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Ten years ago, Archives of Toxicology has issued an Edi-
torial by R.D. Combes (2010) entitled “Is computational 
toxicology withering on the vine?” At that time, there was 
an ongoing development in the computational handling of 
molecular descriptors (Kirkovsky et al. 1998; Dorn et al. 
2008) and in statistical methodologies (Valerio et al. 2010). 
There was a perspective for applications of computational 
methods in general both in pharmacology (Valerio 2009) 
and in regulatory toxicology (Lilienblum et al. 2008). How-
ever, a weakness hindering wider application of statistical in 
silico systems was often missing or weak external validation, 
mostly due to a lack of a sufficient number of test chemi-
cals that were not used in the training set (Combes 2010). 
Explicit guidance on how to use the output of computational 
models in the range of regulatory context had not yet been 
developed (Mostrag-Szlichtyng et al. 2010).

In the following, important research lines of computa-
tional toxicology were the development and refinement of 
computational models for relevant toxicological endpoints, 
such as liver injury, cardiotoxicity, renal toxicity and geno-
toxicity (Ekins 2014). Best predictions were obtained com-
bining different tools, to comply with particular situations 
(Carrió et al. 2016).

As far as regulatory acceptance is concerned, a decisive 
breakthrough was the integration of (Q)SAR methodolo-
gies into the guideline ICH M7 “Assessment and control 
of DNA-reactive (mutagenic) impurities in pharmaceuticals 
to limit potential carcinogenic risk”, issued by the Interna-
tional Council for Harmonisation of Technical Requirements 
for Pharmaceuticals for Human use (Amberg et al. 2016; 
Hasselgren and Myatt 2018): in the absence of adequate 
experimental data, results of two complementary (Q)SAR 
methodologies (rule based and statistically learning based) 

were considered adequate to support an initial hazard clas-
sification (Tung et al. 2020), which may be followed by an 
assessment of additional information in an expert review 
to support or refute the computational predictions (Amberg 
et al. 2016). Similarly, also in regulatory fields other than 
pharmaceuticals, in silico models received increased accept-
ance. An example is prioritization of heat-induced food 
contaminants for mutagenicity and carcinogenicity testing 
(Frenzel et al. 2017).

A burst in manuscript submissions to “Archives of Toxi-
cology” covering the in silico/computational field is noticed 
since 2019, signaling both increased scientific importance 
and regulatory relevance in the twenty-first century of this 
research area (Krewski et al. 2020). The following trends 
are visible:

–	 Advanced computational methodologies (Kusko and 
Hong 2019) enable progress in fields that had been diffi-
cult to cover before. Apart from the more classical appli-
cations, substantial progress is now noted in areas such as 
exposure assessment (Krewski et al. 2020), sensitization 
(Tung et al. 2019), neurotoxicity (Kosnik et al. 2020) and 
even developmental/reproductive toxicity (Manganelli 
et al. 2020; Tung et al. 2020).

–	 Perspectives are emerging for computational approaches 
to predict the toxicity of nanomaterials (Buglak 2019) 
and of chemical mixtures (Klar and Leszczynski 2019).

–	 Computational toxicology continues to assist in refining 
PBPK modelling (Savvateeva et al. 2020) and in explor-
ing modes of toxic action (Ning et al. 2019; Yang et al. 
2019; Hengstler et al. 2020).

A current tendency, both in the United States (Kosnik 
et al. 2020) and in Europe (Mahony et al. 2018), is the avail-
ability of curated public and commercial databases in the 
future (“Big Data”), suitable for application of hierachial 
clustering and machine learning. A close interplay is envis-
aged between such Big Data, the refinement of predictive 
models, toxicological experimentation and mechanistic 
modelling (Kleinstreuer et al. 2020).
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Given this exciting development, further submissions of 
manuscripts from these fields to Archives of Toxicology are 
highly encouraged!
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