well and preferred to mate with the wild-type a strain in 

the discrimination assay (randomness index of 0.0088 _+ 
0.0021 [Table VII]). Therefore, while most members of a 
population of sst2A a cells mate by the default pathway, 
most sst2dspa2A a cells cannot mate because they cannot 
complete the default pathway. The small percentage of 
sst2Aspa2A a cells that mate are those that do not execute 
the default pathway because of the incomplete chemotro- 
pic defect caused by the sst2A mutation; as a result, the 
rare sst2Aspa2A cells that mate, do so solely with the wild- 
type a cell in the discrimination assay. 

As a control we showed that the deletion of SPA2 does 
not alter the supersensitivity of sst2A a cells to a-factor, as 
judged by halo assay (Fig. 4). Both spa2A a cells and wild- 
type a cells displayed identical sensitivity to pheromone, 
and both sst2A a cells and sst2Aspa2A a cells displayed 
identical supersensitivity. 

SPA2 Acts  Downstream of  STE4 in the Default 
Mating Pathway 

Since high levels of pheromone initiate the default mating 
pathway, some component(s) of the mating signal trans- 
duction pathway must respond to high levels of signal and 
execute the default pathway. The STE2 gene encodes the 
receptor for a-factor and is required for sensing phero- 
mone gradients (Jackson et al., 1991; Schrick, 1994). The 
GPA1, STE4, and STE18 genes encode the a, [3, and ~/ 
components of the heterotrimeric G-protein, respectively. 
Genetic data support a model in which the a subunit nega- 
tively regulates the ability of the 13~ complex to initiate the 
pheromone response (for reviews see Marsh et al., 1991; 

Table VI. FUSI-lacZ Induction Levels in Mating Mixes 

FUS 1-lacZ in responding cell 
(percent of maximum response) II 

Responding 
cell type* Inducing cell* a-factor ~ SST2 sst2-1 

a mfa lmJa2  - 0.66 - 0.25 (8) 3.9 -+ 1.6 (8) 

a mfalMFot2  - 8.5 ± 1.4 (8) 102 - 4.5 (8) 
a M F a l M F a 2  - 18 ± 4.1 (8) 95 ± 6.8 (8) 

a M F a l M F a 2  + 60 ± 8.1 (8) 98 ± 9.0 (8) 

mfalmfa2 - 0.59 -+ 0.18 (4) 9.6 ± 3.4 (4) 
a ste6-81HM - 2.8 + 0.33 (4) 66 ± 3.4 (4) 

ot M F a l M F a 2  - 38 ± 0.87 (4) 100 -+ 5.0 (4) 

*The strain containing the FUSI-lacZ construct. The strains used were 7611-4iFL (a SST2), 7680-8-1iFL (a sst2-1), 3484-12iFL (a SST2), and 4213-67iFL (a sst2-1). 
*The mating partner of the responding cell. The strains used, in order from top to bottom, were mfcdmfa2, mfaI::LEU2C, W303-1B, 7647-20-1,761 l-4mfalmfa2, ste6-81HM, 
and 7623-16-3. The responding strain was mated with this inducing cell for 90-150 min on Noble agar plates at 3(FC. 
§Cells were mated in either the presence (+) or absence ( - )  of 20 p,M a-factor. 
liThe percentage of the maximum level of FUSI-lacZ induction observed. The maximum level of 13-galactosidase activity was 60.5 units for a cells and 144 units for a cells. 
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Table VII. A spa2A Mutation Displays Synthetic Sterility with 
an sst2A Mutation and Suppresses the Discrimination Defect 
Caused by sst2A Mutation 

a Strain* Total mating efficiency* Randomness index ~ 

% 

SST2 SPA2 120 _+ 13 (4) 
sst2A SPA2 32 _+ 3.0 (4) 
SST2 spa2A 120 _+ 17 (4) 
sst2A spa2A 0.74 _+ 0.14 (4) 

< 5 . 2  × 10 -6 _+ 1.4 × 10 6 (4) 

0.51 -+ 0.083 (4) 
<8 .1  × 10 6_+ 1 . 4 ×  10 6(4)  

0 .0088 _+ 0.0021 (4) 

*The a strains used in this study were, in order from top to bottom, Y604, Y604sst2 A, 
Y609, and Y609sst2A. The ct strains used were 8998-4-2 and 8941-12-2. 
*See footnote ~, Table V. 
~See footnote I~, Table I1. 

Sprague and Thorner, 1992; Kurjan, 1992). Consistent 
with this model, overexpression of STE4 can suppress the 
mating defect of receptorless cells (Whiteway et al., 1990). 
We wished to determine whether overexpression of STE4 
causes ste2A cells to mate by a process that requires SPA2. 
We found that the deletion of SPA2 decreased the mating 
efficiency of a ste2A mutant by 15-fold when matings were 
induced with pheromoneless cells by overexpressing an ac- 

