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Abstract 

Background:  Pseudogenes show multiple functions in various cancer types, and 
immunotherapy is a promising cancer treatment. Therefore, this study aims to identify 
immune-related pseudogene signature in endometrial cancer (EC).

Methods:  Gene transcriptome data of EC tissues and corresponding clinical informa-
tion were downloaded from The Cancer Genome Atlas (TCGA) through UCSC Xena 
browser. Spearman correlation analysis was performed to identify immune-related 
pseudogenes (IRPs) between the immune genes and pseudogenes. Univariate Cox 
regression, LASSO, and multivariate were performed to develop a risk score signature 
to investigate the different overall survival (OS) between high- and low-risk groups. 
The prognostic significance of the signature was assessed by the Kaplan–Meier curve, 
time-dependent receiver operating characteristic (ROC) curve. The abundance of 22 
immune cell subtypes of EC patients was evaluated using CIBERSORT.

Results:  Nine IRPs were used to build a prognostic signature. Survival analysis revealed 
that patients in the low-risk group presented longer OS than those in the high-risk 
group as well as in multiple subgroups. The signature risk score was independent of 
other clinical covariates and was associated with several clinicopathological variables. 
The prognostic signature reflected infiltration by multiple types of immune cells and 
revealed the immunotherapy response of patients with anti-programmed death-1 (PD-
1) and anti-programmed cell death 1 ligand 1 (PD-L1) therapy. Function enrichment 
analysis revealed that the nine IRPs were mainly involved in multiple cancer-related 
pathways.

Conclusion:  We identified an immune-related pseudogene signature that was 
strongly correlated with the prognosis and immune response to EC. The signature 
might have important implications for improving the clinical survival of EC patients 
and provide new strategies for cancer treatment.

Keywords:  Uterine corpus endometrial cancer, Immune, Pseudogene, Survival, 
Signature
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Background
Endometrial cancer (EC) was the mainly gynecological malignancy and ranked 
fourth in women malignancies worldwide behind breast, lung, and colorectal can-
cers, and there were approximately 61,880 new patients and 12,160 deaths of uterine 
corpus endometrial cancer in 2019, according to global cancer statistics [1, 2]. Early-
stage patients presented a favorable clinical outcome with a 5-year survival rate of 
95%. However, patients in advanced stage had a reduced 5-year survival rate of lower 
than 20% for stage IV [3]. Surgery, adjuvant chemotherapy, radiation, immunother-
apy, and hormonal therapy are common models of treatment for patients with EC 
and have reduced the mortality of patients to a certain extent in recent years. How-
ever, despite rapid advances in the treatments of UCEC, the incidence and mortality 
rates are still increasing since it is a clinically heterogeneous disease characterized 
by different genetic background and pathogenesis [4]. Thus, to improve the survival 
rates of UCEC patients, it is imperative to identify mechanistic differences at the 
molecular level and develop novel predictive biomarkers to predict patient outcomes 
accurately.

Pseudogenes were initially considered as nonfunctional gene fossils or junk 
genes, which usually originating from their parent genes but have lost the capac-
ity to encode functional proteins due to the accumulation of gene mutations [5, 6]. 
In recent years, accumulating evidence has strongly demonstrated that aberrant 
expression of pseudogenes plays vital roles in many human diseases such as cancer 
[7, 8]. Previous studies reported that pseudogenes mainly regulate gene expression 
at the post-transcriptional level and function as positive or negative regulators in 
tumor initiation or progression via two possible pathways. Numerous pseudogenes 
can act as competitive endogenous RNAs to competitively bind miRNAs with the 
protein-coding gene, therefore positively regulating gene expression [9, 10]. In 
addition, pseudogenes can also play a negative role through completing with their 
parent genes to destabilize RNA binding proteins, which results in a reduction in 
parent gene expression [11]. A previous study has revealed that LDHAP5 pseudo-
gene was associated with the poor prognosis of ovarian serous cystadenocarcinoma 
via its targeting of EGFR [12]. Abnormally activated OCT4 pseudogene 5 (OCT4-
pg5) contributed to enhanced cell proliferation by competing with miR-145 in EC 
via upregulating OCT4 expression [9]. Although a number of studies have identified 
multiple differentially expressed pseudogenes in various cancers, the generally pre-
dictive roles of immune-related pseudogenes in EC remain unclear. Since no stud-
ies have systematically evaluated immune-related pseudogenes in EC, discovering a 
number of promising prognostic biomarkers and exploring the underlying molecu-
lar mechanisms are eagerly needed. Therefore, for the first time, we identified an 
immune-related pseudogene signature in EC.

