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In-stent restenosis is a recurrence of coronary artery narrowing due to
vascular injury caused by balloon dilation and stent placement. It may
lead to the relapse of angina symptoms or to an acute coronary syndrome.
An uncertainty quantification of a model for in-stent restenosis with four
uncertain parameters (endothelium regeneration time, the threshold strain
for smooth muscle cell bond breaking, blood flow velocity and the per-
centage of fenestration in the internal elastic lamina) is presented. Two
quantities of interest were studied, namely the average cross-sectional
area and the maximum relative area loss in a vessel. Owing to the
high computational cost required for uncertainty quantification, a surrogate
model, based on Gaussian process regression with proper orthogonal
decomposition, was developed and subsequently used for model response
evaluation in the uncertainty quantification. A detailed analysis of the
uncertainty propagation is presented. Around 11% and 16% uncertainty
is observed on the two quantities of interest, respectively, and the uncer-
tainty estimates show that a higher fenestration mainly determines the
uncertainty in the neointimal growth at the initial stage of the process.
The uncertainties in blood flow velocity and endothelium regeneration
time mainly determine the uncertainty in the quantities of interest at the
later, clinically relevant stages of the restenosis process.
1. Introduction
Coronary heart disease is mainly due to the accumulation and development of
atherosclerotic plaques, which narrow the vessel lumen and reduce the flow of
blood. It can cause ischaemia or further evolve into a myocardial infarction. The
most common treatment is percutaneous coronary intervention with stent
deployment [1,2]. However, in addition to displacing the plaque from the
lumen and restoring the blood flow, the balloon dilation for stent placement
also denudes the endothelium layer and damages the vessel wall. It then trig-
gers smooth muscle cell (SMC) activation, proliferation and migration and
extracellular matrix formation, as well as other processes, e.g. inflammation
and platelet aggregation [3,4]. This leads to the growth of neointima, which
is newly formed tissue composed mainly of smooth muscle cells and extracellu-
lar matrix, in the vessel lumen. The excessive growth of neointima can result in
a renarrowing of the vessel, a condition known as in-stent restenosis (ISR).

To study the mechanism of restenosis, a multiscale model for ISR was
proposed [5] and a first two-dimensional version of that model (named
ISR2D) was developed and studied in detail [6–8]. The model consists of
three submodels: an initial condition (IC) model, an agent-based SMC model
and a blood flow (BF) model. The IC model simulates balloon expansion and
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stent deployment and provides the input configuration for the
other two models. The agent-based SMC model simulates the
biological and mechanical states of each cell of the vessel,
while the BF model provides the haemodynamics information
as a function of the current vessel lumen shape. Thismultiscale
model has been applied to investigate the effect of functional
endothelium regeneration and the impact of stent deployment
and design on restenosis [6,7,9,10]. Most recently, the effects
of local blood flow dynamics with scenarios of adaptive and
non-adaptive coronary vasculature on restenosis were
studied based on the ISR2D model [11]. The two-dimensional
model is, however, a simplification of the actual pathology.
Therefore, a more comprehensive three-dimensional model
(named ISR3D) was developed and compared with in vivo
experimental scenarios [12,13].

Uncertainty quantification (UQ) is widely applied to study
the effect of uncertainties in initial or boundary conditions and
of other parameters of computational models on their simu-
lated quantities of interest. Common UQ methods, such as
those based on the Monte Carlo method [14–16], require a
large number of simulations to provide enough data for the
numerical integration of the statistical estimator [17]. How-
ever, it might be prohibitive for computationally expensive
models, such as ISR3D, to achieve this. One solution could
be to adopt surrogate modelling, by which a surrogate
model (or metamodel) is developed to approximate the
response of the original model at a relatively low cost. Sub-
sequently, this surrogate model replaces the original
simulation to realize the evaluations required for the UQ.

The construction of a surrogate model can be categorized
into three types: simplified models, projection-based methods
and data-fit methods [18]. Simplified models refer to a rough
approximation based on simplifications of the simulated
system such as spatial dimensionality reduction [19,20] or
coarse-grid discretizations [21,22]. The projection-based
methods proceed by identifying a low-dimensional subspace
that is constructed to retain the essential character of the
system input–output mapping. Stochastic collocation [23,24]
and polynomial chaos expansion [25,26] are two state-of-
the-art projection-based methods for UQ analysis. Finally,
the data-fit methods map out latent functions between
input and output. Common methods for these types of surro-
gates are support vector machines [27], neural networks [28]
or Gaussian processes (GPs) [29].

GP regression is widely applied in uncertainty estimation
and reliability analysis owing to its non-parametric and
Bayesian inference nature [30–33]. It was first proposed by
Krige for geostatistics [34], and later extensively studied
and extended to solve the regression problem under different
scenarios, such as multi-task/multi-output GPs for vector-
valued function [35], heteroscedastic GPs for input-depen-
dent noise scenarios [36–38], sparse GPs with inducing
inputs for efficient training of large datasets [39,40] or deep
GPs with a hierarchical structure to capture more complex
processes [41].