tivated STE4 allele, STE4 Hpl (0.078 -+ 0.013% and 1.2 + 
0.10% for ste2aspa2A and ste2A mutants, respectively [Ta- 
ble VIII]). In addition, pheromoneless matings that were 
induced by STE4Hplin a STE2 background were inhibited 
by ~31-fold by the deletion of SPA2 (0.37 _+ 0.016% and 
0.012 + 0.0012% for SPA2 and spa2A, respectively). These 
low mating efficiencies of spa2a STE4 npt mutants are simi- 
lar to the mating efficiencies of spa2A mutants mated in 
the presence of saturating pheromone (Fig. 3), or mated 
with pheromoneless cells in an sst2A background (Table 
VII). Therefore, STE4 Hpt requires SPA2 to activate de- 
fault mating events, suggesting that SPA2 acts downstream 
of STE4 in the default pathway. In addition, notice that the 
deletion of STE2 does not inhibit a cell's ability to mate 
with pheromoneless cells (0.37% and 1.2% for STE2 and 
ste2A, respectively), suggesting that beyond their role in 
activating STE4 during mating pheromone receptors are 
not absolutely required for matings that occur by default. 
Consistent with this conclusion, receptorless cells are ca- 
pable of shmoo formation if the pheromone-response 
pathway is activated downstream (Jahng et al., 1988; Clark 
and Sprague, 1989). 

Figure 4. T h e  s e n s i t i v i t y  o f  m u t a n t s  t o  p h e r o -  

m o n e  was judged by halo assay. Sterile filter 
discs containing s-pheromone were placed on 
agar plates spread with 105 cells of the indicated 
a strain. The size of the halo (clear region) re- 
fleets the sensitivity of the strain to pheromone- 
induced cell cycle arrest. (A) Y604 (SPA2) and 
Y609 (spa2A) were tested with filters containing 
1 raM, 100 ~M, and 50 ~M s-factor (counter- 
clockwise from upper right on plate). (B) 
Y604sst2zl and Y609sst2A a strains were tested 
with 10 ~zM, 1 ~M, and 100 nM ~t-factor (coun- 
terclockwise from upper right). 
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Table VIII. STE4 Hpt Requires SPA2 and Not STE2 to Induce 
Matings with Pheromoneless a Cells 

a Strain* Mating efficiency* 

% 

SPA2 STE2 < 0 . 0 0 0 3 8  (3) 

+ pRS313  

SPA2 STE2 0.37 -+ 0 .016 (3) 
+ p G A L - S T E 4 n P  t 

spa2-A2::TRP1 STE2 < 0 . 0 0 0 3 8  (3) 

+ pRS313  

spa2-a2::TRPl STE2 0.012 -+ 0 .0012  (3) 
+ P G A L - S T E 4 ~ P  t 

SPA2 ste2A 1.2 _+ 0 .10  (3) 

+ p G A L - S T E 4  Hpr 

spa2-A2::TRP1 ste2A 0.078 -+ 0 .013 (3) 
+ pGAL-STE4HP t 

*The a strains used were Y604 (lines 1 and 2), Y609 (lines 3 and 4), Y604ste2a, and 
Y609ste2A; these strains contained either pRS313 or p21-1(pGAL-STE4nPt), as indi- 
cated. All matings were with 8941-12-2 as the ct cell partner. 
*The percentage of  a cells that formed diploids with ct-pheromoneless cells. Matings 
were allowed to occur for 5 h at 30°C on Noble Agar plates containing raffinose and 
galactose as carbon sources. No a-factor was added to these matings. 

The Pheromone Confusion Assay 

The observation that high concentrations of exogenous 
pheromone inhibit the efficiency of chemotropic matings 
(Tables II and III; Fig. 1 A; Marcus et al., 1991) suggested 
to us that the degree of inhibition should provide a mea- 
sure of the ability of a cell to sense gradients and orient its 
growth. In this pheromone confusion assay, chemotro- 
pism-defective mutants should mate as efficiently with 
wild-type cells when gradients of pheromone are present 
as they do when they must mate by the default pathway in 
isotropic, high pheromone concentrations; in both condi- 
tions chemotropism-defective mutants are unable to sense 
gradients of pheromone and must find a mate by a mecha- 
nism that is independent of gradient information. For ex- 
ample, an sst2-1 mutant mates nearly as well with wild- 
type cells in the absence of exogenous pheromone as it 
does in the presence of exogenous pheromone (11 z 1.4% 
and 6.3 -- 0.78%, respectively [Table IX]) and fails to dis- 
criminate mating partners under both conditions (random- 
ness indices of 0.63 -+ 0.098 and 0.89 -- 0.087, respec- 

tively). Under these same conditions a wild-type a cell 
experiences a 6.2-fold inhibition of mating by exogenous 
pheromone (Table IX), and fails to discriminate only in 
the presence of pheromone (randomness indices of 0.58 -+ 
0.20 and 6.7 x l 0  "6 --+ 4.6 X 1 0  "6, respectively [Table IX]). 

A farlA a Strain Is Defective in the Pheromone 
Confusion Assay 

While FAR1 was identified because it is required for cell 
cycle arrest in response to pheromone, it must have an ad- 
ditional function in mating, since mutant alleles of FAR1 
exist that confer an Arrest+ Mat ing-  phenotype (Chang 
and Herskowitz, 1990; Chang, 1991). This mating defect 
exists in far1 mutants despite a wild-type transcriptional 
response to exogenous pheromone, no defect in kary- 
ogamy, and wild-type shmoo formation (Chang and Her- 
skowitz, 1990; Chang, 1991). Therefore, to explain their 
mating defect, Chang (1991) suggested that farl mutants 
may have a defect in chemotropism. In support of this hy- 
pothesis, MATa farl-mutants are sterile when mated with 
MATc~ farl-mutants (Chang and Herskowitz, 1990), a 
phenotype expected if both mating partners are incapable 
of finding a mate by chemotropism. 