In this study, we screened the immune-related pseudogenes found in EC and 
explored the relationship between the screened immune-related pseudogenes and the 
prognosis of EC. A signature of immune-related pseudogenes in EC was developed 
using multivariate Cox regression analysis. Also, we investigated the prognostic value 
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of this signature in various clinical groups and the potential role of the immune-
related pseudogenes signature in immune checkpoint inhibitors immunotherapy, 
with the aim of using it as a promising immune therapeutic target.

Discussion
With the rapid development of next-generation sequencing, growing transcriptomic 
data from the public database such as TCGA could be easily acquired. Through min-
ing the big data from public databases, increasing studies have demonstrated pseu-
dogenes, lncRNAs, miRNAs, and circRNAs play important roles in various cellular 
functions, including proliferation, cell differentiation, DNA stability, and tumorigen-
esis [9, 13, 14]. As a special group of lncRNAs, pseudogenes are remnants of their 
parental genes that lost the ability to encode proteins [15]. Accumulating evidence 
demonstrates crucial roles for pseudogenes in multiple cellular processes and various 
cancers [16].

In this study, we systematically gathered data from the TCGA portal and extracted 
immune-related pseudogenes via Spearman correlation analysis. Subsequently, we 
identified nine prognostic immune-related pseudogenes through univariate, LASSO, 
and multivariate Cox regression analyses and used them to develop a signature risk 
score, which was capable of classifying patients into the high-risk and low-risk groups 
with significantly different OS. Patients in the high-risk group presented shorter OS 
than patients in the low-risk group. As a heterogeneous disease with multiple clinico-
pathological features and risk factors, stratification analyses should be performed to 
confirm whether the signature was robust. The results illustrated that signature could 
well distinguish patients with all subgroups. In clinical practice, if we obtained the 
expression of the nine immune-related pseudogenes, the risk scores can be computed 
based on the coefficients. As a result, whether the patients are classified as low or high 
risk could be determined; thus the prognosis of patients could be predicted. Compared 
with four previous signatures, the AUC for 5-year survival and principal components 
analysis (PCA) illustrated that the present signature had powerful predictive ability. 
The risk signature was strongly correlated with age, grade, stage, and neoplasm status. 
The risk score remained an independent prognostic factor by combination with other 
clinicopathological characteristics via univariate and multivariate Cox regression analy-
ses. Besides, KEGG enrichment analysis illustrated that the immune-related pseudo-
gene signature might be associated with multiple well-known cancer-related pathways, 
including the choline metabolism in cancer, endometrial cancer, cell cycle, prostate 
cancer pathways. Previous studies demonstrated obvious differences in choline and 
lipid metabolism and protein expression patterns between breast and prostate cancer 
cells in culture and in cancers derived from these cells [17, 18]. A recent study formed a 
five-gene signature related to the cell cycle that can predict OS for gastric cancer, which 
was useful for elaborating cell cycle mechanisms and for identifying patients with gas-
tric cancer with poor OS [19]. As for EC, Liu et al. identified five cell cycle-related genes 
that were notably dysregulated between EC and normal tissues, and the signature based 
on the 5-cell cycle genes could predict EC prognosis exactly and independently [20]. 
These further indicated the important role of immune-related pseudogenes in EC.
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Tumor microenvironment immune cells infiltration has been regarded as vital infor-
mation for predicting the outcome and immunotherapy response in various malig-
nancies according to the clinical trials with immune checkpoint inhibitors [21, 22]. 
The complex interaction between tumor cells and tumor microenvironment not only 
plays a critical role during the development of tumor, but also has significant effects 
on the efficacy of immunotherapy and the overall survival rate of patients [23]. There-
fore, by applying the newly developed algorithm “CIBERSORT”, the immune cell infil-
tration levels of patients between high-risk and low-risk groups were assessed. We 
uncovered a significant difference between two risk groups in terms of CD8+ T cell, 
follicular helper T cells, regulatory T cell, gamma delta T cells, resting dendritic cells, 
and activated dendritic cells. We further analyzed the relationship between the sig-
nature risk score and immune cell infiltration abundance. The results demonstrated a 
significant positive/negative correlation between the risk score and multiple immune 
cells, such as activated myeloid dendritic cell, B cell naïve, activated mast cell, gamma 
delta T cell, regulatory T cell, and CD8+ T cell. This is consistent with the viewpoint 
that T cell and B cell responses play critical roles in diagnosis, prognosis, and survival 
of cancer patients [24, 25]. Immune checkpoint inhibitors have opened a new era of 
tumor immunotherapy. Immune regulation against immune checkpoints can result in 
cancer cell death by providing immune response signals to T cells [26]. The expres-
sion of immune checkpoint genes (PD-1, PD-L1, and CTLA-4) has been commonly 
used as predictive biomarkers for immune checkpoint inhibitors response [27, 28]. 
PD-L1 and PD-1 are expressed on human B cells and validated to act immunosup-
pressive roles in cancer progression [29]. In our study, CTLA4 and PD1 were higher 
expressed in a low-risk group than those in the high-risk group. Furthermore, the risk 
score was significantly negatively correlated with CTLA4 and PD1 expression. These 
findings, taken together with survival analysis, suggested that CTLA4 and PD1 have 
closely participated in immunosuppression, and their high expression is correlated 
with poor prognosis. Furthermore, we also found that patients with higher IPSs in the 
low-risk group tended to be candidates for immune checkpoint inhibitor. This dem-
onstrated that the immune-related pseudogene signature is associated with an immu-
nosuppressive phenotype and could be a potential predictive marker for immune 
checkpoint inhibitor response.