Generally, GPs are designed for a scalar output and
become cumbersome when multi-output is required as a
result of the large kernel used for co-regionalization. The
complexity of multi-output Gaussian process (MOGP) is
associated with the dimension of output and the number of
training samples. The computational cost of MOGP can
easily become prohibitively expensive if the desired output
dimension is high. One alternative solution is to apply
dimensionality reduction techniques, such as proper orthog-
onal decomposition (POD) [42], to the model response
before regression. The regression prediction is hence no
longer the model response but the projection coefficients of
the response. Owing to the limited amount of projection coef-
ficients required for the reconstruction of the output space,
several single-output GPs are sufficient in this case. This
method has been widely applied for time-dependent
problems [43,44], computational fluid dynamics [45], etc.

Here, the uncertainty propagation due to four uncertain
parameters of the ISR3D model (endothelium regeneration
time, the threshold strain for SMC bond breaking, blood
flow velocity and the percentage of fenestration by area in
the internal elastic lamina (IEL)) is investigated. The quan-
tities of interest (QoIs) are the average cross-sectional area
of the lumen and the maximum relative area loss as a func-
tion of time. We applied POD to reduce the dimension of the
output and used GP regression as the surrogate model to
map the uncertain inputs to the projection coefficients of the
POD. With this computationally efficient surrogate model,
uncertainty estimations and sensitivity analysis of the restenosis
process are conducted and analysed.

The paper is arranged as follows. The details of the ISR3D
model are introduced in §2. The construction of the surrogate
model with POD and GPs is described in §3. The uncertain
parameters and uncertainty estimations are presented in §4.
The results of uncertainty estimates and sensitivity analysis
are presented in §5 followed by a discussion in §6 and the
conclusion in §7.
2. In-stent restenosis three-dimensional model
ISR3D is a multiscale computational model simulating the
post-stenting neointima growth in a coronary artery [12,13].
It mainly consists of three single-scale submodels: the IC
model, the SMC model (including details of the vascular
wall, such as the lamina and the endothelial cells) and the
BF model. A schematic diagram of ISR3D is shown in figure 1.

The SMC model has two parts: one deals with the biome-
chanics of the vessel wall post-stenting, while the other deals
with the SMC biology, mainly in relation to proliferation and
production of extracellular matrix. The mechanical part of the
SMC model simulates the mechanical response of the vessel
wall, based on cell–cell pairwise repulsive and attractive
forces and calculating the cell displacements. Each SMC of
the vessel wall is modelled as a spherical agent, and the inter-
actions between them are provided by potential and bond
forces. The effective radii of particles represent the radii of
corresponding cells and changes during the growth governed
by the biological solver [13].

The biological model of SMCs describes the cell cycle
dynamics. Cell life cycle is a sequence of growth, replication
and division of the cell; at the end of the life cycle, the cell
divides into two daughter cells. The processes that influence
the cell life cycle take place in the 30 μm neighbourhood
around the cell; the time scale of one cycle is around 24–48 h.

The growth of individual SMCs is modelled by a cell cycle
model, similar to the one described in [46]. Each cell can be in
a state of growth (G1), synthesis/secondary growth/mitosis
(S/G2/M) or a quiescent state (G0). Cells evolve from one
state to the next according to their internal clock, and stop
or die under the influence of external factors such as contact
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Figure 1. A schematic diagram of the ISR3D model. After the initial deployment of the stent with the IC model, the SMC and BF models run iteratively until the
end of the simulation. At every time step, the SMC model passes the current lumen geometry to the BF model, which then updates the blood flow and sends the
wall shear stress back to the SMC model. The SMC model then computes neointimalumen growth for the next time step, based on the wall shear stress.
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inhibition (the mechanical stresses in between SMCs) or the
concentration of nitric oxide. The biological model provides
new radii, states of the cells as its output and also the initial
coordinates for newly formed cells. Growth of the neointima
takes several dozens of cell cycles and stops several weeks
after the stenting procedure [13].

The BF model is a pressure-driven fluid dynamics model,
which provides relevant ranges of shear stresses on the vessel
walls. The solver receives the lumen geometry every time step
from the SMC solver, simulates the steady-state blood flow
and returns the wall shear stress information to the SMC
model. The blood is assumed to be incompressible and New-
tonian, and is modelled by the lattice Boltzmann method
(LBM) [47] in a three-dimensional rectangular mesh
(D3Q19). The inlet boundary condition for velocity is set to
a parabolic profile and its maximum velocity is defined as one
of the uncertain parameters. A Dirichlet pressure boundary
condition is assigned at the outlet and the vessel wall is defined
as a non-slip condition. The simulation is implemented with
Palabos [48].