Therefore, we tested farlA mutants both in the phero- 
mone confusion assay and the discrimination assay. While 
the addition of 20 p.M c~-pheromone inhibited the mating 
efficiency of the control FAR1 a strain by about eightfold 
(160 _+ 25% to 20 _+ 2.5% [Table IX]),farlA a cells mated 
as efficiently in the presence of pheromone as they did in 
its absence (3.2 -+ 0.21% and 3.3 +_ 0.55%, respectively 
[Table IX]). Since the mating efficiency of farlA a cells 
was not inhibited by the loss of pheromone gradients, we 
conclude that farlA a cells do not use the information 
present in pheromone gradients to more efficiently locate 
a partner and that farlA cells are chemotropism-defective. 
In support of this hypothesis, "we found that an sst2-1farla 
double mutant mated as efficiently as a farlA single mu- 
tant (data not shown). 

However, farlA cells are not discrimination-defective 
(randomness index of 5.6 x 1 0  - 4  --+ 3.4 X 1 0  - 4  [Table IX]; 
Chenevert, 1994; Schrick, 1994). This ability to discrimi- 
nate pheromone producing from nonproducing mating 
partners is not due to an inability of )Carla cells to mate 

Table IX. sst2-1 Mutants and farl A Mutants Are Defective in the Pheromone Confusion Assay 

Total mating Fold inhibition 
a Strain* a-factor* efficiency § Randomness indexll by c~-factor ~1 

% 

SST2 - 160 -+ 25 (6) 6.7 X 10 -6 + 4 .6  X 10 6 (6) 

SST2 + 26 4- 6.1 (6) 0 .58 4- 0 .20  (6) 6.2 

sst2-1 - 11 -+- 1.4 (3) 0 .63 -4- 0 .098 (3) 

sst2-1 + 6.3 --+ 0.78 (3) 0 .89 -+ 0.087 (3) 1.7 
FAR1 - 160 4- 25 (3) 8.6 x 10 -6 4- 8.6 x 10 -6 (3) 

FAR1 + 20 -+ 2.5 (3) 0 .73 _+ 0.021 (3) 8.0 
farlA -- 3.3 -+ 0.55 (3) 5.6 X 10 -4 -+- 3.4 X 10 -4 (3) 

farlA + 3.2 --+- 0.21 (3) 0 .67 --+ 0.16 (3) 1.0 

*The a strains used were 7609-1-4 (SST2), 7612-8-2 (sst2-1), 8940-6-3 (FAR1), and 8940-4-3 (farlA); the wild-type a strains used were 7611-2 (lines 1-4) and 7609-6-4 
(lines 5-8), and the pheromoneless a strains were 8941-12-2 (lines 1-4) and 10843-9-2 (lines 5-8). 
*Matings were for 3 h at 30°C on Noble Agar plates in the absence ( - )  or in the presence (+)  of 20 txM a-factor. 
~See footnote §, Table V. 
ILSee footnote !1 Table II. 
'~Calculated as the total mating efficiency of the a strain in the absence of  pheromone, and divided by the mating efficiency of the a strain in the presence of pheromone. 
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with pheromoneless cells, since the addition of pheromone 
causes farlza cells to mate randomly in the discrimination 
assay (randomness index of 0.67 _ 0.16 [Table IX]; see 
Discussion for an explanation of these observations). 

f a r l  Mutants Display a Fixed Polarity 

We wished to test the hypothesis (Chang, 1991) that farl 
mutants have their conjugation site fixed at the incipient 
bud site. We made use of the fact that when a cells are 
briefly exposed to low levels of a-factor, their axial bud- 
ding pattern is randomized (Madden and Snyder, 1992). 
These low levels of pheromone may mimic the chemotro- 
pic situation because receptors are not saturated for pher- 
omone binding, and, as a result, cells depolarize their actin 
distribution and erase the axial bud site (Madden and Sny- 
der, 1992). We reasoned that if farl mutants have their 
conjugation site fixed at the incipient bud site, then the 
Far1 protein may be the molecular eraser of the axial bud 
site. In this model farl mutants should not randomize their 
budding patterns in response to low levels of pheromone 
and should still bud axially. 

To perform this experiment we used an allele of FAR1, 
farl-16D, that is Arrest+ Mating-  (isolated in a screen 
for MATa mutants that mate poorly with MATer sst2-1 
cells [Dorer, R., unpublished data]). Cells carrying this 
mutation are not defective in shmoo formation (data not 
shown) or cell cycle arrest in response to pheromone (Fig. 5), 
but show about a 10-fold decrease in mating efficiency and 
a defect in the pheromone confusion assay (data not 
shown). 