The nine immune-related pseudogenes were novel biomarkers of EC and had vital 
prognostic significance. The immune-related pseudogenes signature may serve as a new 
potential biomarker for immunotherapy and contribute to new therapeutic strategies. 
Furthermore, this study has opened many avenues for future research to pursue this 
topic. However, there are several limitations that should be noted. First, the number of 
the clinicopathological parameters released in publicly available datasets is limited and 
not comprehensive. The signature should be adequately validated in more independent 
cohorts with larger amounts of patients. Besides, the main research analysis approach 
we used is based on bioinformatics technology and further cellular experiments and 
animal studies (in vitro and in  vivo) should be conducted to explore the predictive 
accuracy of the signature and to identify potential immune-related mechanisms in EC. 
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These conclusions need to be further validated for clinical application with additional 
experimental data, such as flow cytometry or immunohistochemistry. Despite these lim-
itations, to our knowledge, this is the first study to focus on the immune-related pseudo-
genes signature of EC.

Conclusion
In conclusion, we proposed an immune-related pseudogenes signature, which can be 
used as an independent prognostic biomarker in stratifying risk subgroups in terms of 
OS for patients with EC. The nine-pseudogene signature had a superior performance 
for risk stratification compared to two existing signatures. The immune-related pseu-
dogenes signature can assess survival and immune checkpoint inhibitor response of 
patients with anti-PD-1 and anti-CTLA4 therapy, potentially enabling more personal-
ized and precise tumor immunotherapy in the future.

Methods
Acquisition of EC expression and clinical data

The three-level RNA-Seq expression profiles data and the corresponding clinical data 
were retrieved from the public TCGA portal (https://​cance​rgeno​me.​nih.​gov/). The probe 
IDs were converted to the corresponding gene symbols based on their annotation files. 
When several probes matched to an identical gene symbol, we averaged them for further 
analysis. Briefly, genes were identified as protein-coding genes or pseudogenes based 
on their Ensembl IDs in the Ensembl database (https://​www.​ensem​bl.​org/). The data of 
genes or pseudogenes expression matrix were obtained. Patients without complete over-
all survival (OS) time were excluded from this study. Finally, we enrolled expression and 
clinical data of 541 EC patients.