The initial stent deployment is performed by the ICmodel.
The stent is expanded radially with a capsule-shaped balloon
until it reaches a predefined deployment depth. As there is no
uncertain input of the UQ experiment related to the IC model
and all the simulations start from exactly the same post-
deployment state, we exclude the ICmodel from the execution
of the UQ. For further details about the ISR3D, see [12,13]. A
public version of the ISR3D model, which is studied in this
paper, can be found on Github.1

In the UQ experiments described here, the scenario of
stenting a small porcine coronary vessel with 2mm diameter
is simulated. The simulation domain is limited on the outside
by the middle layer of the artery wall, the tunica media. The
entire length of the vessel is set to be 18mm with a tunica
media thickness of 0.35mm and 1mm lumen radius. The
entire vessel is assumed to be slightly curved to obtain a
more realistic blood flow pattern in the vessel. The stent
applied in the simulations is made of intersecting spiral
elements (shown in figure 2a). It can be viewed as a
simplified version of the NIR stent [49] and the deployment
depth is set to be 0.25 mm. The model is set to simulate the
restenosis process up to 30 days after stenting.

The computational cost of ISR3D with a vessel and a stent
of this size is rather expensive. A single run of the ISR3D
simulation takes 500–600 core hours on a supercomputer
node (a node with 2 × 12-core 2.6 GHz Intel Xeon E5-2690
v. 3 CPUs), depending on the total amount of neointima
growth. For non-intrusive UQ methods, a large number of
evaluations of the model are required for the statistical analy-
sis and this becomes impractical for such a computationally
expensive model. Therefore, to perform the UQ efficiently, a
data-driven surrogate model based on GPs and POD is devel-
oped to learn the latent function between the uncertain inputs
and the QoIs, and applied to evaluate the model response in
the UQ.

TwoQoIs are measured in the UQ experiment: the average
cross-sectional area of the vessel lumen and the maximum
relative area loss. The lumen cross-sectional areas along the
centreline of the vessel are obtained using an open-source
toolkit VMTK.2 The average values of this area over the con-
sidered vessel model at each time step are used to evaluate
how the uncertain parameters influence the total amount of
neointima growth over time (shown in figure 2b). The relative
area loss of the vessel shows the relative amount of neointima
growth compared with the initial post-stenting cross-sectional
area. Clinically, the restenosis is defined as the renarrowing of
the lumen to more than 50% occlusion [3]. The maximum
value of relative area loss of a vessel offers us a criterion to
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Figure 2. The simulation outcomes of ISR3D model (a) and corresponding QoIs measured over time (b). In (a), the blue part denotes the vessel wall, the beige part
is the stent and the red part denotes the neointima. In (b), the average cross-sectional area and maximum relative area loss of the vessel at each day are measured
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judge whether the restenosis happens or not. Note that both
QoIs are evaluated as a function of time. The values at consecu-
tive time steps are highly correlated with each other.
3. Surrogate modelling
3.1. Proper orthogonal decomposition on model

response
Assume the response of the model is a series of responses
(here, average cross-sectional areas of the lumen) over time
y [ RNt , where Nt is the dimension of the output vector.
The POD method can be applied to approximate the model
responses by projecting the response to a low-rank space.
The POD can be realized in three schemes: Karhunen–
Loeve decomposition, principal component analysis and the
singular value decomposition (SVD). In this work, the SVD
method is applied for the decomposition [50].

Consider a snapshot matrix S [ RNt�Ns consisting of Ns

number of the model responses fy1, y2, . . . , yNsg,
S ¼ ½y1jy2j � � � jyNs �, where Nt � Ns: ð3:1Þ

The snapshot matrix can be decomposed into three matrices
using singular value decomposition,

S ¼ USVT, ð3:2Þ
whereU andV denote the left and right orthonormalmatrices,
respectively. S denotes a diagonal matrix with singular values
σi, where i = 1,…, Ns and s1 � s2 � � � � � sNs � 0.

The objective of POD is to find out a set of
orthogonal bases ~F ¼ ff1, f2, . . . , fkg from the space
L ¼ fF [ RNt�k :FTF ¼ Ig containing all possible orthogonal
bases, such that the error introduced by the projection to low
dimensional space could be minimized,

min
F[L

XNs

i¼1

yi �FFTyi
�� ��2

L2 , ð3:3Þ

where �k kL2 denotes the L2 norm. By the Eckart–Young theo-
rem [51], the orthogonal basis with the basis vectors fuigki¼1
taken from the ith column of U is the solution to such
an optimization problem. The relative energy captured by
the projection to such low-dimensional space consisting of
the first k columns of U can be evaluated by [52]

Ren ¼ 1�
PNs

i¼1 yi � ~F~F
T
yi

��� ���2
L2PNs

i¼1 yi
�� ��2

L2

¼
Pk

i¼1 s
2
iPNs

i¼1 s
2
i

: ð3:4Þ

We assume that, if the relative energy Ren is higher than
99.9%, the approximation reconstructed by the first k bases
performs well enough. Since the values of σi decay rapidly,
a small k would be sufficient to achieve the relative energy
threshold. Once the basis vectors are obtained, any model
response can be approximated by: y � ŷ ¼Pk

i¼1 aifi, where
αi are the projection coefficients.
3.2. Gaussian process regression
Assume that a model response y [ R is generated by the
function y = f (x) + ϵ with a corresponding input x [ Rd, and
ϵ denotes the noise of the measurement or stochasticity of
the model and assumes that a normal distribution is fol-
lowed: N ð0, s2

nÞ. A GP can be defined as a collection of
random variables and any finite number of the random
variables follows joint Gaussian distribution [29],

f ðxÞ � GPðmðxÞ, kðx, x0ÞÞ, ð3:5Þ
where GP denotes a GP prior over the space of functions
specified by its mean function m(x) and covariance functions
k(x, x