In the absence of pheromone, both wild-type cells and 
farl-16D mutants bud at axial sites (Table X), as indicated 
by the budding patterns of four cell microcolonies (scored 
as in Chant and Herskowitz, 1991). Madden and Snyder 
(1992) treated a cells in liquid culture with a brief expo- 
sure to u-factor and observed a mild randomization of 
budding pattern after the pheromone was removed; how- 
ever, not all cells in the culture arrested during the a-fac- 
tor exposure. To observe a stronger effect, we wanted to 

----o-- FAR1 (no c~-factor) "~ FAR1 (+ ct-factor) 

far1-16D (no m-factor) = far1-16D (+ or-factor) 
100 

75- 

Percentof 
microcolonies 50- 
containing 
3 or 4 cells 

25- 

C 
0 1 2 3 4 5 6 "} 

Time (hours) 

Figure 5. The recovery of a cells from low levels of pheromone. 
YEPD plates were spread with 105 cells that were either FAR1 
(7611-4 [circles]) orfarl-16D (10815-14-4 [squares]), and the per- 
centage of microcolonies that contained either 3 or 4 cells was de- 
termined at the indicated number of hours after plating. Plates 
were incubated at 30°C. Plates contained either no a-factor (open 
symbols) or 6 nM a-factor (closed symbols). 

ensure that we scored only those cells that in the past had 
been exposed to pheromone and delayed in the cell cycle. 
Therefore, we exposed cells to pheromone on YEPD 
plates and allowed them to adapt to the presence of the 
pheromone and resume cell division (see Materials and 
Methods). The presence of 6 nM pheromone caused an 
~2-h delay in the appearance of 3 or 4 cell microcolonies 
(Fig. 5), ensuring that the colonies that we scored after the 
delay had been affected by pheromone. Higher concentra- 
tions of pheromone (10 nM) caused cell shape changes 
and a significantly longer arrest period (data not shown). 
We observed that wild-type a cells switched from an axial 
to a bipolar-budding pattern in the presence of 6 nM pher- 
omone, with 59% of the cells budding in a class I pattern 
and 5.7% in a class II pattern, data indicative of the bipo- 
lar-budding pattern seen in diploids (Table X; Chant and 
Herskowitz, 1991); for example, a diploid displayed 48% 
class I and 9.0% class II (Table X). 

In contrast to wild-type cells, farl-16D mutants budded 
predominantly at axial sites in the presence of 6 nM phero- 
mone (73% class IV [Table X]), even though the ceils we 
scored delayed in the cell cycle in response to a-factor 
(Fig. 5). The small percentage of cells that budded in a 
class I pattern (6.8%) were most likely a result of the fact 
that the farl-16D mutation is hypomorphic; this allele still 
retains partial mating function of the FAR1 gene (data not 
shown). In addition, a farlA strain budded at axial sites in 
the presence of 0 M, 6 nM, and 4 IxM a-factor (Table X). 

Table X. FAR1 Is Required for the Randomization of Budding 
Patterns That Is Induced by Low Levels of a-factor 

Hours Bud pattern class li 
after Predominant 

Strains* planning* a-factor s 1 II III IV pattern 

% 

aFAR1 2 . 2 - 2 . 4  - 0.5 < 0 . 2 5  11 88 axial  
a F A R 1  4 . 6 - 5 . 0  + 59 5.7 17 18 b ipo la r  

afar1-16D 2 .3 -2 .7  - 0.2 0.75 12 87 axial  

afar1-16D 4 . 6 - 4 . 9  + 6.8 4.5 16 73 axial  

afarlA 2 .3 -2 .5  - 0.3 0.3 14 85 axial  

afarlA 2 .2 -2 .7  + < 0 . 3  1.7 7.3 91 axial  

afarlA 3 .2 -3 .7  4 IxM 1.0 2.7 11 85 axial  

a/a FAR1 2 . 2 - 2 . 4  - 48 9.0 16 28 b ipolar  

*The a strains used were 761 l-4 (FARI), 10815-14-4 (farl-16D), 8940-4-3 (farlA), 
and 10703 (a/aFAR1). 
*Four cell microcolonies were scored, the indicated number of hours after cells were 
plated on YEPD plates. All plates were incubated at 30°C. 
~Cells were incubated on YEPD plates either in the presence (+)  or absence ( - )  of 6 nM 
c~-factor. 
liThe percentage of four cell microcolonies that displayed the indicated budding pat- 
tern class. Patterns were scored as in Chant and Herskowitz (1991). Class I is charac- 
teristic of  a bipolar pattern and class IV, an axial pattern. Between 300 and 400 micro- 
colonies were scored for each line above. 

Bud Pattern Class" 

I II 

III IV 
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Therefore, we conclude that farl mutants have their polar- 
ity fixed at the incipient bud site. 

Deletions of  FAR1 and SPA2 Are Synthetic Sterile 

Since cells form projections near the incipient bud site un- 
der conditions in which they execute the default pathway 
(Madden and Snyder, 1992; Figs. 1 C and 2), far1 mutants 
may have their conjugation site fixed at the default mating 
site. As a result, in contrast to wild-type cells, farlA cells 
should require SPA2 to mate with a wild-type cell part- 
ner. Consistent with this prediction, we found that a 
farlAspa2A double mutant mated with wild-type a cells at 
an efficiency that was 1,000-fold lower than the efficiency 
of the farlzl single mutant (~0.002% and 2.0%, respec- 
tively [Table XI]). These data suggest that farlA mutants 
mate either by executing the default pathway or by using 
some components of the default pathway in order to mate. 