Immune‑associated pseudogenes acquisition

We acquired 1793 unique immune-related genes from the ImmPort database (https://​
immpo​rt.​niaid.​nih.​gov). Subsequent, the immune-related genes matrix was extracted 
from the mRNA expression profile. A total of 13,602 pseudogenes were downloaded 
from the HUGO Gene Nomenclature Committee (https://​www.​genen​ames.​org/). The 
relationship was calculated based on the expression value between pseudogenes and 
immune-related genes. Next, Spearman correlation analysis was conducted between 
immune-related genes matrix and pseudogenes expression levels in samples to iden-
tify immune-related pseudogenes according to the correlation coefficients and P values 
(|correlation coefficient|> 0.4, P < 0.001). Then, the expression matrix of immune-related 
pseudogenes in the TCGA database was extracted.

Construction of a risk score based on immune‑related pseudogenes

To confirm the survival of immune-related pseudogenes, a risk score was designed to 
construct a unitive signature for EC. First, the univariate Cox regression analysis was 
performed for all possible immune-related pseudogenes to identify prognostic pseu-
dogenes with significant prognostic value. Pseudogenes with P < 0.01 were screened 

https://cancergenome.nih.gov/
https://www.ensembl.org/
https://immport.niaid.nih.gov
https://immport.niaid.nih.gov
https://www.genenames.org/
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for subsequent analysis. We further narrowed the gene range after the univariate 
analysis by performing least absolute shrinkage and selection operator (LASSO)-
penalized Cox regression analysis with 10-times cross-validations using the glmnet 
package in R. An optimal risk signature was constructed by performing the stepwise 
regression multivariate Cox analysis with Akaike information criteria (AIC) algo-
rithm among the prognostic immune-related pseudogenes using the “glmnet” and 
“survival” packages. Final immune-related pseudogenes and their corresponding 
coefficients with the smallest AIC value were identified to form the prognostic sig-
nature in EC. The signature risk score of each sample was calculated using the fol-
lowing algorithm: Risk score = βpseudogene1 * exprpseudogene1 + βpseudogene2 * 
exprpseudogene2 + ··· + βpseudogenen * exprpseudogenen. The risk score was com-
puted by a linear combination of the expression level of lncRNAs weighted by the 
regression coefficient (β). Exprgene refers to the expression of immune-related pseudo-
genes in the sample, and β indicates the regression coefficient derived from multivariate 
Cox analysis. The β was calculated by log-transformed hazard ratio (HR) derived from 
multivariate Cox regression analysis. Based on the median risk score of the signature, 
all patients were separated into high- or low-risk groups. Principal component analy-
sis (PCA) was carried out to profile expression patterns of grouped samples. Kaplan–
Meier curve analysis, time-dependent ROC analysis, and patients’ survival distribution 
were performed.

Independence of the signature risk score and clinical relationship with other 

clinicopathological features

We compared the relationship between a single pseudogene’s expression level in the 
signature and clinicopathological variables to explore the impact of pseudogene on EC 
deeply. Next, to explore whether the signature risk score and clinicopathological varia-
bles were independent prognostic factors, we conducted univariate and multivariate Cox 
regression analyses for each factor.

Immune cell subtypes and its correlation with signature risk score

To further explore the differences between two risk groups in the abundance of infiltrat-
ing immune cells from gene expression profiles in EC, we used the CIBERSORT algo-
rithm (https://​ciber​sortx.​stanf​ord.​edu/) coupled with a set of gene expression matrix 
features of 22 leukocyte subtypes (LM22) that distinguished 22 immune cell subpopu-
lations from CIBERSORT to calculate immune cell infiltrations [9, 30]. We used the 
mRNA expression matrix data as the input files to evaluate the immune infractions of 
each sample through the CIBERSORT algorithm. The number of permutations was set 
to 1,000, and samples with a CIBERSORT output P < 0.05 were used for further analysis. 
For each sample, the sum of all estimated subpopulations is equal to 1.