0
). Generally, the mean function is set to be zero without

loss of generality. The kernel functions specify how the
random variables are correlated with each other and also
imply the smoothness of the functions. One of the common
choices is the radial basis function kernel with automatic
relevant determination (ARD) [29],

k(x, x0) ¼ s2
f exp � 1

2

Xd
i¼1

(xi � x0i)
2

‘2i

 !
, ð3:6Þ

where s2
f is the signal variance and ℓi denotes the

length scale for each input dimension. For a regression
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problem, an independent Gaussian kernel with variance s2
n is

used to specify the noise in the function. These hyperpara-
meters in the kernel will be determined via the
optimization of likelihood function with observed data collec-
tion ðX, yÞ ¼ fðxi, yiÞgNi¼1,

arg max
u

log pðyjX, uÞ ¼ arg max
u

� 1
2
y`(K þ s2

nI)
�1y

�

� 1
2
log jK þ s2

nIj �
n
2
log 2p

�
, ð3:7Þ

where θ = {σf, σn, ℓ1,…, ℓd} and K = k(X, X). To predict
the model response at an unevaluated location x*, the GP
prior can be rewritten into

y
f ðx	Þ
� �

� N 0, kðX, XÞ þ s2
nI k(X, x	)

k(x	, X) k(x	, x	)

� �� �
: ð3:8Þ

Conditioning on the observed data, the predictive distri-
bution of the new point x* also follows a normal distribution,

f ðx	ÞjX, y, x	 � N �y	, Varðy	Þð Þ, ð3:9Þ
where

�y	 ¼ kðx	, XÞ½kðX, XÞ þ s2
nI��1y

and

Varðy	Þ ¼ kðx	, x	Þ � kðx	, XÞ kðX, XÞ þ s2
nI

� ��1
kðX, x	Þ:

The �y	 stands for the mean prediction of the response and
Var(y*) is the predictive variance indicating the uncertainty
of the prediction.

Generally, theGP regression is applied as a surrogatemodel to
infer the latent function betweenuncertain inputs andQoIs.How-
ever, after the decomposition of themodel response by SVD, both
evaluated and unevaluated model responses can be represented
bytheprojectioncoefficientsonthechosenorthogonalbases, there-
fore the GP is now used to learn the mapping between uncertain
inputs and projection coefficients of POD and predicts the new
coefficients for unevaluated points. The details of the procedure
are shown in algorithm 1.

Algorithm 1. Constructing a surrogate model for ISR3D with
GP and POD.
Training
1. Evaluate Ntrain number of samples using ISR3D and collect

the training data ðxi, yiÞ
	 
Ntrain

i¼1 .
2. Construct the snapshot matrix ½y1jy2j � � � jyNs � and perform

SVD to obtain k orthogonal bases ~F based on the relative
energy threshold.

3. Project the output of the training data to each basis and
compute the projection coefficients: fðxi;yiÞgNtrain

i¼1 �POD!
xi;ajðxiÞ
� �	 
Ntrain

i¼1 , where j ¼ 1, � � � , k.
4. Train jth single-output GP with uncertain inputs and

projection coefficients xi,ajðxiÞ
� �	 


.
Prediction
1. For an unevaluated point x	, use GPs to predict its

projection coefficients ajðx	Þ, where j ¼ 1, � � � ,k.
2. Reconstruct the corresponding model response

y	 ¼Pk
j¼1 ajðx	Þfj.
4. Uncertainty quantification
4.1. Uncertain parameters
The four epistemic uncertainties considered in the forward
uncertainty propagation of ISR3D include endothelium
regeneration time, blood flow velocity, the threshold strain
for SMC bond breaking and the percentage of fenestration
by area in the IEL. Note that all the uncertain parameters
except the blood flow velocity are parameters of the SMC
submodel.

4.1.1. Endothelium regeneration time
The endothelium regeneration starts right after the denuda-
tion caused by the balloon dilation and stent deployment.
With sufficiently high wall shear stress from blood flow, the
endothelium releases nitric oxide, which behaves as the
inhibitor of the proliferation of SMCs. Therefore, the rate of
endothelial regrowth significantly influences the growth of
neointima. In the ISR3D, the regeneration of endothelium
cells is modelled to increase linearly up to a coverage of
59% after 3 days, followed by a full recovery to 100% after
a certain number of days given by the uncertain input [12].
This setting is based on experimental results from Nakazawa
et al. [53]. However, the exact time for re-endothelialization
may vary with many factors, such as the severity of vessel
injury, the types of stenting and the degrees of inflammatory
response [54]. In order to study this uncertain parameter, we
consider an average endothelium regeneration time of 15
days based on the experimental data from Nakazawa et al.
[53], and vary it from 10 to 20 days in the UQ.