Discussion 

Default Pathway for Mating Partner Selection 

Wild-type yeast cells grow toward a mating partner by 
sensing gradients of pheromone and orienting their actin 
cytoskeleton and secretion toward the site of highest pher- 
omone concentration on the cell surface (Jackson and 
Hartwell, 1990a, b; Segall, 1993). In this paper, we investi- 
gate the ability of cells to mate in the absence of phero- 
mone gradients and characterize a novel mating pathway: 
when yeast cells are exposed to high, isotropic pheromone 
concentrations and the pheromone response pathway is 
saturated, wild-type a cells execute a default pathway in 
order to select a mate (Fig. 1, A and B). Since the shmoo 
tip formed in high, isotropic a-factor concentrations is po- 
sitioned near the incipient bud site (Madden and Snyder, 
1992; Fig. 2), and since shmoo formation correlates with 
the onset of the default mating pathway (Fig. 1 C), we sug- 
gest that when a cells execute the default pathway they 
choose a site near the incipient bud site as the mating site 
by default. In addition, these observations may explain 
why the shmoo response of a cells in saturating phero- 
mone is morphologically distinct from the response of a 
cells in pheromone gradients; in saturating pheromone 

Table XI. Deletions of FAR1 and SPA2 Display Synthetic 
Sterility 

a Strain* Mating efficiency ~ 

% 

FAR1 SPA2 225 

246  

FAR1 spa2A 93 

80 

farl A SPA2 2.0 

1.8 

farl A spa2A 0.0018 

0 .0014  

*The a strains used were, in order from top to bottom, Y604, Y609, Y604farld, and 
Y609farlA. The wild-type a strain used was 7611-2. 
*The percentage of input haploid cells that mated. Matings were allowed to occur for 
3 h at 30°C in the absence of added a-factor. 

cells, form multiple projections that are short, pointed, and 
produced successively (Lipke et al., 1976; Tkacz and 
MacKay, 1979; Moore, 1983; Baba et al., 1989; Segall, 
1993), but in nonsaturating pheromone and in gradients, 
cells form single projections that are much longer and 
wider (Levi, 1953; Segall, 1993; Yorihuzi and Ohsumi, 
1994). These two responses may reflect the induction of 
the default and chemotropic pathways, respectively. 

What is the role of the default pathway in the normal 
yeast life cycle? Jackson and Hartwell (1990b) demon- 
strated that when wild-type a cells are surrounded by an 
excess of wild-type a cells, the fraction of a cells that mate 
by the default pathway is high. Therefore, we speculate 
that the default pathway is activated when cells are sur- 
rounded by an overwhelming excess of opposite mates. 
This situation could occur when a rare cell in a growing 
colony of a natural heterothallic yeast strain spontane- 
ously switches mating type. Alternatively, the default 
pathway could be the major pathway for mating when the 
pH of the media is low, a condition that inactivates the 
Barl  protein, the protease that degrades a-factor (Hartwell, 
1980; MacKay et al., 1988); this hypothesis is consistent 
with the fact that barl-1 mutants mate frequently with 
pheromoneless cells in a discrimination assay (Jackson 
and Hartwell, 1990b). 

Two Classes of  Genes Indicate Two Pathways for 
Mating Partner Selection 

The key observation that distinguishes the default mating 
pathway from the chemotropic mating pathway is that 
these pathways require different genes; SPA2 is required 
for default, and SST2, STE2, and FAR1 are required for 
chemotropism. The following observations lead us to con- 
clude that SPA2 is required for default matings and not for 
chemotropic matings. First, a spa2A a strain mated very 
poorly in the default mating assay, where a cells are mated 
with pheromoneless ct cells in the presence of high, isotro- 
pic pheromone concentrations (Table III). Second, the 
mating ability of a spa2A a strain was inhibited 1,100-fold 
by the addition of exogenous pheromone; therefore a 
SPA2 -dependent mating pathway is induced in wild-type 
cells by high pheromone concentrations (Fig. 3). Third, 
SPA2 is not required for chemotropic matings: a spa2zl a 
strain mated very efficiently with both wild-type a cells 
and spa2zl eL cells on media lacking exogenous pheromone 
when cell densities were high (Table III; Fig. 3; Gehrung 
and Snyder, 1990). 

In contrast to SPA2, the SST2 gene is not required for 
the default pathway, since an sst2-1 a strain mated as well 
as a wild-type a strain in the default mating assay (Table 
IV). Instead, three observations suggest that SST2 is re- 
quired for chemotropism because it mediates the sensitiv- 
ity of cells to pheromone gradients and ensures that cells 
can orient over a large range of pheromone concentra- 
tions. First, previous experiments showed that sst2-I cells 
fail to discriminate wild-type from pheromoneless mating 
partners and mate at a reduced efficiency (Jackson and 
Hartwell, 1990b; Schrick, 1994). Second, we demonstrate 
that both of these mating defects are suppressible in sst2-1 
a cells by mating to an a strain that produces less phero- 
mone because it contains a hypomorphic mutation in 
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STE6, the gene encoding the a-factor transporter (Table 
V). Third, sst2-1 mutants can orient projections along an 
artificial gradient of a-pheromone if the pheromone con- 
centration in the gradient is very low (Segall, 1993). 