https://cibersortx.stanford.edu/
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Analysis of immune‑checkpoint inhibitors response through immunophenoscore analysis

Immunomodulators or checkpoints, major histocompatibility complex molecules, 
effector cells, and immunosuppressive cells are four leading categories that determine 
the immunogenicity of cancer, which could be evaluated as immunophenoscore (IPS). 
IPS is calculated without bias using machine learning algorithms with z-scores ranged 
from 0 to 10 based on the gene expression in representative cell types, where higher 
z-scores are positively correlated to enhanced immunogenicity. IPS is computed using 
a scale with a range of 0–10 based on representative cell type gene expression z-scores, 
where higher scores are associated with increased immunogenicity. The IPS of patients 
with EC was retrieved from The Cancer Immunome Atlas (TCIA) (https://​tcia.​at/​
home) [31].

Functional enrichment analysis

We examined the co-expressed protein-coding genes between identified pseudogenes 
and genes expression matrix by calculating the Spearman correlation coefficient through 
expression profiles in 541 patients with EC (|correlation coefficient|> 0.4, P < 0.001). 
KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis of immune-
related pseudogenes was performed to explore potential biological pathways that 
immune-related pseudogenes may be participated in.

Statistical analysis

Wilcoxon rank-sum test was performed to compare the differential abundances of 
immune infiltrates between low- and high-risk groups, which were presented with 
P-value by “vioplot” package. The Student’s t-test was used to test the expression 
changes of immune‑checkpoint genes between two risk groups. We used the Chi-
squared test to investigate the survival differences between the high-risk and low-risk 
groups. Kaplan–Meier (KM) survival curves and log-rank test were used to assess dif-
ferences in survival between two risk groups using the “survminer” package. A time-
dependent ROC analysis was used to compare the predictive accuracy. Univariate and 
multivariate Cox regression analyses were performed based on the “survival” package 
to identify EC’s independent prognostic factors. A P value < 0.05 was thought to be 
significant.

Results
Identification of immune‑related pseudogenes and establishment of a signature

By conducting the correlation analysis based on |correlation coefficient|> 0.4 and 
P < 0.001 between immune-related gene and pseudogenes expression matrixes, a total 
of 312 immune‑related pseudogenes were screened. Univariate Cox regression was 
used to analyze the prognostic pseudogenes of EC. A total of 20 pseudogenes were 
significantly relevant to the OS of EC (Fig.  1A). After minimizing overfitting by the 
LASSO regression algorithm, 16 pseudogenes were entered into the candidate pool 
for further analysis (Fig.  1B). To determine the optimal prognostic pseudogenes, 

https://tcia.at/home
https://tcia.at/home
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we adopted stepwise multivariate Cox proportional hazards regression to estab-
lish the risk score. Nine pseudogenes entered the final model (Fig. 1C, Table 1). The 
risk score of the signature for each sample was calculated as the followed equa-
tion: risk score = 0.493652865* expression of BNIP3P11 + 0.3035749* expression 
of DUX4L50 + 0.497475173* expression of DYNLL1P1 − 0.408662104* expression 
of ECEL1P2 + 1.246821769* expression of GMPSP1 − 0.545480258* expression of 
GPS2P1 − 0.533330167* expression of HMGA1P4 − 0.797024483* expression of 
HNRNPCP1 −  0.422476955* expression of MT1L. The risk score of each sample was 
computed according to the equation. Based on the median risk score of risk score, all 
patients were divided into low-risk and high-risk groups. The clinicopathological vari-
ables in the two risk groups are displayed in Table 2.