4.1.2. Threshold relative strain
The threshold strain is the maximum strain that can be
obtained before the bonds between SMCs break. Generally,
during the stenting process, the vessel wall is overstretched
in the circumferential direction, and therefore the connections
between the SMCs (e.g. collagen fibres) are possibly broken
and cause microfractures in the tissue. These microfractures
may cause inflammation and contribute to the proliferation
of SMCs after stenting.

Our choice on the uncertainty of the breaking strain is
inferred from stretching experiments [55,56] in which the
mechanical responses of the coronary arteries under
the stretch condition were gauged. The result demonstrated
that the first intimal rupture occurred at around 110%
strain, and the strain–stress curve became non-smooth
when strain reached approximately 120%. Therefore, we con-
sider the threshold strain around the experimental rupture
value 1.1 with an uncertainty of +20% in our UQ exper-
iment. Note that the measurements in [55,56] started from
an unstrained sample, while in our model the vessel is pre-
strained by 30% owing to it being pressurized by the flowing
blood inside it.

4.1.3. Blood flow velocity
Blood flow, as one of the mechanical factors, also plays an
important role in the growth of neointima [57,58]. High
enough wall shear stress in the vessel accelerates the
production of nitric oxide in endothelial cells, which acts as
an inhibitor of SMC proliferation.

As mentioned before, the blood flow in the simulation is
modelled as a steady flow with a constant parabolic inlet
boundary condition, since we are mainly interested in the
time-averaged values of the wall shear stress. The velocity
data from [59] were applied to compute time-averaged
velocity and converted to the parabolic profiles, the maxi-
mum velocity of which is 0.266m s−1. Owing to the



Table 1. Ranges, units and coefficients of variation (CVs) of uncertain parameters of the ISR3D model. Note that the relative threshold strain is calculated with
30% pre-strained. The measurements in [55,56] started from an unstrained sample while in our model the vessel is pre-strained by 30%. Therefore, strain listed
by Holzapfel et al. σabso is scaled to obtain the relative deformation of our pre-strained tissue by σrela = (((σabso + 1)/1.3)− 1).

uncertain parameters ranges (min) ranges (max) unit CV reference

endothelium regeneration 10 20 day 0.19 [53]

blood flow velocity 0.133 0.399 m s−1 0.29 [55,56]

relative threshold strain 0.446 0.785 – 0.16 [59]

percentage of fenestration 2 10 % 0.38 [60]
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measurement error and potential variety of velocity for indi-
vidual vessels, we presume a large uncertainty in the data
and vary it by 50% based on the average values 0:266ms�1.

4.1.4. Fenestration percentage
The IEL is modelled in ISR3D as a layer of agents on the inner
surface of the vessel wall [12]. The fenestrations on IEL sig-
nificantly affect the initial growth of SMCs as they allow
SMCs to migrate into the blood vessel and start proliferating
there. However, the SMCs in ISR3D are not able to change
shape to migrate through the fenestrations, unlike real
SMCs. Therefore, a certain percentage of IEL agents
are switched to SMCs in ISR3D, to obtain a smaller amount
of very large fenestrations, with the same total surface area
as in the experiment. The fenestration percentage is calcu-
lated as the total area of all fenestrations divided by the
total area of the IEL. The uncertainty ranges for this par-
ameter are obtained from [60], where the percentage of
fenestration in the hypercholesterolaemic group is approxi-
mately 7.5% and in the control group is approximately
3.5%. To include and study the scenarios for both cases, we
consider the parameters to vary from 2% to 10%.

The ranges of all the uncertain parameters mentioned above
are given in table 1 and the distributions of the uncertainties are
all assumed to be uniform.

4.2. Uncertainty estimations and sensitivity analysis
For the UQ we applied the quasi-Monte Carlo (qMC)
sampling method with Sobol sequence [61]. The method
allows the samples to be more evenly distributed in the
domain, which leads to a better convergence rate than the
standard random sampling.

To investigate the uncertainty propagation of the uncer-
tain inputs through the model, mean, variance, probability
density function (PDF) and coefficient of variation are esti-
mated. In addition, global sensitivity analysis has been
conducted to study how much each uncertain input has con-
tributed to the uncertainty of QoIs. The variance-based
method (Sobol method) [62] is applied, which assumes that
the latent functions f (x) can be decomposed into a combi-
nation of functions of individual uncertain inputs and their
higher order interactions, which also leads to the following
decomposition of the variance [62]:

Var fðfxÞ ¼
X
i

Vi þ
X
i

X
j.i

Vij þ � � � þ V12...d, ð4:1Þ

where Vi, Vij, V12...d stand for the partial variance contributed
by the ith uncertain input, by the interactions between the
ith and jth uncertain inputs and by the higher order
interactions. The first-order Sobol indices indicate the inde-
pendent contributions from the partial variance of each
single uncertain input,

Si ¼ Varxi
Var fðxÞ ¼

Varxi (Ex�i (fðxÞ j xi))
Var fðxÞ , ð4:2Þ

where x∼i denotes a vector of all uncertain parameters in x
except xi. The total sensitivity indices take all the relevant
contributions of a uncertain input into account,