In addition, we observed that sst2-1 cells are saturated 
for pheromone-induced transcription of FUSI-lacZ in a 
mating assay with wild-type partners (Table VI). Taken 
together with the above data, these data suggest that SST2 
prevents cells from executing the default pathway when 
wild-type mating partners are present (Fig. 6). This hy- 
pothesis makes the explicit predictions that the deletion of 
SPA2 in an sst2A strain should suppress the discrimination 
defect caused by the sst2A mutation and that deletions of 
SPA2 and SST2 should display a synthetic decrease in 
mating efficiency; both of these predictions have been con- 
firmed (Table VII). 

The Role of SPA2 in the Default Mating Pathway 

Early in the G1 phase of the cell cycle and before bud 
emergence, a cell is poised to polarize its growth at the in- 
cipient bud site. Several components that are important 
for cell polarity are positioned at the bud site before bud 
emergence, including Cdc42p and Spa2p, among others 
(for reviews see Chant, 1994; Chenevert, 1994). CDC42, 
and two other genes, BEM1 and CDC24, are members of 
a group of polarity establishment genes that organize the 
actin cytoskeleton toward the bud site (Drubin, 1991). In 
addition, BEM1 and CDC24 are important for efficient 
mating (Chenevert et al., 1992; Chenevert, 1994; Reid and 
HartweU, 1977), and therefore this group of genes appears 
to be generally required for the emergence of polarized 
structures in yeast. During default matings, cells use the 
incipient bud site to construct a mating projection by a 
process that requires SPA2; thus the Spa2 protein may in- 
teract with the polarity establishment proteins or cytoskel- 
etal proteins in order to modify the incipient bud site to 
produce a mating projection. Alternatively, Spa2p may 
not interact with the polarity establishment proteins, but 

may restrict components that are required for cell wall or 
membrane fusion to the incipient bud site. The Spa2 pro- 
tein localizes as a sharp patch to the tip of the growing 
shmoo (Snyder, 1989; Snyder et al., 1991), and as a result it 
is an excellent candidate for a protein that polarizes the 
cytoskeleton, secretion, or cell fusion machinery to the 
shmoo tip. Since preliminary observations indicate that 
other shmoo-defective mutants (afrlA [Konopka et al., 
1995], bemlA [Chenevert et al., 1992, 1994], ste2-T326 
[Konopka et al., 1988], and tnyl [Chenevert et al., 1994]) 
do not show specific defects in the default pathway (Dorer, 
R., unpublished observations), we suggest that the default 
mating defect of spa2A cells may not be caused by the 
shmoo defect, but may be a result of some other require- 
ment for SPA2 during default matings. Unfortunately, the 
sequence of SPA2 reveals little about its function; it en- 
codes a 180-kD protein that displays some low level se- 
quence similarities to proteins containing coiled-coil struc- 
tures (Gehrung and Snyder, 1990). 

While SPA2 certainly performs a function that is re- 
quired for default matings and for shmoo formation, its 
role in vegetatively growing ceils is unclear. Even though 
the SPA2 gene is not required for bud emergence, bud 
growth, or cytokinesis, the protein localizes to the tip of 
the growing bud and to the cytokinesis ring (Snyder, 1989; 
Snyder et al., 1991); and spa2 mutants display a mildly ran- 
domized budding pattern (Snyder, 1989), a rounder cell 
shape than wild-type cells, synthetic lethality with a cdclO 
mutation, which causes a cytokinesis defect (Flescher et 
al., 1993), and synthetic lethality with a deletion of the 
SLK1/BCK1 gene, a STE11 homologue that is required 
for cell wall integrity (Costigan et al., 1992; Lee and Levin, 
1992). 

The Role of the Signal Transduction Pathway in the 
Default Mating Pathway 

Our results demonstrate that SPA2 is required for matings 
induced by the overexpression of an activated STE4 allele, 

Figure 6. A genetic model for mating 
partner selection. The pheromone recep- 
tor and heterotrimeric G-protein are re- 
quired for chemotropic morphogenesis 
(Jackson et al., 1991; Schrick, 1994), and 
SPA2 is required for default matings. 
The SST2 gene is required for inhibiting 
the execution of the default pathway be- 
cause it mediates the sensitivity of cells 
to pheromone, and FAR1 is required for 
chemotropic morphogenesis because it 
prevents cells from using the default site 
to mate. 
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STE4"Pt, in both wild-type a cells and in ste2a a cells (Ta- 
ble VIII). Therefore, STE4 or components of the signal 
transduction pathway downstream of STE4 activate the 
default pathway by a process that requires SPA2. In addi- 
tion, we conclude that beyond their role in activating the 
signal transduction pathway, pheromone receptors are not 
required for default matings, a conclusion that is consis- 
tent with the observation that receptorless cells are capa- 
ble of shmoo formation if the signal transduction pathway 
is activated downstream (Jahng et al., 1988; Clark and 
Sprague, 1989). Therefore, while pheromone receptors are 
required for selecting a conjugation site when gradients of 
pheromone are present, they are not required for selecting 
the default mating site. It is interesting to note that in addi- 
tion to STE4, activated STE5 and STEll alleles are capa- 
ble of causing smaller, but significant, numbers of mating 
events in receptorless cells (Hasson et al., 1994; Stevenson 
et al., 1992), suggesting that the default pathway may be at 
least partially activated by the MAP kinase cascade. It will 
be important to determine whether individual components 
of the signal transduction pathway activate the default 
pathway by a mechanism that is distinct from their known 
role in activating the transcription of mating-specific 
genes; some components may perform two functions, one 
in activating the next component of the cascade and an- 
other in activating proteins that are required for chemo- 
tropic or default matings. 