The performance of pseudogenes signature

The mRNA expression heatmap, signature risk score and survival status distribu-
tion of each patient are illustrated in Fig. 2A, B. With the risk score increased, more 
patients died. As revealed in Fig. 2C, patients in the high-risk group have a greater 
risk of mortality than those in the low-risk group (P < 0.0001). Additionally, PCA 
was used to explore the different distribution patterns between low- and high-risk 

Fig. 1  Identification of a nine-pseudogene signature significantly associated with OS of patients with EC. A 
Univariate Cox regression analysis identifying prognostic pseudogenes with HR with 95% CI and P values; B 
a partial likelihood deviance for the LASSO coefficient profiles plot was generated against the log (lambda) 
sequence; C forest plots illustrating the associations of identified nine pseudogenes with OS
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groups on the basis of the immune-related pseudogenes. PCA analysis of the sam-
ples indicated that the clustering of the samples demonstrating a significant dis-
tinction between high- and low-risk groups (Fig.  2D). Therefore, immune-related 
pseudogenes were used to divide the EC patients into two categories, revealing 
that the immune status of the EC patients in the high-risk group was distinguish-
able from that in the low-risk group. Patients in the high-risk group illustrated 

Table 1  Demographics and clinicopathological characteristics in high-risk and low-risk groups

Variables Subgroup High-risk group (n = 270) Low-risk 
group 
(n = 271)

Age

< 65 years 116 171

>  = 65 years 153 99

Unknown 1 1

Stage

Stage I 141 197

Stage II 28 23

Stage III 81 42

Stage IV 20 9

Grade

Grade I 18 80

Grade II 39 81

Grade III 203 109

Unknown 10 1

Neoplasm

With neoplasm 60 18

Without neoplasm 188 238

Unknown 22 15

Survival

Alive 196 254

Dead 74 17

Table 2  The nine pseudogenes identified from multivariate Cox regression analyses

HR: hazard ratio; CI: confidence interval

Gene symbol Coefficient HR 95% CI P-value

BNIP3P11 0.493652865 1.6383 0.9956–2.6959 0.0521

DUX4L50 0.3035749 1.3547 0.8929–2.0554 0.1535

DYNLL1P1 0.497475173 1.6446 0.9466–2.8573 0.0776

ECEL1P2 − 0.408662104 0.6645 0.4675–0.9446 0.0227

GMPSP1 1.246821769 3.4793 1.6245–7.4516 0.0013

GPS2P1 − 0.545480258 0.5796 0.3455–0.9721 0.0387

HMGA1P4 − 0.533330167 0.5866 0.3731–0.9224 0.0209

HNRNPCP1 − 0.797024483 0.4507 0.2105–0.9648 0.0402

MT1L − 0.422476955 0.6554 0.4676–0.9186 0.0142
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shorter overall survival (OS) than the low-risk group (HR = 5.17, 95% CI 3.05–8.76; 
P < 0.0001; Fig. 3A). These findings were further validated in multiple subgroups. As 
shown in Fig. 3B-I, the Kaplan–Meier curves demonstrated that significantly worse 
OS was observed in high-risk patients stratified by age (< 65  years or ≥ 65  years), 
grade (male or female), stage (stage I–II or stage III–IV), and neoplasm status (with 
or without), indicating that the signature was a stable prognostic biomarker for 
patients with EC.

Fig. 2  Prognostic risk score signature analysis of seven prognostic genes in HCC patients and the expression 
level in the low- and high-risk groups. A Heatmap illustrated the expression profiles distribution of the 
signature in the low-risk group and high-risk groups; B the distributions of the risk score and patients’ survival 
status in the low- and high-risk groups; C comparison of risk of mortality between the low- and high-risk 
groups; D principal components analysis between low- and high-risk groups based on the nine-pseudogene 
signature
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Correlation between the risk score and clinicopathological characteristics

We analyzed the association between the immune-related pseudogene signature and 
clinicopathological factors. Significant differences were observed in age (< 65  years 
or ≥ 65 years), grade (male or female), stage (stage I–II or stage III–IV), and neoplasm 
status (with or without) (all P < 0.0001; Fig.  4A). Next, we compared the correlation 
between the expression level of a single pseudogene in the signature and clinicopatho-
logical characteristics to investigate the impact of pseudogenes on EC. There was a 
significant difference in the distribution of expression levels of multiple pseudogenes 
among age (< 65 years or ≥ 65 years), grade (male or female), stage (stage I–II or stage 
III–IV), and neoplasm status (with or without) (Fig. 4B), especially for the pseudogene 
ECEL1P2.