STi ¼
Vartotalxi

Var fðxÞ ¼ 1� Varx�i (Exi (fðxÞ j x�i))
Var fðxÞ : ð4:3Þ

All the sensitivity indices mentioned above are computed by
Saltelli’s method [62].
5. Results
To train the surrogate models, 512 samples were generated by
the qMC method and evaluated by the ISR3D model. Before
the surrogate model was deployed to the UQ experiment, the
surrogates were validated with a fourfold cross-validation.
We measured the approximation error of both POD and GP
regression with the relative L2 norm,

ePOD ¼
XNcv

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yi � ~F~F

T
yi

��� ���
L2

yi
�� ��

L2

vuut
and

eGP ¼
XNcv

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yi � ~FaðxiÞ
�� ��

L2

yi
�� ��

L2

vuut , ð5:1Þ

where Ncv denotes the number of samples used for cross-vali-
dations. In the cross-validation of POD, a certain number of
snapshots were randomly taken from the training dataset
and used to construct the snapshot matrix for SVD. The vali-
dation dataset was used to measure the approximation error.
The relative L2 errors of the POD approximation with a differ-
ent number of snapshots of both QoIs are shown in figure 3.
The average relative L2 error gradually decreases to around
0.07% and 0.3%, respectively, with the number of snapshots
reaching 100. The tendency of the curve shows that the
error has almost converged to a limit; a further increase in
the number of snapshots will not greatly improve perform-
ance. The low standard deviation of the error shows that
there is no significant influence on the choice snapshots.
Therefore, we randomly chose 100 snapshots from the
output of the training data for the POD in the construction
of the surrogate model.

To test the performance of the GP regression, another
fourfold cross-validation was performed with 100 repetitions.
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The predicted projection coefficients were first used to recon-
struct their original model responses and subsequently
compared with the expected output from the validation data-
set. Comparisons of the predicted QoIs versus expected QoIs
over all time steps are demonstrated in figure 4. The resulting
points are clustered around the diagonal line, indicating that
the GP has inferred the underlying functions well. The aver-
age relative L2 error is 0.52% for the average cross-sectional
area and 2.52% for the relative maximum area loss.

After the validations of surrogate models, the UQ exper-
iments for both QoIs were performed. We applied the qMC
method to draw 105 samples from the uncertain input
domain and fed them to the surrogate models. The mean
and 50%, 75% and 95% percentile estimations of average
cross-sectional area over time are shown in figure 5. The cor-
responding histograms and PDFs of days 5, 10, 15, 20 and 30
are also shown in the same figure. The initial average cross-
sectional area after stenting was around 3.17 mm2. With the
evolution of time, the cross-sectional area gradually reduced
owing to the neointimal growth. The mean estimation of the
average cross-sectional area shows that the neointimal
growth was slow at the beginning but started to accelerate
after day 1. An almost linear growth between day 1 and
day 10 was observed followed by a descending growth rate
until all the growth stopped at around day 22. The upper
boundary of the 95% percentile shows that some samples
stopped growing shortly after day 10 owing to the short re-
endothelialization time, while a few other cases did not
stop before 22 days.
The PDFs and histograms in figure 5 show the details of
the distributions of days 5, 10, 15, 20 and 30. On day 5,
most of the samples cluster around 2.8 mm2 and a small
number of the samples have a lower average cross-sectional
area up to 2.63 mm2. A certain number of samples already
stopped growing between days 10 and 20. The early stop
usually means a small amount of neointima and contributes
to the right tail of the distributions (around 2.4–2.6 mm2),
while the rest of the samples still shifted towards the left
owing to the growth. The difference between days 20 and
day 30 is minor, indicating that the growth in most of the
samples had stopped before day 20.

Similar patterns can be observed for the maximum relative
area loss in figure 6. The distribution at day 30 shows that most
of the simulations ended up with 30–60% area loss. Assuming
that the restenosis happened when the area loss reached 50%,
about 5%, 16% and 18% of the simulations had reached the
restenosis threshold at days 15, 20 and 30, respectively.

Table 2 provides detailed information on the mean, stan-
dard deviation (SD), coefficients of variation (CVs) at days 5,
10, 15, 20 and 30 of both QoIs computed by 100 replications
of the UQ experiment. Around 11.3% and 16.6% uncertainties
are observed from the average cross-sectional area and
maximum relative area loss, respectively.

Apart from the uncertainty estimations, sensitivity analy-
sis has also been performed. The sensitivity analysis was
performed with 5 × 105 samples using the Sobol sequence
and was repeated 100 times to compute the confidence inter-
val. The first-order indices of the four uncertain inputs over
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time for both QoIs are shown in figure 7. The confidence
interval can hardly be seen in the figure, indicating extremely
small uncertainty in our sensitivity estimations. The first-
order indices quantify the direct effect of each uncertain
input on the total variance of the QoIs. For both QoIs, a
dominant influence of the fenestration percentage on the
variance can be observed at the initial stage of the process
and keeps decreasing over time. It has almost no impact
after 10 days. The blood flow velocity is a critical factor
on the growth throughout the entire process and shows
significant influences on variance in between day 5
and day 10, and gradually falls to around 0.2, while the endo-
thelium regeneration times show an increasing effect and
play the most important role after 13 days. The sensitivity
to threshold strain is relatively small compared with the
other uncertain inputs. The total order indices measure both
the independent and higher order interaction effect of an
uncertain input on the total variance of QoIs. The total order
indices of both QoIs are very similar to their first-order
result, meaning that there is little higher order interaction
between the uncertain inputs.