How does the signal transduction pathway activate two 
behaviorally distinct mating pathways, chemotropic and 
default, in response to two different levels of pheromone? 
There must be a molecular explanation for the dramatic 
increase in default mating efficiency compared to the 
more gradual increase in FUSI-lacZ expression in a cells 
in response to increasing concentrations of exogenous a-fac- 
tor (Fig. 1, A and B). Two general models could explain 
these behaviors. In the first model the default pathway dif- 
fers from the chemotropic pathway in a quantitative sense, 
in that default matings may require an increase in the level 
of activity or expression of pheromone-inducible gene 
products over the level in chemotropic matings. At least 
two molecular explanations are consistent with this model. 
First, there may be cooperative effects or oligomers 
formed among proteins that are activated by pheromone, 
and subtle changes in the relative levels of these proteins 
may determine which mating pathway is used. For in- 
stance, Ste20p may interact with Cdc42p in yeast (Manser 
et al., 1994); perhaps saturating pheromone changes the 
levels or spatial arrangements of activated polarity estab- 
lishment proteins on the cell surface, and by this means, 
causes cells to use the incipient bud site for mating. Sec- 
ond, the dramatic increase in default mating efficiency 
may occur when the concentration of an inhibitor of the 
default pathway is exceeded by the concentration of an ac- 
tivator. 

In the second general model, the default pathway differs 
from the chemotropic pathway in a qualitative sense: de- 
fault matings may require a different selection of gene prod- 
ucts to be activated or expressed. There are precedents for 
this type of mechanism. In the amphibian embryo, the 
concentration of activin, a peptide growth factor, deter- 
mines the selection of genes that are expressed in blastula 
cells (Gurdon et al., 1994; Green and Smith, 1990; Green 

et al., 1992); and in the Drosophila embryo a gradient of 
the bicoid protein determines the anterior-posterior axis 
by controlling the transcription of hunchback (Driever 
and Ntisslein-Volhard, 1988; Driever et al., 1989; Struhl et 
al., 1989). In yeast, the overexpression of Stel2p, a tran- 
scription factor, can partially suppress the sterility of re- 
ceptorless cells (Dolan and Fields, 1990), suggesting that 
the default pathway can be activated by affecting the tran- 
scription of certain genes. In addition, proteins that are 
not required for chemotropic matings, such as Spa2p, may 
be activated or modified only in response to saturating 
pheromone. It is interesting to note that Mpklp, a MAP 
kinase homolog that is required for cell wall integrity, is 
activated when cells are exposed to a-factor, coincident 
with shmoo formation (Levin and Errede, 1995); perhaps 
Mpklp activates the default pathway. Alternatively, a 
combination of mechanisms may be important. For exam- 
ple, FAR1 is required for cell cycle arrest and is regulated 
in both RNA and protein level (Chang and Herskowitz, 
1990; McKinney et al., 1993), and in response to phero- 
mone the Farl protein is phosphorylated by Fus3p (Chang 
and Herskowitz, 1992; Elion et al., 1993; Peter et al., 1993). 

The Role of FARI in Mating Partner Selection 

When a cell is exposed to a gradient of pheromone, it 
probably reorients the polarity establishment proteins 
(Cdc42p, etc.) from the incipient bud site to the site of 
highest pheromone concentration on the cell surface. This 
reorientation requires pheromone receptors and their as- 
sociated heterotrimeric G-proteins (Jackson et al., 1991; 
Schrick, 1994), and in this paper we propose that Farlp 
also promotes this gradient-dependent change in cell po- 
larity. Specifically, we show that unlike wild-type a cells, 
the mating efficiency offarlA a cells is not inhibited by the 
induction of the default mating pathway (Table IX), sug- 
gesting that farlA cells do not use pheromone gradients as 
a directional cue to find a mate. Farlp may inhibit the 
function of the bud site selection genes at the incipient bud 
site, acting as a molecular eraser of this predetermined 
site, or Far lp  may directly stimulate chemotropic morpho- 
genesis by interacting with the pheromone receptor or het- 
erotrimeric G-protein. Although these models predict 
very different molecular roles for Farlp, they both predict 
that fad mutants should have their mating polarity fixed 
at the incipient bud site when pheromone gradients are 
present. In addition, FAR1 may be required for an addi- 
tional step in conjugation, since we found that farlA mu- 
tants mate about sixfold more poorly with wild-type cells 
(3.3 -+ 0.55%) in the absence of saturating pheromone 
than wild-type cells mate in the presence of saturating 
pheromone (20 +_ 2.5% [Table IX]). 