Performance comparison of the pseudogene signature with four existing signatures 

in survival prediction

We compared the prediction performance of the novel immune-related pseudo-
gene signature with four recently published signatures: nine-lncRNA signature 

Fig. 3  Kaplan–Meier survival analysis curves between the low- and high-risk groups. The survival analysis of 
patients’ OS in the whole cohort (A), age ≥ 65 (B), age < 65 (C), grade I–II (D), grade III (E), stage I–II (F), stage 
III–IV (G), with neoplasm (H), and without neoplasm (I)
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Fig. 4  The relationship between the risk score and different clinicopathological features as well as correlation 
between the expression level of a single pseudogene in the signature and clinical features. A represents 
the relationship between the risk score and age, grade, stage, and neoplasm, respectively; B represents the 
correlation between the expression level a single pseudogene in the signature and age, grade, stage, T stage, 
and neoplasm, respectively. NS = not significant. *P < 0.05, **P < 0.01, and ***P < 0.001
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Fig. 5  The receiver operating characteristic (ROC) analysis at 5-year of OS in EC for our nine-pseudogene 
signature and four previous models using the same TCGA cohort
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(LINC02387, FUT8-AS1, UBXN10-AS1, LINC00473, AL353194.1, FAM222A-AS1, 
AP002761.3, AL731566.2, and AP001021.2) derived from Xu’s research [9], nine-
mRNA signature (CYP4F3, LYPLA2, CEL, PHGDH, GPAT3, HNMT, UCK2, 
CKM, and ACACB) derived from Jiang’s study [32], nine-mRNA signature (TP53, 
RAE1, RFC2, TAF10, DDB2, UMPS, TAF12, ERCC2, SEC61A1) derived from Liu’s 
research [33], and five-lncRNA signature (AL121906.2, BOLA3-AS1, LINC01833, 
AC016405.3, and RAB11B-AS1) from Jiang’s study [34] using the same TCGA 
EC patient cohort. As illustrated in Fig.  5, the AUC at 5-year of OS for our pseu-
dogene signature is 0.780, which is significantly higher than that of Jiang’s mRNA 
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Fig. 6  The Cox regression analysis for identifying the independent prognostic value of the risk score. 
Univariate (A) and multivariate (B) Cox regression analysis of overall survival for patients with EC
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signature (AUC = 0.7), Xu’s lncRNA signature (AUC = 0.595), Liu’s mRNA signature 
(AUC = 0.748), and Jiang’s lncRNA signature (AUC = 0.712). Additionally, the num-
ber of pseudogenes included in our signature is smaller than that included in the two 
existing signatures. These results revealed the better prognostic performance of the 
immune-related pseudogene signature in predicting OS than previously published 
signatures.

Independence of the immune‑related pseudogenes signature from clinicopathological 

characteristics

To further explore whether the pseudogene signature could predict OS independently 
of other clinicopathological factors, univariate and multivariate Cox regression analy-
ses were conducted. We first conducted a univariate analysis of pseudogene signature 
and other potentially clinicopathological characteristics, and the results illustrated 
that all the factors were significantly associated with OS (all P < 0.05; Fig. 6A). Then, we 

Fig. 7  Comparisons of 22 types infiltrating immune cells between low- and high-risk groups. A The specific 
22 immune fractions indicated by various colors in each patient. B Wilcoxon rank-sum test revealed the 
infiltration levels of various infiltrating immune cells between low- and high-risk groups
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performed multivariate Cox regression analysis of them, and the results revealed that 
the pseudogene signature risk score (HR = 1.196, 95% CI 1.091–1.311, P < 0.001), stage 
(HR = 1.394, 95% CI 1.098–1.769, P = 0.006), age (HR = 1.027, 95% CI 1.004–1.051, 
P = 0.02), and neoplasm (HR = 4.631, 95% CI 2.675–8.015, P < 0.001) could serve as inde-
pendent prognostic factors for EC patients (Fig. 6B).