To further investigate the relations between uncertain
inputs and restenosis, scatter distributions and histograms
of the samples which reached the restenosis threshold at
days 15, 20 and 30 are shown in figure 8. Note that the
threshold strain is not shown in the figure since the sensitivity
analysis result suggested that it is relatively not important in
the process.
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In the left column of figure 8, scatter distributions of
samples in terms of fenestration percentage and re-endothelia-
lization time are shown. The range of re-endothelialization
time falls between days 14 and 20, meanwhile a clear degres-
sion tendency can be observed from the corresponding
histogram. The range of fenestration percentage shows that
the restenosis can happen even with the lowest fenestration
percentage, but the probability decreases slightly as the per-
centage drops. The middle column demonstrates the scatter
distributions of re-endothelialization time and blood flow vel-
ocity. At day 15, only the cases with rather low blood flow
velocity (under 0.27 m s−1) reached the restenosis threshold.
However at the end of the simulations, the upper bound
rose to 0.38 m s−1. Unlike the left and right columns, a clear
separation can be found between restenotic samples and the
rest of the domain. The right column is based on fenestration
percentage and blood flow velocity. Same patterns could be
observed. The influence of fenestration percentage is rather
minor while the value of blood flow velocity significantly
affects the possibility of restenosis.

The speed-up of the entire UQ experiment using the sur-
rogate model has also been estimated. Table 3 shows the
details of the computational cost, including the average core
hour for model evaluation with ISR3D and surrogate model
T ISR, training data generation T sample and surrogate training
T train. Both training and prediction of a surrogate model
were extremely fast. The most computationally expensive
part was the generation of training data with ISR3D. The
average core hour for each evaluation was around 585.
Since in this case NUQT ISR þ T train is negligible compared
with T train, we find that the speed-up equals NUQ/512≈
976.6.
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Table 2. Mean, standard deviation (SD), CV (in percentage) and percentage of restenosis at days 5, 10 ,15, 20 and 30 for both QoIs computed from 100
repetitions of the UQ estimation. Owing to the large number of samples used, the confidence interval of the evaluations for each estimate is extremely small
and is not shown here.

average cross-sectional area (mm2) maximum relative area loss (%)

estimates day 5 day 10 day 15 day 20 day 30 day 5 day 10 day 15 day 20 day 30

mean 2.774 2.303 2.062 2.002 1.991 19.848 33.674 40.962 42.721 42.958

SD 0.046 0.098 0.179 0.224 0.226 1.023 2.745 5.672 7.037 7.124

CV 1.658% 4.255% 8.681% 11.189% 11.351% 5.154% 8.152% 13.847% 16.472% 16.591%

restenosis – – – – – 0% 0% 5.123% 16.047% 17.873%
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6. Discussion
The result of surrogate modelling shows that the combination
of POD and GP regression performs well. The decomposition
and reconstruction of the model response with POD save the
computational effort for regression and provide a convenient
and consistent way to cover the entire model response over
time. In this work, the snapshot matrix was constructed by
100 randomly chosen snapshots from the training dataset gen-
erated by qMC sampling. An adaptive sampling method [63]
can be used to choose more representative snapshots with
error estimations; however, this was unnecessary as a relatively
large training dataset was available and the approximation
error could be properly controlled.

The GP was then applied to infer the latent functions
between uncertain inputs and projection coefficients of
POD. In the cross-validation of the surrogate model, the
relative L2 error of the maximum relative area loss is slightly
larger than the other QoI. This is mainly due to its way of
computing relative area loss, which required a division of
the initial cross-sectional area. The initial cross-sectional
areas at each slice of the lumen are different and thus
introduced the noise into the data. Therefore, the regression
performance of such a QoI was slightly worse than the
others.

For the UQ, around 11% and 16% of uncertainty are
observed from the average cross-sectional area and maxi-
mum relative area loss, respectively. The uncertainties in
the output are mainly contributed by fenestration percentage,
blood flow velocity and endothelium recovery time. The
fenestration percentage is important at the beginning because
a larger amount of fenestrations allows more SMCs to
migrate to the vessel lumen and proliferate. However
such an impact drops sharply to almost 0 in the first 5
days, as the SMCs form a continuous layer over the IEL.
Meanwhile the blood flow velocity starts to dominate
the variance between day 5 and day 10. During day 5,
re-endothelialization coverage varied from 63% to 67% and
increased up to 73–87% by day 10, which means that if the
wall shear stress is sufficiently high, a large percentage of
cells at the lumen surface could already have their growth
inhibited by nitric oxide. After day 10, the influence of the
blood flow velocity drops gradually and is replaced by
re-endothelialization. Figure 8 shows that, at the end of
the simulations, the influences of fenestration percentage
are relatively minor compared with the effect of blood flow
velocity and endothelium regeneration time. This suggests
that the scenarios with a high fenestration percentage,
such as hypercholesterolaemia, might not have a high
impact on restenosis probability if other parameters such as
endothelium regeneration time can be strictly controlled.