We report two pieces of evidence that are consistent 
with fad mutants having a fixed polarity. First, we found 
that in response to low uniform levels of pheromone, un- 
like wild-type cells, fad mutants do not change their bud- 
ding pattern from axial to bipolar (Table X). The fact that 
wild-type cells bud at the poles as they adapt suggests that 
Farlp may specifically erase the axial bud site and not af- 
fect cues that mark the pole for morphogenesis. Cells also 
erase the axial bud site but not the pole when they enter 
stationary phase (Madden and Snyder, 1992; Chant and 
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Pringle, 1995); perhaps there is a protein equivalent to 
Farlp that specifically erases the axial bud site when cells 
enter stationary phase. It is interesting to note that the 
Bud3 protein, which is required for the axial signal, dis- 
plays a transient localization in exponentially growing cells 
(Chant et al., 1995). Since a signal must be present contin- 
uously in the G1 phase that marks the axial bud site, the 
Farlp protein may directly affect the function of Bud3p or 
a protein that Bud3p localizes during the G1 phase. Alter- 
natively, cells may not need to directly erase the axial bud 
site in stationary phase if the axial signal created by Bud3p 
has a short half-life and disassembles spontaneously over 
time. Second, we found that mutations in FAR1 and SPA2 
are synthetic sterile (Table XI), demonstrating that in con- 
trast to wild-type cells, farla mutants mate by a mecha- 
nism that requires SPA2. This observation is consistent 
both with farl mutants having their polarity fixed at the in- 
cipient bud site and with SPA2 being required to construct 
a mating projection at the incipient bud site (Fig. 6). It will 
be interesting to determine whether farl mutants are per- 
manently fixed at the incipient bud site for shmoo forma- 
tion and are unable to form multiple mating projections 
when incubated in the presence of saturating pheromone 
for several hours. This process of reorienting the polarity 
axis in saturating pheromone is not understood, but proba- 
bly involves many of the genes discussed in this paper, 
since cells must establish and develop a new site of polar- 
ity on their surface. 

In addition to showing a defect in the pheromone confu- 
sion assay, farl mutants cannot orient mating projections 
along gradients of pheromone created by micropipets 
(Valtz et al., 1995). Moreover, farl mutants fuse with their 
mating partners at a site that is adjacent to their last bud 
site (Valtz et al., 1995). These observations, coupled with 
ours, cause us to wonder how farlA a cells discriminate 
wild-type c~ cells from pheromoneless ~x cells (Table IX; 
Chenevert, 1994; Schrick, 1994). We suggest that the key 
factor that prevents farlA mutants from mating with pher- 
omoneless cells in a discrimination assay is that farlA mu- 
tants display wild-type sensitivity to pheromone (Chang 
and Herskowitz, 1990). In this paper, we show that mating 
events with pheromoneless cells require the execution of 
the default pathway, and FUSI-lacZ data suggest that this 
default pathway is only activated when the pheromone re- 
sponse pathway is saturated (Fig. 1 B). We do not under- 
stand why cells require saturating levels of signal to mate 
with pheromoneless cells. Perhaps a high, local phero- 
mone signal is required for the completion of all mating 
events, a requirement that is normally met when partners 
are closely aligned just before fusion. Nevertheless, in a 
discrimination assay to which no pheromone is added, all 
cells with wild-type sensitivity to pheromone, including 
farlA mutants, should not mate with pheromoneless cells 
because their pheromone response pathway is not satu- 
rated (Fig. 1 B). Thus, even though they have their polar- 
ity fixed at the incipient bud site, and even though they 
may produce a projection that orients toward a phero- 
moneless cell, farlA cells do not complete mating events 
with pheromoneless cells because their signal transduction 
pathway is not saturated. As a result, farlA mutants still 
require their partner to produce pheromone in order to 
complete conjugation. This model makes the explicit pre- 

diction that cells that display wild-type sensitivity to pher- 
omone will not mate with pheromoneless cells in the dis- 
crimination assay, even if they are chemotropism-defective. 

Analogies between Yeast and Other Systems 

Cell exhibits two types of cell polarity mechanisms, one in 
which their polarity is determined by an internal program, 
and another in which their polarity is determined by exter- 
nal cues. For example, the axes of cell division during the 
early development of C. elegans (Priess, 1994) and during 
many developmental stages of plants (Meyerowitz, 1994) 
are genetically predetermined. On the other hand, chemoat- 
tractants guide many changes in cell polarity, such as the 
migration of leukocytes through endothelial cells (Springer, 
1994), the chemotaxis of dictyostelium amoebae toward 
one another to form multicellular structures (Devreotes 
and Zigmond, 1988; Gross, 1994), and the chemotropism 
of nerve cell axons toward their target tissues during de- 
velopment (Goodman, 1994; Goodman and Shatz, 1993). 
These two mechanisms are conceptually similar to the bud- 
ding and chemotropic mating polarity pathways in yeast, 
respectively. The existence of a default pathway that uses 
components of both pathways provides a relationship be- 
tween these two types of cell polarity mechanisms. 
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