Estimation of immune cell type fractions

Previous studies have demonstrated that infiltrating immune cells are strongly related 
to the prognosis and treatment of malignant cancers [35–37]. Using CIBERSORT, we 
compared the differences in the immune infiltration of 22 immune cell types between 
low- and high-risk groups. First, a bar plot was used to illustrate the fractions of 22 
immune cells in each sample (Fig. 7A). Next, we analyzed the tumor-infiltrating cells 
between high- and low-risk subgroups. The results exhibited that CD8+ T cell, folli-
cular helper T cells, regulatory T cell, gamma delta T cells, resting dendritic cells, and 
activated dendritic cells were was significantly different between the two risk groups 
(all P < 0.05; Fig. 7B), which might help to predict immune response and survival. To 
explore whether immune-related pseudogene signature effectively reflected the tumor 
immune microenvironment status, the associations between the risk score and infil-
tration abundances of 22 types of immune cells were analyzed (Fig. 8). The risk score 
was significantly correlated with activated myeloid dendritic cell (correlation = 0.163, 
P = 1.357e−04), B cell naïve (correlation = 0.143, P = 8.257e−04), activated mast cell 
(correlation = 0.10, P = 0.019), gamma delta T cell (correlation = 0.094, P = 0.029), 
regulatory T cell (correlation =  − 0.191, P = 7.857e−06), CD8+ T cell (correla-
tion =  − 0.197, P = 3.764e − 06).

Fig. 8  Relationships between the immune-related pseudogene prognostic model and infiltration 
abundances of six types of immune cells
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The immune‑related pseudogene signature predicts responses of immunotherapy

The association between the risk score and expression levels of three immune check-
point genes was explored. The risk score was significantly negatively correlated with 
CTLA4 (Spearman correlation coefficient = − 0.205, P = 1.552e−06) and PD1 (Spear-
man correlation coefficient = − 0.135, P = 0.002; Fig.  9A). The expression changes of 
three immune checkpoint genes were compared between the high- and low-risk groups, 
and the results illustrated that patients with low-risk showed significantly higher expres-
sion levels compared with those in the high-risk group (P = 0.0003 for CTLA4, and 
P = 0.002 for PD1; Fig.  9B). These findings were consistent with previous views that 
the immune checkpoint genes closely participated in immunosuppression, and their 

Fig. 9  Pearson’s correlation analysis, the expression changes, and IPS analysis between three immune 
checkpoint genes and the risk score. A Pearson’s correlation analysis between the CTLA4, PD1, and PD-L1 
expression and the risk score; B boxplots of three immune checkpoint genes expression in the high- and 
low-risk groups stratified by the risk score; C IPS comparison between high-risk and low-risk groups 
in patients with EC in four types. PD-1_pos or CTLA4_pos indicated anti- PD-1 or anti-CTLA4 therapy, 
respectively
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high expression is correlated with poor prognosis [38]. The relationship between IPS 
and immune-related pseudogene signature was further explored. The IPS, IPS-CTLA4, 
IPS-PD1, and IPS-PD1-CTLA4 scores were computed to investigate the signature and 
predict potential effects on immune checkpoint inhibitor for patients with EC. In the 
low-risk group, the scores were notably higher than high-risk group (IPS, P < 0.001; IPS-
CTLA4, P < 0.001; IPS-PD1, P < 0.001; and IPS-PD1-CTLA4, P < 0.001; Fig.  9C). These 
results revealed that patients presenting higher IPSs in the low-risk group promised to 
be candidates for immune checkpoint inhibitor.

Functional annotation of immune‑related pseudogenes

We computed the expression correlation between identified pseudogenes and poten-
tial protein-coding genes by calculating the Spearman correlation coefficient through 
expression profiles in 541 patients with EC. Co-expression analysis results identified 857 
genes that correlated with nine pseudogenes. KEGG pathway enrichment illustrated that 
immune‑related pseudogenes were mainly involved in choline metabolism in cancer, 
endometrial cancer, cell cycle, prostate cancer pathways (Fig. 10).
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