In the design of the UQ experiment, the choices of uncer-
tain ranges and distributions are described in §4.1. For all
uncertain parameters, the average values and some of the
uncertainty ranges are directly obtained or calculated from
experimental results. However, owing to the lack of data on
real population distributions of these parameters, the uncer-
tainty ranges and their corresponding distributions are
mainly defined by our approximations. They are simplified,
and are likely to be different from the actual distribution.
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Figure 8. Restenosis sample scatter distributions and corresponding histograms at days 15, 20 and 30.

Table 3. The computation cost of the ISR3D model and the surrogate model. TISR denotes the core hour to finish one single run of the simulation. Each
simulation was performed exclusively on a node with 2 × 12-core 2.6 GHz Intel Xeon E5-2690 v3 (Haswell) CPUs of Dutch supercomputer Cartesius. T train and
T sample stand for the sample generation time and training time for the surrogate model, respectively. NUQ denotes the number of samples used in a UQ
experiment.

UQ method T ISR (core hour) T train (core hour) T sample (core hour) NUQ speed-up of UQ

qMC 585.1 – – – 1

qMC (surrogate) 6.1 × 10−8 3.1 × 10−2 585.1 × 512 5 × 105 976.6
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Changing the input distribution naturally will lead to a
different output distribution in the UQ. Our choice of uni-
form distributions and approximation of the ranges can
illustrate the role of the input parameters and their effect on
the restenosis process to a certain extent, but further UQ
experiments based on actual distribution data of these par-
ameters are still required and the outcome of which can
also be applied to verify against clinical restenosis data. If
such a realistic input distribution can be obtained, e.g. from
a synthetic population, the trained surrogate can be used to
perform the UQ quickly, as long as the population data lie
in the same range used for generating the training sample.
In this work, we studied four biological uncertain
parameters. We quantified their uncertainty propagation
and sensitivity for two QoIs adapted for in silico models
from clinically recognized metrics. This helps us to better
understand the underlying contribution of these parameters
to restenosis. In addition to the investigated biological factors,
other factors and scenarios can also be studied via ISR3D; for
example, variability in the stenting procedure, such as
deployment depth or malapposition of the stent. Through
the UQ analysis, the potential effect of such factors can be
quantified and studied. Additionally, different scenarios,
such as small/large vessel diameters and the tortuosity of
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the stented vessel, can also significantly influence the out-
come of a simulation. We leave the study of these factors,
which all affect the initial shape of the stented vessel, to
our future work.

The ISR3D model itself has several limitations. First, it
does not account for the inflammation processes, which are
important during the early stages of post-stenting. Second,
the geometry used in the UQ experiment is not based on
any particular vessel, and instead is a piece of a perfectly
cylindrical tube, and the stent fits the curvature of the
vessel perfectly and is radially expanded in a uniform way.
Additionally, a steady flow approximation was used for our
BF model. The inlet was set to a parabolic profile, assuming
the vessel’s shape upstream of the inlet is unknown. It
should be noted that the curvature affects the flow pattern
to a great extent, leading to helical flows and affecting the
wall shear stress also inside the stented region. The effects
of the curvature are studied to some extent in our earlier pub-
lications; see, for example, fig. 9 in [13]. Similarly, finite-
element computational studies confirm the same effect of
the curvature in [64]. These studies demonstrate that it is
possible to capture the helical flow with a parabolic inlet con-
dition in the regions of developed flow, but the flow pattern
may be unrealistic close to the inlet.

A combination of the limitations listed above may result
in the underestimation of restenotic growth. For example,
Morton et al. [65] reported an area loss of 62% for porcine
vessels of a similar diameter and deployment depth with
an NIR stent, which is very close to the upper bound of the
distribution predicted by the model. Nevertheless, the exper-
imental values lie within the distribution, further confirming
that the ranges selected for UQ reasonably overlap with the
physiological ranges. There are also other limitations in the
model we use, which are discussed in detail in [12,13].
7. Conclusion
The UQ and sensitivity analysis of a multiscale model ISR3D
was performed. The uncertainty propagation from four
parameters—endothelium regeneration time, threshold strain,
percentage of fenestration and blood flow velocity—to two
QoIs—the average cross-sectional area and the maximum rela-
tive area loss—are investigated. Owing to the high
computational cost of ISR3D, surrogate modelling techniques
were applied. The QoIs over time were, first, decomposed by
POD and the resulting projection coefficients were learned by
a GP regression model. Cross-validations are applied to vali-
date the performance of the surrogate model. The surrogate
model was subsequently deployed in the UQ experiment to
replace the original model. The UQ and sensitivity analysis
results showed that the blood flow velocity and endothelium
regeneration time have a significant influence on the neointima
growth and result in restenosis, while the impact of
the fenestration percentage is limited and the threshold strain
barely has any influence on the process.
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